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Abstract
This paper presents a novel 1-D sentiment classifier trained on
the benchmark IMDB dataset. The classifier is a 1-D convolu-
tional neural network with repeated convolution and max pool-
ing layers. The main contribution of this work is the demonstra-
tion of a deconvolution technique for 1-D convolutional neural
networks that is agnostic to specific architecture types. This
deconvolution technique enables text classification to be ex-
plained, a feature that is important for NLP-based decision sup-
port systems, as well as being an invaluable diagnostic tool.
Index Terms: Explainability, Interpretability, Sentiment Clas-
sification, 1-D Convolutional Neural Networks

1. Introduction
The recent GDPR regulations [1] have important implications
for the deployment of real-world customer-facing AI systems.
Under these regulations, humans have a right to have decisions
explained to them, and this has serious implications for the suit-
ability and use of automated AI systems. Coping strategies
based on counter-factual explanations [2] have been posited on
the one hand, and on the other there is a perception that GDPR
is simply incompatible [3] with many of the current practices
of deep learning and AI, certainly in their current state. If one
considers the rise of end-to-end speech recognition systems as
an example, it is commonly understood that such systems have
simplified the process of training Automatic Speech Recogni-
tion systems. However, if we legally have to explain how such
a system arrived at a particular transcription, this would be cur-
rently difficult, if not impossible to do, as we would need to un-
tangle the decision process from the black-box architecture. As
such autonomous deep learning based systems replace humans
in the decision making process, it now becomes necessary for
AI-based autonomous systems to explain themselves [4].

Arguably by accident, some deep learning architectures
have transparency with regard to how they arrive at their clas-
sifications, for example the attention mechanism [5] that maps
encoder and decoder states provides such insight in neural ma-
chine translation. Recent advances with attention have seen
a move away from recurrent units entirely for sequence-to-
sequence architectures formed entirely of attention mechanisms
[6]. The attention mechanism effectively turns the sequence
problem into a spatial representation, enabling long-range de-
pendencies in sequences to be related more effectively. Simi-
larly, activation patterns in convolutional neural network (CNN)
architectures can provide insight into CNN classification. Such
approaches, termed deconvolution [7], effectively enable the
projection of features back to the input space, providing in-
sight into what the network sees. For image classification for
self-driving cars using CNNs [8] and for hybrid CNN-RNN
approaches for image captioning [9], this approach provides

significant diagnostic information. Interestingly, for the image
captioning implementation, the explainability is provided by the
combined efforts of the attention mechanism and deconvolution
functionality.

There are many approaches that try to reverse engineer the
inferencing of CNNs, most notable is the recent Grad-CAM im-
plementation [10], which is based on guided backpropagation
of activation maps. However, most of the activation map-based
approaches require intimate knowledge of the particular CNN
architecture and the approach needs to be tailored for different
architectures.

The method of text deconvolution by occlusion proposed in
this paper was inspired by [7], where systematically regions in
the input image are occluded by a gray square. That image is
inferenced with the trained model, and the shift in classifica-
tion accuracy for a particular class is recorded. By overlaying
the grid of classification accuracies corresponding to the pixel
position of the centre of the occluded squares, one can deter-
mine the regions of the input image that contribute the most
to the classification of the image as a whole. This approach
is computationally demanding in that in order to understand a
classification of an image one needs to perform classification
of that same input image each with a different occluded region.
However, the classification can be run in parallel with multipro-
cessing. Similarly, larger strides of the occluded region can be
used to limit the computational overhead for 2-D deconvolution
by occlusion.

In this paper we will be taking a similar approach to the de-
convolution by occlusion approach for 2-D CNNs and applying
it to the 1-D text classification problem domain.

