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Reduced Order Models for Dynamic Behavior of
Elastomer Damping Devices

B. Morin, A. Legay and J.-F. Deü
LMSSC, Cnam, 292 rue Saint-Martin - 75141 Paris cedex 03

E-mail: benjamin.morin@cnam.fr

Abstract. In the context of passive damping, various mechanical systems from the space
industry use elastomer components (shock absorbers, silent blocks, flexible joints...). The
material of these devices has frequency, temperature and amplitude dependent characteristics.
The associated numerical models, using viscoelastic and hyperelastic constitutive behaviour,
may become computationally too expensive during a design process. The aim of this work is
to propose efficient reduced viscoelastic models of rubber devices. The first step is to choose
an accurate material model that represent the viscoelasticity. The second step is to reduce the
rubber device finite element model to a super-element that keeps the frequency dependence.
This reduced model is first built by taking into account the fact that the device’s interfaces are
much more rigid than the rubber core. To make use of this difference, kinematical constraints
enforce the rigid body motion of these interfaces reducing the rubber device model to twelve
dofs only on the interfaces (three rotations and three translations per face). Then, the super-
element is built by using a component mode synthesis method. As an application, the dynamic
behavior of a structure supported by four hourglass shaped rubber devices under harmonic loads
is analysed to show the efficiency of the proposed approach.

1. Introduction
Due to their capacities to dissipate energy, elastomers are highly used in damping devices like
silent blocs or joints. A typical example of this use is found in the spatial industry: during
take off and flight, launchers are subject to a significant amount of vibrations from either the
propulsion engine or the acoustical environment. Shocks may also occur during the pyrotechnic
separation of the different floors of the launcher. All these vibration sources may damage the
satellite or any other sensitive equipments on-board, and a common solution is to use viscoelastic
damping devices to dissipate a part of the mechanical energy. The design and optimization of
theses damping devices are usually done by using finite element codes. The computational cost
of the associated models may become prohibitive. Many solutions already exist to reduce the
numerical model of linear undamped structures, but only a few give access to reduced models
with damping behavior, especially when it comes from viscoelasticity which may be seen as a
strong form of damping. Two types of solutions for the reduction of viscoelastic models can be
found in the literature. The first one is based on the theory of triboelasticity [6] and consists
in the replacement of the damping device model by an equivalent rheological model which can
be identified through a series of experimental measurements on the damper [7]. The main
problem with this type of approach is that the behavior of the rheological model may not fit
the real behavior of the damper in all directions, and more importantly it can’t be used for
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Figure 1. The complete structure mounted on four dampers, and details of a damper

a design purpose due to the non predictive aspect of the rheological model that is done for a
specific geometry and material [8]. The second way of reducing a viscoelastic model is to extend
the classical modal projection methods to the frequency dependent case and a review of the
most common methods can be found in [2]. The chosen method in this work to achieve the
reduction of the damper model is a modified Craig-Bampton method, based upon the work of
Balmès [3] and Rouleau [2]. The original Craig-Bampton method [4] uses a combination of static
and dynamic modes to reduce the finite element model of a sub-structure to a smaller finite
element model called super-element. The super-element is first obtained by using a kinematical
constraint to enforce rigid body motion of the sub-structure interfaces. Then, to further reduce
the finite element model, the reduced finite element matrices are condensed onto the previously
kinematically constrained interfaces. The combination of all these techniques leads to a twelve
dofs super element replacing the initial full model.

2. Studied case and material models
The complete model is composed of a support structure mounted on four hourglass shaped
dampers, as seen on figure (1). The support structure is made of aluminium and the dampers
are made of two aluminium thin interface plates and an elastomer core. Two different material
models are used: a classic linear elastic Hooke’s model is chosen for the aluminium, and a
viscoelastic fractional Zener model for the elastomer. This fractional model is defined by its
complex frequency dependent modulus G∗(ω):

G∗(ω) =
G0 + G∞(iωτ)α

1 + (iωτ)α
(1)

where G0 and G∞ are two asymptotic values: the static modulus G0 = G∗(ω → 0) and the high
frequency limit of the dynamic modulus G∞ = G∗(ω → ∞). Also, τ is the relaxation time and
α is the order of the fractional derivative. More information about this model, its identification
and its finite element implementation in time domain can be found in [5]. The adimensional
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viscoelastic modulus G∗(ω)/G0 is then used in the dynamic equation to take into account the
viscoelastic behavior of the elastomer:(

Ke + Kv
sph +

G∗(ω)

