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1 Introduction

The human neck is comprised of seven vertebrae, offering a relatively limited range of motion. In contrast, bird
necks possess a higher number of vertebrae, typically ranging between 11 and 25. This increased vertebral count
provides birds with the ability to execute more intricate and dexterous movements, facilitated by a sophisticated
network of tendons and muscles. Such neck dexterity enables birds to employ their necks analogously to how humans
use their arms, allowing them to grasp and manipulate objects. Furthermore, birds’ necks exhibit remarkable speed
in motion, as exemplified by the rapid pecking movements of woodpeckers.

The exploration of bird neck performances has inspired the development of new robots. In a study by Furet
et al. [1], the motion between bird neck vertebrae was investigated. It was observed that the motion between two
vertebrae could involve either a pure rotation or a rolling motion of an ellipse on another. Pure rotation can be
replicated using a revolute joint, while the rolling of ellipses can be modeled with an anti-parallelogram joint, also
known as X-joints [2]. These joints, discussed in [3], can be actuated using two antagonistic cables to simulate the
effects of muscles and tendons. Notably, research by Muralidharan et al. [4] highlights that revolute joints lack
co-actuation properties compared to X-joints, making the latter more attractive for the development of bio-inspired
robots.

In a study conducted by Fasquelle et al. [5], a fully-actuated robot comprising three X-joints and four cables
was successfully built and controlled, demonstrating the feasibility of the mechanism. In the context of mechanisms
inspired by the bird neck, where the aim is to limit the number of actuators, the use of a restricted number of
cables becomes an interesting consideration. In such cases, the system under investigation becomes underactuated.
The objective of this report is to examine the impact of cables in statics on underactuated robots constructed with
X-joints actuated by antagonistic cables.

Section 2 provides an overview of the underactuated robots under study. In Section 3, the influence of cable
tensions on the robot is explored, revealing that an increase in cable tensions leads the robot to converge to a
predictable configuration, regardless of the mass and elastic parameters. The report concludes with Section 4.

2 Presentation of the robots

This report focuses on the analysis of two robots depicted in Fig. 1. The first robot consists of 2 X-joints actuated
by 2 cables, each pulling on the left and right sides of the joints. The second robot comprises 6 X-joints and is
actuated by 4 cables. One cable pulls all joints on one side, while the remaining three cables pull two joints each
on the other side. This cable routing is inspired by nature, resembling the structure found in certain bird species
where a long ventral muscle pulls several vertebrae. Both robots are underactuated since two joints linked by the
same cables cannot move independently from one another. Additionally, springs are incorporated in parallel with
the cables to maintain a stable configuration at rest.

We will consider b = 0.05 m, L = 0.1 m, a mass of 0.16 kg for the top bar, and 0.026 kg for the diagonal bars.
Each joint i has one degree of freedom, which is defined as the orientation of the top bar compared to the base

bar αi. The static model has been computed in [6] [7] and is given by:

g(α) = Z(α)f (1)

where:

• α is the vector of the joint angles.

• g(α) represents the effects of gravity and the springs.
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Figure 1: Representation of and under-actuated robots with 2 joints and 2 cables and another one with 6 joints
and 4 cables

• Z(α) = −
dl

dα

⊤
, with l as the vector of cable lengths.

• f is the vector of cable tensions.

3 Effect of the cable tensions

The objective of this section is to investigate the impact of minimal cable tensions on the overall equilibrium of the
underactuated robots. The matrix Z has a rank of Nc, where Nc is the number of cables. However, during control,
only Nc − 1 degrees of freedom are controllable, as one is designated to maintain the cable tensions positive.

For instance, in the case of the robot with 6 joints and 4 cables, only 3 degrees of freedom are controllable. These
degrees of freedom can be represented by the end-effector position and orientation, denoted as X = [x, y, γ]⊤ =
fX(α). Given a desired end effector position and orientation Xdes, the static equilibrium position of the robot can
be calculated as follows:

(α,f) = min
α,f

||f ||

s.t.

g(α) = Z(α)f

fX(α) = Xdes

min(f) ≥ fmin

(2)

The springs are assumed to be symmetric on the right and left sides, with stiffness values from bottom to top of
[1000, 850, 800, 650, 400, 250] N/m. They have a free length of 0.046 m, an initial orientation of π/4, and are subject
to gravity. Additionally, the pulley radius is considered to be null (Rp = 0).

