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Abstract In the present paper, we consider large-scale differential Lyapunov matrix equations having a low rank
constant term. We present two new approaches for the numerical resolution of such differential matrix equations.
The first approach is based on the integral expression of the exact solution and an approximation method for
the computation of the exponential of a matrix times a block of vectors. In the second approach, we first project
the initial problem onto a block (or extended block) Krylov subspace and get a low-dimensional differential
Lyapunov matrix equation. The latter differential matrix problem is then solved by the Backward Differentiation
Formula method (BDF) and the obtained solution is used to build a low rank approximate solution of the original
problem. The process is being repeated, increasing the dimension of the projection space until some prescribed
accuracy is achieved. We give some new theoretical results and present numerical experiments.
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1 Introduction

In the present paper, we consider the differential Lyapunov matrix equation (DLE in short) of the form{
Ẋ(t) = A(t)X(t)+X(t)AT (t)+B(t)B(t)T ; (DLE)
X(t0) = X0, t ∈ [t0, Tf ],

(1)

where the matrix A(t) ∈ Rn×n is assumed to be nonsingular and B(t) ∈ Rn×s is a full rank matrix, with s ≪ n.
The initial condition X0 = Z̃0Z̃T

0 is assumed to be a symmetric and positive low-rank given matrix.
Differential Lyapunov equations play a fundamental role in many areas such as control, filter design theory, model
reduction problems, differential equations and robust control problems [1,5]. For those applications, the matrix
A is generally sparse and very large. For such problems, only a few attempts have been made to solve (1).

Let us first recall the following theoretical result which gives an expression of the exact solution of (1).
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Theorem 1 [1] The unique solution of the general Lyapunov differential equation

Ẋ(t) = A(t)X +X A(t)T +M(t); X(t0) = X0 (2)

is defined by

X(t) = ΦA(t, t0)X0Φ
T
A (t, t0)+

∫ t

t0
ΦA(t,τ)M(τ)ΦT

A (t,τ)dτ. (3)

where the transition matrix ΦA(t, t0) is the unique solution to the problem

Φ̇A(t, t0) = A(t)ΦA(t, t0), ΦA(t0, t0) = I.

Futhermore, if A is assumed to be a constant matrix, then we have

X(t) = e(t−t0)AX0e(t−t0)AT
+

∫ t

t0
e(t−τ)AM(τ)e(t−τ)AT

dτ. (4)

We notice that the problem (1) is equivalent to the linear ordinary differential equation{
ẋ(t) = A (t)x(t)+b(t)
x0 = vec(X0)

(5)

where A (t) = I ⊗A(t)+A(t)⊗ I, x(t) = vec(X(t)) and b(t) = vec(B(t)B(t)T ), where vec(Z) is the long vector
obtained by stacking the columns of the matrix Z. For moderate size problems, it is then possible to use an
integration method to solve (5). However, this approach is not adapted to large problems.
In the present paper, we will consider the case for which the coefficient matrices A and B are time-independent.
The general idea of the approaches that will be developped in this work is to project the original problem (1)
onto extended block Krylov (or block Krylov if A is not invertible) subspaces associated to the pair (A,B). These
subspaces are defined as follows

Km(A,B) = range(B,AB, . . . ,Am−1B)

for block Krylov subspaces, or

Km(A,B) = range(A−m, . . . ,A−1B,B,AB, . . . ,Am−1B)

for extended block Krylov subspaces. Notice that the extended Krylov subspace Km(A,B) is a sum of two block
Krylov subspaces

Km(A,B) =Km(A,B) + Km(A−1,A−1B).