G0
Kv

dev − ω2M
)

u = f (2)

where M is the mass matrix, Ke is the purely elastic part of the stiffness matrix which is
assembled on the aluminium interfaces dofs and Kv is the viscoelastic part of the stiffness matrix
which is assembled on the elastomer core dofs. The viscoleastic stiffness matrix is also separated
into a spheric part Kv

sph and a deviatoric part Kv
dev. This separation is used due to the fact that

the viscoelastic behavior of elastomer is mainly caused by distorsional strain (not by volume
change). This deviatoric stiffness matrix is the only matrix subjected to the complex modulus
G∗(ω). The dynamic equation can also be expressed in terms of a static stiffness matrix K0 and
a frequency dependent stiffness matrix Kω:(

K0 + iωh∗(ω)Kω − ω2M
)
u = f (3)

where K0 = Ke +Kv
sph +Kv

dev and Kω = (G∞/G0 − 1) Kv
dev. h

∗(ω) is a dimensionless frequency
dependent modulus:

h∗(ω) =
τα(iω)α−1

1 + (iωτ)α
(4)

The material parameters used to build the mass and stiffness matrices are given in table 1 for
the aluminium and table 2 for the elastomer. The materials parameters in table 2 comes from
[1]. The structure is composed of 7540 nodes for each rubber damper, which is enough to get
converged results in the frequency range of interest, and 3200 nodes for the upper aluminium
structure. Only the computational cost of the dampers model is studied and reduced here, so
the mesh of the upper structure is kept small for convenient computation time. Each damper
represents 22620 dofs which are planed to be reduced to only 12 dofs with the proposed method.
The total number of dofs in the complete structure is about 105, including more than 90% for the
dampers only, thus underlining the need for an efficient reduction method. The finite element
code for this study is an in house program developed in both Python and Fortran. The Python
part is in charge for the global calculation of the frequency response function and the Fortran
part is used for the assembly of the different mass and stiffness matrices. The finite elements are
8 nodes hexaedrons anywhere in the structure. Rubber dampers are connected to the aluminium
structure through their upper interface.

3. Model reduction of the dampers
Two reduction step are used in this study: the first one is a kinematical constraint that makes
use of the difference of stiffness between the rubber core and the aluminium interface in the
dampers. The interfaces are transformed into rigid bodies which are represented by a single
point at the center of the interface, associated to three translational dofs and three rotational
dofs, thus reducing any damper interface to 6 dofs only. This procedure transforms the dampers
into connectors that can be attached to the structure by their upper node (reduction of the upper
interface) and that can be excited through their lower node (reduction of the lower interface).
The next step consists in the reduction and the condensation of the core of the dampers to
their previously reduced interfaces so that only the 12 rigidified dofs stand as the finally reduced
damper super element. In the following section the first reduction step is presented and then the
core reduction is explained.
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Table 1. Material parameters of the aluminium.

Parameters Values

E 70 GPa
ν 0.3
ρ 2700 kg·m−3

Table 2. Material parameters of the elastomer.

Parameters Values

E 0.947 MPa
ν 0.45
ρ 1000 kg·m−3

G0 0.327 MPa
G∞ 0.126 GPa
α 0.3
τ 0.52 µs

3.1. Rigid interfaces assumption
Due to the difference between the aluminium and the elastomer stiffness, the aluminium interfaces
may be considered to be rigid compared to the rubber core. A kinematical constraint is used to
enforce the rigid body motion of the interfaces. The velocity of any point A of an interface can
be written in terms of the velocity of the center C of the same interface and the cross-product of
the distance between point A and point C and the rotation Ω of the interface. This relationship
can be extended to the displacement within the context of small displacement, namely:

−→u A = −→u C +
−→
AC×

−→
Ω (5)

In matrix form, the same constraint is written by:uA
vA
wA

 =

 uC + (yC − yA)Ωz − (zC − zA)Ωy
vC + (zC − zA)Ωx − (xC − xA)Ωz
wC + (xC − xA)Ωy − (yC − yA)Ωx

 (6)

Where x, y and z are coordinates in the 3D space, uX, vX and wX are the displacements of a
point X following axes ~x, ~y and ~z, and Ωx, Ωy and Ωz are the interface rotation around the same
axes. This relation finally leads to write any displacement of an interface point A as the product
between a transfer matrix and the interface center dofs (node C):

uA
vA
wA

 =

1 0 0 0 (zA − zC) (yC − yA)
0 1 0 (zC − zA) 0 (xA − xC)
0 0 1 (yA − yC) (xC − xA) 0



uC
vC
wC
Ωx
Ωy
Ωz

 (7)

Following this approach, all interfaces dofs are eliminated from the global finite element model
dofs list, thus reducing the computational cost of the structure model. In place of those eliminated
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dofs, each damper face is now represented by 6 dofs: 3 translational dofs and 3 rotational dofs.
In the next section, the reduction of the core of the dampers is done by using a Craig-Bampton
sub-structuring method that consists of reducing the structure by a modal projection and then
condensing the reduced system on the 12 interfaces dofs.