2. Sentiment Classification
There is a trade-off between the number of out-of-vocabulary
words and vocabulary size that is a significant problem in
sequence-to-sequence tasks [11]. In our text classification task,
we in part address this problem using word embeddings, and
also by capping the number of words in the vocabulary. Whilst
for machine translation this limit on vocabulary size might not
be suitable, it is less of an issue in this domain as the vocab-
ulary size for chat text in the IMDB corpus is significantly
smaller than typical written text vocabularies. With this in mind,
we choose a word rather than character-based representation as
used in [12], and harness the embedding layer to limit this di-
mensionality problem. We also avoid the unnecessarily long
sequences associated with character-based encoding.

The remainder of this section outlines our approach to sen-
timent classification. First we introduce the well-known IMDB
dataset, and describe the data preparation performed before pre-
senting the 1-D CNN architecture that we will subsequently
base our deconvolutional work on.

Copyright © 2019 ISCA

INTERSPEECH 2019

September 15–19, 2019, Graz, Austria

http://dx.doi.org/10.21437/Interspeech.2019-274356



2.1. IMDB dataset

The IMDB dataset [13] also referred to as the Large Movie
Dataset is a binary sentiment analysis dataset consisting of
50,000 highly polar movie reviews, labelled as good or bad re-
views. The data was gathered by Stanford researchers and was
split evenly between training and testing data with 25,000 ex-
amples for each set, and labeled as positive or negative. The
dataset contains an even number of positive and negative re-
views. A negative review has a score ≤ 4 out of 10, and a posi-
tive review has a score ≥ 7 out of 10. No more than 30 reviews
are included per movie. Models are typically evaluated based
on accuracy, which is sufficient since the data is balanced.

2.2. Data Preparation

Data pre-processing is the most important aspect of training a
model, since the quality of the resulting model is directly cor-
related with the quality of the data [14]. Raw-text can con-
tain significant noise in the form of punctuation and whites-
pace. Hence, the first step in pre-processing is cleaning the
raw review text, replacing upper-case characters with lower-
case, and removing punctuation and whitespace using regular
expressions [15]. The second step in pre-processing is to con-
vert the clean review text into an input appropriate for our de-
fined model, using tokenization. Tokenization is the process of
splitting text (strings) into a list of tokens. In this work, we used
Tokenizer, which is a tool available in the Natural Language
Toolkit (NLTK) [16]. After tokenizing the review text, we use
the tokenizer function to create a word index dictionary. The
tokenizer function assigns a unique number to the whole vocab-
ulary used in the entire dataset in order of the most frequently
used words. We have 88,585 unique words used in the IMDB
dataset. The review is then converted into a list of correspond-
ing word indices and then padded with 0’s to a fixed length for
training, as the input must be of similar length. We keep the in-
put sequence to a maximum length of 2,000 words and for this
particular data-set we use a vocabulary size of 4,000.

2.3. 1-D CNN Architecture

Historically, successively deeper approaches to 2-D CNN ar-
chitectures is arguably the main reason for success reported
by winners of the ImageNet competition [17]. This pursuit of
deeper models has led to a huge surge in applications, and inno-
vative approaches to minimizing parameters, improving train-
ing efficiency, and has led to better and more robust architec-
tures in the image classification [18] domain. The prosperity
of deep networks comes from their ability to learn hierarchical
feature representations from data which varies in complexity
from pixels and lines, all the way to highly complex shapes and
objects. However that is not the case when dealing with word
representations in the text classification domain. Here deep net-
works perform poorly for this particular problem, as the impact
of depth in the Natural Language Processing (NLP) domain is
still unclear [19].

There has been a lot of debate when it comes to to time se-
quence related classifications, what is better a CNN or an RNN?
A recent publication in 2017 by Facebook AI demonstrated re-
sults using a fully convolutional translation model which out-
performs an LSTM based model in performance and reported a
speed up of 9x [20]. It is also claimed that due to their hierarchi-
cal nature, that CNN architectures learn compositional structure
more easily.