To compute an orthonormal basis {V1, . . . ,Vm}, where Vi is of dimension n× s for the block Krylov and n×2s in
the extended block Krylov case, two algorithms have been defined: the first one is the well known block Arnoldi
algorithm and the second one is the extended block Arnoldi algorithm [7,25]. These algorithms also generate
block Hessenberg matrices T̄m = V T

m+1 AVm satisfying the following algebraic relations

AVm = Vm+1 T̄m, (6)

= Vm Tm +Vm+1 Tm+1,m ET
m , (7)

where Tm = T̄m(1 : d, :)=V T
m AVm and where Ti, j is the (i, j) block of T̄m of size d×d, and Em = [Od×(m−1)d , Id ]

T

is the matrix of the last d columns of the md×md identity matrix Imd with d = s for the block Arnoldi and d = 2s
for the extended block Arnoldi.
When the matrix A is nonsingular and when the computation of W = A−1V is not difficult (which is the case for
sparse and structured matrices), the use of the extended block Arnoldi is to be preferred.
The paper is organized as follows: In Section 2, we present a first approach based on the approximation of the
exponential of a matrix times a block using a Krylov projection method. We give some theoretical results such as
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an upper bound for the norm of the error and an expression of the exact residual. A second approach,presented
in Section 3, for which the initial differential Lyapunov matrix equation is projected onto a block (or extended
block) Krylov subspace. Then, the obtained low dimensional differential Lyapunov equation is solved by using
the well known Backward Differentiation Formula (BDF). In Section 4, an application to balanced truncation
method for large scale linear-time varying dynamical systems is presented. The last section is devoted to some
numerical experiments.

2 The first approach: using an approximation of the matrix exponential

In this section, we give a new approach for computing approximate solutions to large differential equations (1).
The expression of the exact solution as

X(t) = e(t−t0)AX0e(t−t0)AT
+

∫ t

t0
e(t−τ)A BBT e(t−τ)AT

dτ, (8)

suggests the idea of computing X(t) by approximating the factor e(t−τ)AB and then using a quadrature method to
compute the desired approximate solution.
As computing the exponential of a small matrix is straightforward , this is not the case for large scale problems,
as e(t−τ)A could be dense even though A is sparse. However, in our problem, the computation of e(t−τ)A is not
needed as we will rather consider the product e(t−τ)A B, for which approximations via projection methods onto
block or extended block Krylov subspaces are well suited.
Krylov subspace projection methods generate a sequence of nested subspaces (Krylov or extended Krylov sub-
spaces). Let Vm = [V1, . . . ,Vm] be the orthogonal matrix whose columns form an orthonormal basis of the subspace
Km, Following [21,22,27], an approximation to Z = e(t−τ)A B can be obtained as

Zm(t) = Vme(t−τ)Tm V T
m B (9)

where Tm = V T
m AVm. Therefore, the term appearing in the integral expression (8) can be approximated as

e(t−τ)ABBT e(t−τ)AT ≈ Zm(t)Zm(t)T . (10)

For simplicity, we assume that X0 = 0, an approximation to the solution of the differential Lyapunov equation (8)
can be expressed as

Xm(t) = VmGm(t)Vm
T , (11)

where

Gm(t) =
∫ t

t0
G̃m(τ)G̃T

m(τ)dτ, (12)

and G̃m(τ) = e(t−τ)Tm Bm, with Bm = V T
m B.

We notice that if X0 = Z̃0Z̃T
0 ̸= 0, then we can also approximate the firt term e(t−t0)AZ̃0 of (8) by Z0, using a Krylov-

based or another method and then the approximate solution to (8) is given as Xm(t) = Z0ZT
0 +VmGm(t)Vm

T .
The next result shows that the matrix function Gm is the solution of a low-order differential Lyapunov matrix
equation.

Theorem 2 Let Gm(t) be the matrix function defined by (12), then it satisfies the following low-order differential
Lyapunov matrix equation

Ġm(t) = TmGm(t)+Gm(t)Tm
T +BmBT

m, t ∈ [t0, Tf ] (13)

Proof The proof can be easily derived from the expression (12) and the result of Theorem 1.
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As a consequence, introducing the residual Rm(t) = Ẋm(t)− AXm(t)− Xm(t)AT − BBT associated to the
approximation Xm, we have the following relation

V T
m Rm(t)Vm = V T

m (Ẋm(t)−AXm(t)−Xm(t)AT −BBT )Vm

= Ġm(t)−TmGm(t)−Gm(t)Tm
T −BmBT

m

= 0,

which shows that the residual satisfies a Petrov-Galerkin condition.