3.2. Model reduction of the core of the dampers
The method used here to reduce the damper finite element model combine a Craig-Bampton
method [4] and a multi-model approach [2] [3]. In the case of a structure made of elastic and
viscoelastic materials, the dynamic equation is given by equation (3). Following the Craig-
Bampton method, boundary and internal dofs are separated. Here, the boundary nodes are
the 12 dofs of the rigid interfaces noted uB and the internal dofs are the remaining dofs of the
dampers noted uI. This leads to write equation (3) as:([

K0
BB K0

BI
K0

IB K0
II

]
+ iωh∗(ω)

[
Kω

BB Kω
BI

Kω
IB Kω

II

]
− ω2

[
MBB MBI
MIB MII

])[
uB
uI

]
=

[
fB
0

]
(8)

where the right-hand side is only composed of reaction forces fB at the interfaces. The problem
is then solved in two steps:
• The inertial terms of the preceding equation are first neglected and a static response is

calculated. This response account for the behavior of the damper due to its connections
with other structures at its interfaces.
• A dynamic response is then obtained by solving the eigenvalue of equation (8) with fixed

boundary conditions at the interfaces. This response account for the vibrations of the
damper under dynamic loading.

Solving the static problem The static response is obtained by taking ω = 0 in equation (8), thus
eliminating any inertial terms in the equation. Then a unit displacement is imposed on one of
the boundary dof while the others are fixed. This procedure is repeated on all boundary dofs.
The static internal displacements obtained are the static modes. They can be used to represent
the whole response of the system when the damper is excited through its interfaces. The number
of static modes is equal to the number of interfaces dofs (here 12). The static modes ΨIB are
thus obtained by solving the system:[

K0
BB K0

BI
K0

IB K0
II

] [
IBB
ΨIB

]
=

[
0BB
0IB

]
(9)

where IBB is the identity matrix that stands for all unitary imposed displacements on boundary
dofs. The second line of the system gives:

ΨIB = −(K0
II)
−1K0

IB (10)

This static modes are also called constrained modes. The number of static modes is equal to
the number of boundary modes. Finally, the whole static response of the system can be written
as the projection of the boundary displacements onto a matrix made of the identity and the
constrained modes: [

uB
uI

]
=

[
IBB
ΨIB

]
uB (11)

In equation (11), the internal displacement is given by uI = −(K0
II)
−1K0

IBuB where the inverse
of K0

II may be seen as the flexibility of the internal dofs, while the product K0
IBuB may represent

a force caused by boundary displacements onto internal dofs. In fact, the constrained modes can
be seen as a static correction when a linear displacement is imposed on the jth boundary dof,
where j is also the column number of the mode in ΨIB.
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Solving the dynamic problem To get a complete solution, a static response is not enough: it has
to be completed to account for the dynamic behavior of the system. By taking equation (8) in
a dynamic situation, with fixed boundary conditions at the interfaces (uB = 0), the following
equation is obtained: (

K0
II + iωh∗(ω)Kω

II − ω2MII
)
uI = 0 (12)

Solving equation (12) would lead to the vibration modes of the structure but due to the frequency
dependence of the the term iωh∗(ω), this eigenproblem is non-linear in frequency and can not
be solved directly. The proposed solution is to use a multi-model approach which is inspired by
the Takagi-Sugeno fuzzy model. It has been often used to represent non-linear dynamic systems
by interpolating locally linear models obtained from the sampling of the non-linear system [9].
It has been applied by Balmès [3] and Rouleau [2] to build a projection basis representative
of the complex non-linear eigenvalue of equation (12). The multi-model basis is here built by
the combination of many smaller basis Φωj and each of these basis is computed by solving the
pseudo-eigenvalue problem (13) where only the real part of the equation is kept:(