In text classification, a previous state-of-the-art approach
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Figure 1: Architecture of the 1-D CNN Sentiment Classifier

used hierarchical attention networks [21] to learn long text se-
quences. This approach made use of self-attention, i.e. word-
by-word relationships between words in the same sentence, and
exploiting that information to capture the internal structure of
the sentence. Similarly, hierarchical convolutional attention net-
works [22] use self-attention to address the issues with the slid-
ing window length of Kim’s CNN architecture [23]. In the orig-
inal implementation, Kim uses a sliding window encompassing
4 or 5 words. It is claimed that this means that Kim’s approach
is incapable of learning linguistic patterns beyond this 4 or 5
word window size. In this work we do not use a sliding win-
dow to maintain a consistent sequence length, neither do we
rely on the use of pre-learned embeddings. Instead we employ
variable length sequences encoded by an embedding layer that
learns embeddings during training, and masks padded elements
appropriately from the loss function. We therefore have no slid-
ing window limitation on the length of the sequences that we
can learn.

The architecture of the 1-D text classifier in this work is
shown in Figure 1. Our architecture validates the conclusion
that a relatively shallow CNN with very little hyper-parameter
tuning and static vectors can achieve competitive results on
sentence-level classification tasks [23]. As can be seen in the
figure, our model consists of an embedding layer followed by
three Convolutional 1-D layers chained to a ReLU activation
layer [24] and MaxPooling 1-D layers. We keep the padding the
same throughout all the layers, and we have two fully-connected
layers followed by a ReLU activation and a Dropout layer [25]
for regularisation, which are attached to the last Maxpooling
1-D layer. The model is compiled using a binary cross-entropy
loss function and an RMSprop optimizer with a fixed 1e-3 learn-
ing rate and mini batch size of 128. The dense fully connected
layers have Sigmoid activation which outputs a number between
0 (negative) to 1 (positive).

Before the data goes into the first CNN layer, it passes
through the Embedding layer which trains on that data and is
a crucial layer when dealing with text. The Embedding layer
converts each element in the word index sequence input to a
simple vector representation, which in turn allows faster and
more efficient processing with text data. However the padded
input contains a lot of 0’s and hence the embedding layers also
masks those numbers from the loss function during training.
The learned embeddings from the embedding layer should not
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be confused with the embeddings that Glove [26] or word2vec
[27] learn. These related embeddings are trained to capture se-
mantic similarity whilst the Embedding layer in this work out-
puts embeddings that are configured purely for classification
purposes on the dataset itself [28].

3. Experimentation
First, various pre-processing options that were experimented
with are summarised. Following this the training results are
benchmarked to other approaches in the literature. The text de-
convolution methodology is then presented. Finally, some ex-
amples of the capability of the system to explain sentiment clas-
sification for various unseen test set examples are presented.

3.1. Pre-processing Text

3.1.1. Stop-words

Removing stop-words is a commonly used method to remove
the words that would have little to no impact on the classifica-
tion of a sentence. Removing words such as ’I’, ’the’, ’and’,
etc., significantly decreases training and inference time. How-
ever, this method made no significant difference for this dataset,
and for the task of text deconvolution we would require the orig-
inal composition of the sentence.

3.1.2. Stemming

This method is used to decrease the vocabulary length of a
dataset by mapping similar words such as ’fright’, ’frightened’,
’frightening’ to a same word ’fright’. However adding this mod-
ification to our pre-processing step resulted in a decrease in test
accuracy. This could be blamed on the nature and perhaps the
limited size of the dataset.

3.1.3. Using pre-trained word embeddings

For completeness, we experimented with using pre-trained
word embedding weights for the embedding layer. To imple-
ment this approach we used ’GloVe’ embeddings [26], which
are pre-trained word embeddings computed on the 2014 dump
of the English Wikipedia, containing a vocabulary size of
400,000 words.

3.2. Benchmarking

For benchmarking purposes, many model architectures were
compared, including recent CNN, RNN and combinations of
both (that were implemented by us and found to be consis-
tent with results reported in [29]), as well as more traditional
Naive Bayes baseline methods reported in [30] and [31]. The
same input pipeline and parameters were maintained in an ef-
fort to compare like-for-like based on test accuracy. Table 1
summarises the accuracies for this dataset obtained by the dif-
ferent models reported in the literature.