As mentioned earlier, once G̃m(τ) is computed, we use a quadrature method to approximate the integral (12)
in order to approximate Gm(t).
We now briefly discuss some practical aspects of the computation of e(t−τ)Tm Bm where Bm = V T

m B, when m is
small and Tm is a an upper block Hessenberg matrix.

In the last decade, many approximation techniques such as the use of partial fraction expansions or Padé approx-
imation have been proposed, see for example [9,22]. However, it was remarked that a good way for evaluating
the exponential of matrix times by a vector by using rational approximation to the exponential function. One of
the main advantages of rational approximations as compared to polynomial approximations is the better stability
of their integration schemes. Let us consider the rational function

F(z) = a0 +
p

∑
i=1

ai

z−θi
,

where the θi’s are the poles of the rational function F . Then, the approximation to G̃m(τ) = e(t−τ)Tm Bm is given
by

G̃m(τ)≈ a0Bm +
p

∑
i=1

ai[(t − τ)Tm −θiI]−1 Bm. (14)

One of the possible choices for the rational function F is based on Chebychev approximation of the function ex

on [0, ∞[, see [22]. We notice that for small values of m, one can also directly compute the matrix exponential
e(t−τ)Tm by using the well-known ’scaling and squaring method for the matrix exponential’ method, [13]. This
method was associated to a Padé approximation and is implemented in the expm Matlab routine.

From now on, we assume that the basis formed by the orthonormal columns of Vm is obtained by applying the
block Arnoldi or the extended block Arnoldi algorithm to the pair (A,B).
The computation of Xm(t) (and of Rm(t)) becomes expensive as m increases. So, in order to stop the iterations,
one has to test if ∥ Rm ∥< ε without having to compute extra products involving the matrix A. The next result
shows how to compute the residual norm of Rm(t) without forming the approximation Xm(t) which is computed
in a factored form only when convergence is achieved.

Theorem 3 Let Xm(t) = VmGm(t)V T
m be the approximation obtained at step m by the block (or extended block)

Arnoldi method. Then the residual Rm(t) satisfies

∥ Rm(t) ∥=∥ Tm+1,mḠm(t) ∥, (15)

where Ḡm is the d×md matrix corresponding to the last d rows of Gm where d = s when using the block Arnoldi
and d = 2s for the extended block Arnoldi.
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Proof From the expression (11) of the approximation Xm(t), we have

Rm(t) = VmĠm(t)V T
m −AVm Gm(t)V T

m −Vm Gm(t)V T
m AT −BBT .

Then using the relations (6) and the fact that Gm(t) is solution of the reduced DLE (13), we get

Rm(t) = Vm+1

[
0 Ḡm(t)T T T

m+1,m
Tm+1,m Ḡm(t) 0

]
V T

m+1

and hence

∥Rm∥= ∥Tm+1,m Ḡm(t)∥.

The result of Theorem 3 is very important in practice, as it allows us to stop the iterations when convergence is
achieved without computing the approximate solution Xm(t).
The following result shows that the approximation Xm is an exact solution of a perturbed differential Lyapunov
equation.

Theorem 4 Let Xm(t) be the approximate solution given by (11). Then we have

Ẋm(t) = (A−Fm)Xm +Xm (A−Fm)
T +BBT . (16)

where Fm = Vm+1Tm+1,mV T
m .

Proof Multilying the equation (13) from the left by Vm and from the right by V T
m , and using the relations (6), we

obtain
Ẋm(t) =

(
AVm −Vm+1Tm+1,mET

m
)

Gm(t)V T
m +VmGm(t)

(
V T

m AT −EmT T
m+1,mV T

m+1
)
+BBT . (17)

On the other hand, since V T
m Vm = I, we have ET

mGm(t) = ET
mV T

m VmGm(t) = V T
m VmGm(t). Therefore, using this

last expression in (17), the result follows.

Remark 1 The solution Xm(t) can be given as a product of two low rank matrices. Consider the eigen-decomposition
of the symmetric and positive matrix md×md Gm(t) =U DUT where D is the diagonal matrix of the eigenvalues
of Gm(t) sorted in decreasing order and d = s for the block Arnoldi or d = 2s for the extended block Arnoldi. Let
Ul be the md × l matrix of the first l columns of U corresponding to the l eigenvalues of magnitude greater than
some tolerance dtol. We obtain the truncated eigen-decomposition Gm(t)≈Ul Dl UT

l where Dl = diag[λ1, . . . ,λl ].