Figure 2 illustrates the variation of α for a givenXdes, accompanied by the corresponding cable tensions depicted
in Figure 3, as the minimal cable tension fmin is modified. These figures indicate that as tensions increase, the
robot converges to a configuration where joints actuated by the same cables have identical angles. Specifically, it
converges to a position where the Z matrix loses one rank, as shown in Figure 4. Two different robot configurations
for distinct minimal tensions are presented in Figure 5, demonstrating that X remains constant while joints angles
α differ.

In the presence of a non-null pulley radius (Rp ̸= 0), Figure 6 demonstrates that the robot converges to a
configuration where the angles linked by actuation have different values. However, in this configuration, the rank
of the matrix Z decreases by 1, as illustrated in Figure 7.

The decrease in rank of Z can be explained. We express f = cfL, where c is a vector of constants expressing the
ratio between the cable tensions (compared to the left cable tension). The static equation can therefore be written
as:
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Figure 2: Evolution of the robot joint angle for a set
Xdes depending on the minimal tension (null pulley
radius)
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Figure 3: Evolution of the cable tensions for a given X
when the minimal tension increase.
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Figure 4: Evolution of the minimal singular value of Z
for a set Xdes depending on the minimal tension (null
pulley radius)

Figure 5: Position of the robot for a given Xdes for
a minimal tension of 0N and of 10000N. (springs are
hidden for lisibility)

Z(α)c =
1

fL
g(α) (3)

Thus, it can be observed that as the cable tensions approach infinity (fL → +∞), c becomes a null space vector
of the Z matrix, and consequently, the rank of Z decreases.

For example, for the robot with 2 joints and 2 cables, we have f = [fL, fR], where fL and fR are the tensions
in the left and right cables, respectively. Moreover, by defining c = [1, c] with c = fR/fL and solving the Z(α)c for
different values of c, it is possible to predict the position of the robot when the cable tensions increase, as presented
in Fig. 8 and 9.

We set spring stiffnesses to 100 N/m and 600 N/m on the left of the first joint and 500 N/m and 200 N/m on
the right of the first joint. In the presence of gravity and a null pulley radius, Fig. 10 and 11 show the evolution
of the joint angles in simulation [8], when the cable tensions are increasing with a constant ratio. In Fig. 10, the
ratio is c = 1, and the joint angles converge to 0◦ as expected by Fig. 8. Similarly, in Fig. 11, c = 0.61676, and the
joint angles converge to 50◦ as expected by Fig. 8. Thus, these figures confirm the evolution of the joint angles to
a configuration where the rank of Z decreases when the cable tensions go to infinity.
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Figure 6: Evolution of the robot joint angle for a set
Xdes depending on the minimal tension (pulley radius
of 0.01 m)
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Figure 7: Evolution of the minimal singular value of
Z for a set Xdes depending on the minimal tension
(pulley radius of 0.01 m)
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Figure 8: Evolution of the equal robot joint angle de-
pending on the ratio between the cable tension when
there is infinite tension (null pulley radius)
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Figure 9: Evolution of the robot joint angle depending
on the ratio between the cable tension when there is
infinite tension (pulley radius of 0.01 m)

4 Conclusion

This report has presented under-actuated robots inspired by the bird neck. These robots are built with X-joints
that are actuated through 2 antagonistic cables.

It has been shown that as cable tensions are increased, robots converge to a configuration where the rank of the
actuation matrix Z decreases by one. This indicates that only Nc − 1 degrees of freedom can be freely controlled,
while the remaining one, used for maintaining the positivity of the cable tensions, has less impact.
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Figure 10: Simulation of the joint angle evolution when
the tensions are increase with a ratio c = 1 with Rp = 0
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Figure 11: Simulation of the joint angle evolution when
the tensions are increase with a ratio c = 0.61676 with
Rp = 0
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