The baselines NB and BiNB are Naive Bayes classifiers
with, respectively, unigram features and unigram and bigram
features. RECNTN [30] is a recursive neural network with a
tensor-based feature function, which relies on external struc-
tural features given by a parse tree. DCNN [31] is an early con-
volutional approach that utilises dynamic k-max pooling where
k is determined by the sentence length. As can be seen from Ta-
ble 1, the best architecture (our 1DCNN with embedding layer
learned from scratch) achieved a 0.905 test accuracy evaluated
on 25,000 test reviews. This approach gave slightly better (if

Table 1: Comparison of various architecture approaches

Model Accuracy
NB [30] 0.818
BiNB [30] 0.831
RECNTN [30] 0.854
DCNN [31] 0.868
RNN 0.880
Bi-Directional LSTM 0.881
CNN 0.895
CNN+LSTM 0.896
RCNN [29] 0.900
RCNN-HW [29] 0.903
1DCNN (pre-trained embedding) 0.903
1DCNN (learned embedding) 0.905
ULMFiT [32] 0.950

not statistically significantly better) results than the pre-trained
fine-tuned embedding layer. Training was performed using a
single NVIDIA GeForce GTX 1080 Ti with 12GB of VRAM.
The result shows comparable if slightly less accuracy than the
state of the art [32]. However, the main contribution of this pa-
per is in the explainability of the inferencing which we will now
demonstrate.

3.3. 1-D Deconvolution by Occlusion

Deconvolution by occlusion was originally proposed for image
classification problems to identify what part of the input image
the network looks at to support the output that it predicts [7].
Using this method, we can tell why the network classifies what
it classifies, and if the network has actually trained to identify
and distinguish the unique features corresponding to each class.
In this paper, we propose the application of the same approach
but for the text classification problem. The text deconvolution
by occlusion method can be used to visualize the impact of in-
dividual words on the final prediction made by the model, see
Figure 2 for an example of the output.

What   an   AMAZING!!!   movie,   brilliant   and   outstanding

Occlusion
Box
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Figure 2: Text Deconvolution with Occlusion

The idea behind this approach is to successively occlude
each element (word) present in the input sequence, and monitor
the difference (delta) between the classification of the original
input sequence and the prediction after masking the word. We
iterate this process for all the individual words in the sentence,
and monitor the fluctuation in the sentiment classification. We
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apply this method over the pre-processed text which have had
any punctuation or white spaces already filtered out. In this way,
this method is agnostic to the architecture of the model itself,
since it simply modifies the input data in order to determine the
effect of the modification on the output.

An alternative approach to text deconvolution in the liter-
ature is termed Text Deconvolution Saliancy (TDS) [33]. This
approach is similar to activation map approaches in 2-D CNNs
[7] and Layer-wise Relevance Propagation (LRP) [34]. How-
ever, like 2-D convolution activation map-based approaches,
this approach requires configuration for the particular architec-
ture under question.

3.4. Sentiment Inferencing Explained

The text deconvolution by occlusion method will now be ex-
plained; Figure 3 shows the input pipeline of the inference.

The movie is not that good, I would recommend watching it once but there is nothing more to that.
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Figure 3: Text Deconvolution Explained

Given an input sentence, we first need to know the senti-
ment of the original sentence, then we mask a single number
(word) by multiplying it by 0 in the word index sequence gen-
erated after the pre-processing stage. By turning an element
in the sequence into 0, the network only considers the rest of
the words when making the classification. The new masked se-
quence is used for inference and we plot the difference between
the original sentiment classification and the new occluded sen-
timent produced by inferencing each masked word index se-
quence. This process is repeated for each and every integer
(corresponding to a word) in the sequence, and the plotted out-
put gives a visualisation of the impact of each word within the
input sentence, and thus contributes towards the explainability
of the model’s prediction.