Setting Z̃m(t) = Vm Ul D1/2
l , it follows that

Xm(t)≈ Z̃m(t)Z̃m(t)T . (18)

Therefore, one has to compute and to store only the matrix Z̃m(t) which is usually the required factor in some
control problems such as in the balanced truncation method for model reduction in large scale dynamical systems.
This possibility is very important for storage limitations in the large scale problems.

The next result states that the error matrix X(t)−Xm(t) satisfies a differential Lyapunov matrix equation.
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Theorem 5 Let X(t) be the exact solution of (1) and let Xm(t) be the approximate solution obtained at step m.
The error Em(t) = X(t)−Xm(t) satisfies the following equation

Ėm(t) = AEm(t)+Em(t)AT −Rm(t), (19)

and
Em(t) = e(t−t0)AEm,0e(t−t0)AT

+
∫ t

t0
e(t−τ)ARm(τ)e(t−τ)AT

dτ, t ∈ [t0, Tf ]. (20)

where Em,0 = Em(t0).

Proof The result is easily obtained by subtracting the residual equation from the initial differential Lyapunov
equation (1).

Next, we give an upper bound for the norm of the error.

Theorem 6 Assume that X(t0) = Xm(t0), then we have the following upper bound

∥ Em(t) ∥≤∥ Tm+1,m ∥∥ Ḡm ∥∞

e2(t−t0)µ2(A)−1
2µ2(A)

, (21)

where µ2(A) =
1
2

λmax(A+AT ) is the 2-logarithmic norm and ∥ Ḡm ∥∞= max
τ∈[t0, t]

∥ Ḡm(τ) ∥. The matrix Ḡm is the

d ×md matrix corresponding to the last d rows of Gm where d = s when using the block Arnoldi and d = 2s for
the extended block Arnoldi.

Proof We first remind that the logarithmic norm provides the following bound ∥ etA ∥≤ eµ2(A)t . Therefore, using
the expression (20), we obtain the following relation

∥ Em(t) ∥≤
∫ t

t0
∥ e(t−τ)A ∥2 ∥ Rm(τ) ∥ dτ.

Therefore, using (15) and the fact that ∥ e(t−τ)A ∥≤ e(t−τ)µ2(A), we get

∥ Em(t) ∥ ≤ ∥ Tm+1,mḠm ∥∞

∫ t

t0
e2(t−τ)µ2(A)dτ

≤ ∥ Tm+1,m ∥∥ Ḡm ∥∞ e2tµ2(A)
∫ t

t0
e−2τµ2(A)dτ

≤ ∥ Tm+1,m ∥∥ Ḡm ∥∞ e2tµ2(A) × e−2µ2(A)t − e−2µ2(A)t0

−2µ2(A)

= ∥ Tm+1,m ∥∥ Ḡm ∥∞

e2(t−t0)µ2(A)−1
2µ2(A)

,

which gives the desired result.

Notice that if ∥ Tm+1,m ∥ is close to zero, which is the case when m is close to the degree of the minimal polyno-
mial of A for B, then Theorem 6 shows that the error Em(t) tends to zero.

Next, we give another error bound for the norm of the error.
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Theorem 7 Let X(t) be the exact solution to (1) and let Xm(t) be the approximate solution obtained at step m.
Then we have

∥X(t)−Xm(t)∥ ≤ etµ2(A)(∥B∥+∥Bm∥)
∫ t

t0
e−τµ2(A)∥e(t−τ)AB−Vme(t−τ)Tm Bm∥dτ

where µ2(A) = λmax((A+AT )/2), Z(τ) = e(t−τ)AB and Zm(τ) = Vme(t−τ)Tm Bm with Bm = V T
m B.