K0
II + < (iωjh∗(ωj)) Kω

II − ω2
kMII

)
Φωj ,k = 0 (13)

where ωj values are chosen to sample the whole frequency range of interest. In any basis Φωj the
modes are independent but the modes from two different basis may be co-linear so a Gramm-
Schmidt orthonormalisation algorithm may be necessary. In the literature, two modal basis
evaluated at the minimum and the maximum frequency of the range of interest combined with
a static correction lead to a good approximation of the dynamic response of highly damped
structures. In this study, the static correction is already taken into account by the static modes
of the static response, so only the modal basis at the minimum and maximum frequency need to
be computed. Solving equation (13) for ω = ωmin and ω = ωmax lead to the two basis Φmin and
Φmax which both respect the orthogonality conditions:

ΦT
ω̄< (K∗II(ω̄))Φω̄ = diag

(
ω2

1, ..., ω
2
I
)

(14)

ΦT
ω̄MIIΦω̄ = 1I (15)

where ω̄ stands for ωmin or ωmax and where:

K∗II(ω̄) = K0
II + iω̄h∗(ω̄)Kω

II (16)

Both Φmin and Φmax diagonalize the < (K∗II(ω̄)) matrix but they don’t diagonalize K0 or Kω

and this will have an impact on the further condensation step. The dynamic of the system is
then reduced by truncating the basis Φmin into ΦIp and the basis Φmax into ΦIq with p < I and
q < I. The complete dynamic response is then obtained by combining the two truncated modal
basis ΦIp and ΦIq into matrix ΦIm, with m = p+ q < I. A linear combination of the column of
this matrix gives the dynamic response by:[

uB
uI

]
=

[
0Bm
ΦIm

]
qm (17)

where qm are the generalized coordinates of the dynamic response.

Building the complete response By combining the static response coming from the behavior of
structures connected to the damper’s interfaces, and the dynamic response from the core of the
damper, a complete basis can be assembled in the form:[

uB
uI

]
= R

[
uB
qm

]
(18)
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The R matrix is a reduction matrix containing the static constrained modes ΨIB and the
vibrations modes ΦIm:

R =

[
IBB 0Bm
ΨIB ΦIm

]
(19)

The projection of equation (8) onto the reduced basis R is:([
K̄0

BB 0Bm

0mB K̄0
mm

]
+ iωh∗(ω)

[
K̄ω

BB K̄ω
Bm

K̄ω
mB K̄ω

mm

]
− ω2

[
M̄BB M̄Bm
M̄mB M̄mm

])[
uB
qm

]
=

[
fB
0

]
(20)

where K̄ω
mB =

(
K̄ω

Bm
)T and M̄mB =

(
M̄Bm

)T. The details of the different terms of these reduced
matrices are given by:

K̄0
BB = K0

BB + K0
BIΨIB (21)

K̄0
mm = ΦT

ImK0
IIΦIm (22)

K̄ω
BB = Kω

BB + Kω
BIΨIB + ΨT

IBKω
IB + ΨT

IBKω
IIΨIB (23)

K̄ω
mB = ΦT

Im (Kω
IB + Kω

IIΨIB) (24)

K̄ω
mm = ΦT

ImKω
IIΦIm (25)

M̄BB = MBB + MBIΨIB + ΨT
IBMIB + ΨT

IBMIIΨIB (26)

M̄mB = ΦT
Im (MIB + MIIΨIB) (27)

M̄mm = ΦT
ImMIIΦIm (28)

It is also important to note that due to the multi-model approach used in the computation of the
dynamic response, a major difference arises between the method presented here and the usual
Craig-Bampton: the classic method would results in null matrix in place of K̄ω

mB and the blocks
K̄mm and M̄mm would be diagonals which is not the case here.

Condensing the system on it’s interfaces dofs In order to further reduce the size of the system,
it is proposed to condense the vibration modes unknown qm on the boundary dofs. The second
line of system (20) gives the following relation between the generalized coordinates qm and the
interfaces displacements uB:

qm = −
(
K̄0
mm + iωh∗(ω)K̄ω

mm − ω2M̄mm

)−1 (
K̄0
mB + iωh∗(ω)K̄ω

mB − ω2M̄mB

)
uB (29)

For the undamped case, the terms in the first parentheses are diagonal so the inversion is
instantaneous, but in the damped case these terms are non-diagonal and the inversion adds
some computation time. In order to limit this cost, it is possible to exploit the fact that the non-
diagonal matrices are sparse. Replacing equation (29) into equation (20) leads to a condensed
system on the interfaces which is equivalent to a super-element where its dimension is equal to
the number of interface dofs: (

Ksuper(ω)− ω2Msuper(ω)
)
uB = fB (30)

where the super-element mass and stiffness matrices are given by:

Ksuper(ω) = K̄0
BB+iωh∗(ω)K̄ω

BB−
(
K̄0

Bm + iωh∗(ω)K̄ω
Bm

)(
K̄0
mm + iωh∗(ω)K̄ω

mm − ω2M̄mm

)−1

(
K̄0
mB + iωh∗(ω)K̄ω

mB − ω2M̄mB

)
(31)
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Msuper(ω) = M̄BB − M̄Bm

(
K̄0
mm + iωh∗(ω)K̄ω

mm − ω2M̄mm

)−1

(
K̄0
mB + iωh∗(ω)K̄ω

mB − ω2M̄mB

)
(32)

4. Results of the study
A comparison between the reference full finite element model and the proposed super-element
is made. An harmonic displacement is imposed on the structure lower interfaces, in a direction
that is parallel to these interfaces: the dampers are not moving up and down but rather in a
left-forward/right-backward kind of motion. The frequency range is chosen from 0 Hz to 500 Hz
and the resulting displacements at observation point P (see figure (1)), for both the full reference
model and the super-element, are plotted on figure (2). The displacement of point P for the full
model without damping is also plotted to show that the chosen viscoelastics parameters lead to
a well damped structure. In the same time, the error in displacement is plotted on figure (4).
Two types of modes (damper only or full structure) are shown in figure (3) and their frequencies
are plotted in vertical line on figure (2).
One hundred modes are taken in the dynamic modal basis at null frequency in the multi-model
approach. The high number of modes needed here is due to the same stiffness difference that is
exploited for the kinematical constraint of the dampers interfaces: the stiffness of the elastomer
core is so low that around a hundred modes are found in the frequency range 0-500 Hz. The
frequency limit chosen for the calculation of this modal basis is 512 Hz, which is roughly equal
to the max frequency of the frequency range, so the method is accurate.
For the second basis of the multi-model, the one that contains the pseudo-normal modes at the
max frequency, only ten modes are needed to give a good approximation. This is due to the fact
that pseudo-normal modes are computed from the real part of the complex stiffness matrix at a
given frequency. The real part of the complex modulus is greater than one thus adding stiffness
to the system so a lower number of modes is present in the frequency range of interest. The
frequency limit chosen for the calculation of this second modal basis is 582 Hz, which again is
roughly equal to the max frequency of the frequency range.
As it can be seen on figure (2) and (4), the super-element matches the results of the reference
model with a maximal error in displacement around 0.016%, thus validating the modified
Craig-Bampton proposed in this work. The different computational times from both the FRF
calculation of the reference model and the super-element are given in table 3. The same computer
is used to do both of them. The assembly of the super-element is done once for all, before the
FRF calculation, and the corresponding computational times is given under the name of Pre
CPU time in table 3.
The sum of both the super-element assembly time and the FRF computational time of the
modified Craig-Bampton is more than 10 times lower than the computational time of the reference
model, thus further validating the present super-element approach.

Table 3. Computational time of both the reference and super-element models.

Reference model Super-element

Pre CPU time - 23 min
FRF CPU time 14 h 40 min 51 min
total CPU time 14 h 40 min 1 h 14 min
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Figure 2. Normalized displacement of point P (see figure (1)) for the reference undamped model
(dotted line), the reference damped (full line) and for the reduced model (cross-dotted line)

Figure 3. Modes of the undamped full structure at 98.23 Hz and 152.64 Hz (see the two vertical
lines on figure 2)
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Figure 4. Error (norm 2) in displacement of the reduced model compared to the reference model

5. Conclusion
The aim of the presented method is to reduce the finite element model of a damper made of
elastomer and aluminium to a 12 dofs super-element. This super-element is built through the
combination of a kinematical constraint to enforce rigid body motion at the damper interface
and a Craig-Bampton to reduce and condense the finite element model on it’s interfaces dofs.
A multi-model approach is used to keep the frequency dependence of the finite element model
during the Craig-Bampton reduction process. The result is a 12 dofs super-element that replace
the more than 2.105 dofs finite element model. This super-element can be connected to any other
finite element model through its interfaces nodes, each of them having three translational dofs and
three rotational dofs. To test this method, the case of an aluminium structure supported on four
dampers is studied. A reference model, consisting in the structure and four non-reduced dampers,
and a reduced model, made of the same structure with four super-elements, are compared.
Displacements of one of the structure point are computed for both the reference and reduced
models and are shown to be very close, and the error in displacement roughly stays under 0.016%
on the whole frequency range thus validating the proposed method. The computational times of
both models are also investigated and show that the reduced model is more than 10 times faster
to compute than the reference model. A library of super-elements corresponding to different
damper geometries and materials can be built off-line through this approach and then be used
for design and optimization purposes in a full model.
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