Figure 4 shows the deconvolution at work on a few chosen
reviews with their corresponding sentiment, (a) and (b) are sim-
ple reviews that contradict each-other with (a) being highly pos-
itive and (b) highly negative. These two examples demonstrate
the ability of the 1D CNN to learn the context that the words are
within, in (a) ’absolutely’ is positive because of its relationship
with ’brilliant’, but in (b) ’absolutely’ is negative because of the
negative context of the rest of the sentence. (c) shows negation
in a sentence, and illustrates that the model is looking at the
sentence as a whole and not simply attributing sentiment to in-
dividual words. (d) is a positive sentence but with strong nega-
tive words like ’hate’ and ’kill’. However, the model overlooks
those words and focuses on the over all sentiment of the sen-
tence predicting it as positive. This text example is the only one
manufactured by the authors as an antogonistic attempt to test
the model, all the other reviews are taken from the IMDB test

 

 Marked up Text Sentiment 

(a) I like this movie, absolutely brilliant 0.9142 

(b) I hate this movie, absolutely trash 0.1397 

(c) i wish i could say that the movie was good, but it's terrible 0.3414 

(d) 
As a United fan I hate to say it but Salah is a great striker, I would kill to have 
him in my team. 

0.7792 

(e) 
an incomprehensible script when it shouldn't have been dependent on a 
rather flaky voice over the animation however show real talent quite visually 
impressive 

0.6559 

(f) 
this is by far the worst non english horror movie I've ever seen the acting is 
wooden the dialogues are simply stupid and the story is totally brain-dead its 
not even scary 2 out of 10 from me 

0.0009 

(g) 
I have no way of knowing exactly how much is exaggeration , but I've got a 
creepy feeling that the film is closer to the mark than I want to believe 

0.5538 

(h) 
fun movie great for the kids they found it very entertaining somewhat 
predictable but there are a few surprises great movie to watch if youre 
looking for something just to entertain dont expect to be seeing a classic 

0.9689 

(i) 
the stuff dreams are made of a complete retelling of the play as a dream of 
vengeance will baffle purists but will delight the open minded a superb effort 
great cinematography acting and script 11 stars 

0.9151 

(j) 

felix in hollywood is a great film the version i viewed was very well restored 
which is sometimes a problem with these silent era animated films it has 
some of hollywoods most famous stars making cameo animated 
appearances a must for any silent film or animation enthusiast 

0.9615 

 

Figure 4: Visualisation of Deconvolution

set. Similar behavior can be observed in (e) where the overall
negativity of the sentence is overwhelmed by the positive phrase
’quite visually impressive’. (f) is the most negative out of all re-
views, here the model demonstrates its ability to learn from the
data. The IMDB dataset includes the rating of the movie: and
the user’s review includes ’2 out of 10’, which shares the same
negativity as the word ’worst’ within the sentence. Similar to
this we have another review (i) which is positive and the model
predicts it not just because of the positive words but also be-
cause it has learned the significance of the numerical rating ’11
stars’. In (g) it is difficult for a human to determine whether
the review is positive or negative and this is reflected rightly
in the model’s neutral classification. (h) on the other hand is
rightly classified as a highly positive review, despite some un-
dermining negative phrases. Similarly, in (j) a positive review is
correctly predicted despite some negative words that have been
correctly put in the context of the sentence.

These results illustrate how well the trained model gener-
alises to unseen data. The diagnostic capability of the approach
explains how words from candidate sentences can be taken into
context by the resulting sentiment classification.

4. Conclusions

In this paper, we have demonstrated how text deconvolution
by occlusion can explain how 1-D CNNs automate classifica-
tions, providing an important diagnostic tool for debugging mis-
classifications and in turn improving training data and network
accuracy. Unlike other approaches to deconvolution, for exam-
ple Text Deconvolution Saliency [33], which relies on activation
map processing, this method is completely independent of the
model’s architecture. For text classification systems applied to
autonomous decision making, this approach could be vital for
justifying how decisions are made.
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