Proof From the expressions of X(t) and Xm(t), we have

∥X(t)−Xm(t)∥ =

∥∥∥∥∫ t

t0
(Z(τ)Z(τ)T −Zm(τ)Zm(τ)

T )dτ

∥∥∥∥
=

∥∥∥∥∫ t

t0
[Z(τ)(Z(τ)−Zm(τ))

T +(Z(τ)−Zm(τ))ZT
m(τ)]dτ

∥∥∥∥
≤

∫ t

t0
(∥Z(τ)∥+∥Zm(τ)∥)∥Z(τ)−Zm(τ)∥dτ,

Therefore, using the fact that µ2(Tm)= λmax((Tm+T T
m )/2)≤ λmax((A+AT )/2)= µ2(A), where Tm =V T

m AVm,
it follows that

∥X(t)−Xm(t)∥ ≤ etµ2(A)(∥B∥+∥Bm∥)
∫ t

t0
e−τµ2(A)∥Z(τ)−Zm(τ)∥dτ

≤ etµ2(A)(∥B∥+∥Bm∥)
∫ t

t0
e−τµ2(A)∥e(t−τ)AB−Vme(t−τ)Tm Bm∥dτ,

When using a block Krylov subspace method such as the block Arnoldi method, then one can generalize to the
block case the results already stated in many papers; see [7,9,12,22]. In particular, we can easily generalize the
result given in [22] for the case s = 1 to the case s > 1. In this case, we have the following upper bound.

∥eAB−VmeTm Bm∥ ≤ 2 ∥ B ∥ ρmeρ

m!
, (22)

where ρ = ∥A∥

The upper bound (22) could be used in Theorem 7 to obtain a new upper bound for the norm of the error. In that
case, we obtain the following upper bound

∥X(t)−Xm(t)∥ ≤ 2 ∥ B ∥ ρm

m!
et(µ2(A)+ρ)(∥B∥+∥Bm∥)

∫ t

t0
e−τ(µ2(A)+ρ)(t − τ)mdτ, (23)

We summarize the steps of our proposed first approach (using the extended block Arnoldi) in the following
algorithm
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Algorithm 1 The extended block Arnoldi (EBA-exp) method for DLE’s
– Input X0 = X(t0), a tolerance tol > 0, an integer mmax.
– For m = 1, . . . ,mmax

– Apply the extended block Arnoldi algorithm to compute an orthonormal basis Vm = [V1, ...,Vm] of Km(A,B) =
Range[B,A−1B, ...,A−mB,Am−1B] and the upper block Hessenberg matrix Tm.

– Set Bm = V T
m B and compute G̃m(τ) = e(t−τ)Tm Bm using the matlab function expm.

– Use a quadrature method to compute the integral (12) and get an approximation of Gm(t) for each t ∈ [t0, Tf ].
– If ∥ Rm(t) ∥=∥ Tm+1,mḠm(t) ∥< tol stop and compute the approximate solution Xm(t) in the factored form given by the

relation (18).
– End

3 A second approach: Projecting and solving with BDF

3.1 Low-rank approximate solutions via BDF

In this section, we show how to obtain low rank approximate solutions to the differential Lyapunov equation (1)
by projecting directly the initial problem onto small block Krylov or extended block Krylov subspaces.
We first apply the block Arnoldi algorithm (or the extended block Arnoldi) to the pair (A,B) to get the matrices
Vm and Tm = V T

m AVm. Let Xm(t) be the desired low rank approximate solution given as

Xm(t) = VmYm(t)V T
m , (24)

satisfying the Petrov-Galerkin orthogonality condition

V T
m Rm(t)Vm = 0, t ∈ [t0, Tf ], (25)

where Rm(t) is the residual Rm(t) = Ẋm(t)−AXm(t)−Xm(t)AT −BBT . Then, from (24) and (25), we obtain the
low dimensional differential Lyapunov equation

Ẏm(t)−Tm Ym(t)−Ym(t)T T
m −BmBT

m = 0, (26)

with Tm = V T
m AVm and Bm = V T

m B. The obtained low dimensional differential Lyapunov equation (26) is the
same as the one given by (13). For this second approach, we have to solve the latter low dimensional differen-
tial Lyapunov equation by some integration method such as the well known Backward Differentiation Formula
(BDF).
Notice that we can also compute the norm of the residual without computing the approximation Xm(t) which is
also given, when convergence is achieved, in a factored form as in (18). The norm of the residual is given as

∥ Rm(t) ∥=∥ Tm+1,mȲm(t) ∥, (27)

where Ȳm is the d ×md matrix corresponding to the last d rows of Ym where d = s when using the block Arnoldi
and d = 2s for the extended block Arnoldi.

3.2 BDF for solving the low order differential Lyapunov equation (26)

In this subsection, we will apply the Backward Differentiation Formula (BDF) method for solving, at each step
m of the block (or extended block) Arnoldi process, the low dimensional differential Lyapunov matrix equation
(26). We notice that BDF is especially used for the solution of stiff differential equations.
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At each time tk, let Ym,k of the approximation of Ym(tk), where Ym is a solution of (26). Then, the new approxima-
tion Ym,k+1 of Ym(tk+1) obtained at step k+1 by BDF is defined by the implicit relation

Ym,k+1 =
p−1

∑
i=0

αiYm,k−i +hkβF (Ym,k+1), (28)

where hk = tk+1 − tk is the step size, αi and βi are the coefficients of the BDF method as listed in Table 1 and
F (X) is given by

F (Y ) = Tm Y +Y T T
m + Bm BT

m.

p β α0 α1 α2
1 1 1
2 2/3 4/3 -1/3
3 6/11 18/11 -9/11 2/11

Table 1 Coefficients of the p-step BDF method with p ≤ 3.

The approximate Ym,k+1 solves the following matrix equation

−Ym,k+1 +hkβ (TmYm,k+1 +Ym,k+1T
T

m +BmBT
m)+

p−1

∑
i=0

αiYm,k−i = 0,

which can be written as the following Lyapunov matrix equation

Tm Ym,k+1 + Ym,k+1TT
m +Bm,k BT

m,k = 0. (29)

We assume that at each time tk, the approximation Ym,k is factorized as a low rank product Ym,k ≈ Zm,kZm,k
T ,

where Zm,k ∈ Rn×mk , with mk ≪ n. In that case, the coefficient matrices appearing in (29) are given by

Tm = hkβTm − 1
2

I and Bm,k+1 = [
√

hkβB,
√

α0Zm,k, . . . ,
√

αp−1Zm,k+1−p].

The Lyapunov matrix equation (29) can be solved by applying direct methods based on Schur decomposition such
as the Bartels-Stewart algorithm [3,11]. We notice that for large problems, many Krylov subspace type methods
have been proposed to solve (29); [8,14–17,25,21].

Remark 2 The main difference between Approach 1 and Approach 2 is the fact that in the first case, we compute
an approximation of an integral using a quadrature formula, while in the second case, we have to solve a low
dimensional differential Lyapunov equation using the BDF method. Mathematically, the two approaches are
equivalent and they mainly differ in the way of numerically computing the low-order approximations: Gm in the
first approach and Ym in the second one.

We summarize the steps of our proposed second approach (using the extended block Arnoldi) in the following
algorithm
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Algorithm 2 The extended block Arnoldi (EBA-BDF) method for DLE’s
– Input X0 = X(t0), a tolerance tol > 0, an integer mmax.
– For m = 1, . . . ,mmax

– Apply the extended block Arnoldi algorithm to compute an orthonormal basis Vm = [V1, ...,Vm] of Km(A,B) =
Range[B,A−1B, ...,A−mB,Am−1B] and the upper block Hessenberg matrix Tm.

– Set Bm = V T
m B and use the BDF method to solve the low dimensional differential Lyapunov equation

Ẏm(t)−Tm Ym(t)−Ym(t)T T
m −BmBT

m = 0, t ∈ [t0, Tf ]

– If ∥ Rm(t) ∥=∥ Tm+1,mȲm(t) ∥< tol stop and compute the approximate solution Xm(t) in the factored form given by the
relation (18).

– End

4 Numerical examples

In this section, we compare the two approaches presented in this paper. The exponential approach (EBA-exp)
summarized in Algorithm 1, which is based on the approximation of the solution to (1) applying a quadrature
method to compute the projected exponential form solution (12). We used a scaling and squaring strategy, im-
plemented in the MATLAB expm function; see [12,18] for more details. The second method (Algorithm 2) is
based on the BDF integration method applied to the projected differential Lyapunov equation (26). The basis
of the projection subspaces were generated by the extended block Arnoldi algorithm for both methods. All the
experiments were performed on a laptop with an Intel Core i7 processor and 16GB of RAM. The algorithms were
coded in Matlab R2014b.

Example 1. The matrix A was obtained from the 5-point discretization of the operators

LA = ∆u− f1(x,y)
∂u
∂x

+ f2(x,y)
∂u
∂y

+g1(x,y),

on the unit square [0,1]× [0,1] with homogeneous Dirichlet boundary conditions. The number of inner grid
points in each direction is n0 = and the dimension of the matrix A was n = n2

0. Here we set f1(x,y) = 10xy,
f2(x,y) = ex2y, f3(x,y) = 100y, f4(x,y) = x2y , g1(x,y) = 20y and g2(x,y) = xy. The time interval considered was
[0, 2] and the initial condition X0 = X(0) was choosen as the low rank product X0 = Z0ZT

0 , where Z0 = 0n×2. For
both methods, we used projections onto the Extended Block Krylov subspaces

Kk(A,B) = Range(B,AB, . . . ,Am−1 B,A−1 B, . . . ,(A−1)m B)

and the tolerance was set to 10−10 for the stop test on the residual. For the EBA-BDF method, we used a 2-step
BDF scheme with a constant timestep h. The entries of the matrix B were random values uniformly distributed
on the interval [0, 1] and the number of the columns in B was s = 2.
In order to check if our approaches produce reliable results, we began comparing our results to the one given by
Matlab’s ode23s solver which is designed for stiff differential equations. This was done by vectorizing our DLE,
stacking the columns of X one on top of each other. This method, based on Rosenbrock integration scheme, is not
suited to large-scale problems. Due to the memory limitation of our computer when running the ode23s routine,
we chose a size of 100×100 for the matrix A.

In Figure 1, we compared the component X11 of the solution obtained by the methods tested in this section, to
the solution provided by the ode23s method from Matlab, on the time interval [0, 2], for size(A) = 100× 100
and a constant timestep h = 10−3. We observe that all the considered methods give similar results in terms of

accuracy. The relative error norms
∥XEBA−exp(t f )−Xode23s(t f )∥

∥Xode23s(t f )∥
and

∥XEBA−BDF(2)(t f )−Xode23s(t f )∥
∥Xode23s(t f )∥

at final
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Fig. 1 Values of X11(t) for t ∈ [0, 2]

time t f = 2 were equal to 1.8× 10−10 and 9.1× 10−11 respectively. The runtimes were respectively 0.59s, 5.1s
for the EBA-exp and EBA-BDF(2) methods and 1001s for the ode23s routine.

In Table 2, we give the obtained runtimes in seconds, for the resolution of Equation (1) for t ∈ [0, 2], with a
timestep h = 0.001 and the Frobenius norm of the relative residual at the final time.

size(A) EBA-exp EBA-BDF(2) Residual norm
2500×2500 2.7 s 25.2 s O(10−9) (m = 16)
6400×6400 4.3 s 41.7 s O(10−9) (m = 19)

10000×10000 4.9 s 43.3 s O(10−9) (m = 19)
22500×22500 10.0 s 77.9 s O(10−9) (m = 24)

160000×160000 68.7 s 283.4 s O(10−8) (m = 33)

Table 2 runtimes and relative residual norms for EBA-exp and EBA+BDF(2)

The results in Table 2 illustrate that the EBA-exp method clearly outperforms the EBA-BDF(2) method in terms
of computation time even though both methods are equally accurate. In Figure 2, we featured the norm of the
residual at final time t = 2 for both EBA-exp and EBA-BDF(2) methods for size(A)= 6400×6400 in function of
the number m of extended Arnoldi iterations. We observe that the plots coincide for both methods.
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Fig. 2 Residual norms vs the number of extended Arnoldi iterations m

Example 2. This example comes from the autonomous linear-quadratic optimal control problem of one dimen-
sional heat flow

∂

∂ t
x(t,η) =

∂ 2

∂η2 x(t,η)+b(η)u(t)

x(t,0) = x(t,1) = 0, t > 0

x(0,η) = x0(η),η ∈ [0,1]

y(x) =
∫ 1

0
c(η)x(t,η)dη ,x > 0.

Using a standard finite element approach based on the first order B-splines, we obtain the following ordinary
differential equation

Mẋ(t) = Kx(t)+Fu(t) (30)

y(t) = Cx(t), (31)

where the matrices M and K are given by:

M =
1
6n


4 1
1 4 1

. . .
. . .

. . .
1 4 1

1 4

 , K =−α n


2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2

 .

Using the semi-implicit Euler method, we get the following continuous-time dynamical system

(M−∆ tK) ẋ(t) = M x(t)+∆ t Fuk.

We set A = (M−∆ tK)−1 M and B = ∆ t (M−∆ tK)−1 F . The entries of the n× s matrix F and the s×n matrix C
were random values uniformly distributed on [0, 1]. In our experiments we used ∆ t = 0.01, α = 0.05, s = 2 for
different values of n.
In Table 3, we give the obtained runtimes in seconds, for the resolution of Equation (1) for t ∈ [0, 2], with a
timestep h = 0.001 and the Frobenius norm of the relative residual at the final time. The figures in Table 3
illustrate the gain of speed provided by the EBA-exp method. Again, both methods performed similarly in terms
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size(A) EBA-exp EBA-BDF(2) Residual norms
2500×2500 0.9 s 8.0 s O(10−12) (m = 12)
6400×6400 4.9 s 14.4 s O(10−12) (m = 12)

10000×10000 10.9 s 23.2 s O(10−13) (m = 12)
20000×20000 62.0 s 112.4 s O(10−12) (m = 13)

Table 3 runtimes and residual norms for EBA-exp and EBA-BDF(2)

of accuracy. In Figure 3, we considered the case size(A)= 100× 100 and plotted the upper bound of the error
norms as stated in Formula (21) at the final time Tf against the computed norm of the errors, taking the solution
given by the integral formula (8) as a reference, in function of the number m of Arnoldi iterations for the EBA-exp
method.
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10
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Error bound at final time vs m, size(A) = 100 × 100

m
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Norm of the error

Fig. 3 Upper bounds of the error norms and computed error norms vs the number of iterations

Example 3 In this last example, we considered the well-known problem: Optimal Cooling of Steel Profiles.
The matrices were extracted from the IMTEK collection 1. We compared the EBA-BDF(2) method to the EBA-
exp method for all the available problem sizes n = 1357, 5177, 20209, 79841, on the time interval [0 ,1000].
The initial value X0 was chosen as X0 = 0 and the timestep was set to h = 1. The tolerance for the extended-
Arnoldi stop test was set to 10−7 for both methods and the projected low dimensional Lyapunov equations were
numerically solved by the solver (lyap from Matlab) at each iteration of the extended block Arnoldi algorithm
for the EBA-BDF(2) method.

size(A) EBA-exp EBA-BDF(2) Residual norms
1357×1357 7.6 s 45.6 s O(10−8) (m = 27)
5177×5177 20.4 s 106.7 s O(10−7) (m = 36)

20209×20209 57.8 s 231 s O(10−7) (m = 47)
79841×79841 448 s 722 s O(10−7) (m = 63)

Table 4 Optimal Cooling of Steel Profiles: runtimes and residual norms for EBA-exp and EBA-BDF(2)

1 https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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In Table 4, we listed the obtained runtimes which again showed the advantage of the EBA-exp method in terms
of execution time and similar accuracy for both methods.

5 Conclusion

We presented in the present paper two new approaches for computing approximate solutions to large scale dif-
ferential Lyapunov matrix equations. The first one comes naturally from the exponential expression of the exact
solution and the use of approximation techniques of the exponential of a matrix times a block of vectors by pro-
jection methods. The second approach is obtained by first projecting the initial problem onto a block Krylov (or
extended Krylov) subspace, obtain a low dimensional differential Lyapunov equation which is solved by using the
well known BDF integration method. We gave some theoretical results such as the exact expression of the resid-
ual norm and also upper bounds for the norm of the errors. Numerical experiments show that both methods are
promising for large-scale problems, with a clear advantage for the EBA-exp method in terms of computation time.
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