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Abstract
Background: Standardized patient-specific pretreatment dosimetry planning
is mandatory in the modern era of nuclear molecular radiotherapy, which
may eventually lead to improvements in the final therapeutic outcome. Only
a comprehensive definition of a dosage therapeutic window encompassing
the range of absorbed doses, that is, helpful without being detrimental can
lead to therapy individualization and improved outcomes. As a result, setting
absorbed dose safety limits for organs at risk (OARs) requires knowledge of
the absorbed dose–effect relationship. Data sets of consistent and reliable
inter-center dosimetry findings are required to characterize this relationship.
Purpose: We developed and standardized a new pretreatment planning model
consisting of a predictive dosimetry procedure for OARs in patients with neu-
roendocrine tumors (NETs) treated with 177Lu-DOTATATE (Lutathera). In the
retrospective study described herein, we used machine learning (ML) regres-
sion algorithms to predict absorbed doses in OARs by exploiting a combination
of radiomic and dosiomic features extracted from patients’ imaging data.
Methods: Pretreatment and posttreatment data for 20 patients with NETs
treated with 177Lu-DOTATATE were collected from two clinical centers. A total
of 3412 radiomic and dosiomic features were extracted from the patients’ com-
puted tomography (CT) scans and dose maps, respectively. All dose maps
were generated using Monte Carlo simulations. An ML regression model was
designed based on ML algorithms for predicting the absorbed dose in every
OAR (liver, left kidney, right kidney, and spleen) before and after the therapy and
between each therapy session, thus predicting any possible radiotoxic effects.
Results: We evaluated nine ML regression algorithms. Our predictive model
achieved a mean absolute dose error (MAE, in Gy) of 0.61 for the liver, 1.58
for the spleen, 1.30 for the left kidney, and 1.35 for the right kidney between
pretherapy 68Ga-DOTATOC positron emission tomography (PET)/CT and post-
therapy 177Lu-DOTATATE single photon emission (SPECT)/CT scans.Τhe best
predictive performance observed was based on the gradient boost for the liver,
the left kidney and the right kidney, and on the extra tree regressor for the
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2 ML MODEL FOR LU-177 PRETREATMENT PLANNING

spleen. Evaluation of the model’s performance according to its ability to predict
the absorbed dose in each OAR in every possible combination of prether-
apy 68Ga-DOTATOC PET/CT and any posttherapy 177Lu-DOTATATE treatment
cycle SPECT/CT scans as well as any 177Lu-DOTATATE SPECT/CT treat-
ment cycle and the consequent 177Lu-DOTATATE SPECT/CT treatment cycle
revealed mean absorbed dose differences ranges from −0.55 to 0.68 Gy. Incor-
porating radiodosiomics features from the 68Ga-DOTATOC PET/CT and first
177Lu-DOTATATE SPECT/CT treatment cycle scans further improved the pre-
cision and minimized the standard deviation of the predictions in nine out
of 12 instances. An average improvement of 57.34% was observed (range:
17.53%–96.12%). However, it’s important to note that in three instances (i.e.,
Ga,C.1 → C3 in spleen and left kidney, and Ga,C.1 → C2 in right kidney) we did
not observe an improvement (absolute differences of 0.17, 0.08, and 0.05 Gy,
respectively). Wavelet-based features proved to have high correlated predictive
value, whereas non-linear-based ML regression algorithms proved to be more
capable than the linear-based of producing precise prediction in our case.
Conclusions: The combination of radiomics and dosiomics has potential utility
for personalized molecular radiotherapy (PMR) response evaluation and OAR
dose prediction. These radiodosiomic features can potentially provide informa-
tion on any possible disease recurrence and may be highly useful in clinical
decision-making, especially regarding dose escalation issues.

KEYWORDS
177Lu-DOTATATE, dose prediction model, dosimetry, dosiomics, machine learning, radiomics,
radiotoxicity, regression model, treatment planning

1 INTRODUCTION

Molecular radiotherapy (MRT) uses radioactive sources
to treat cancer1–3 by delivering a radioactive radioiso-
tope directly to the tumorous area.4 In MRT prior to
treatment, a planning agent is administered either for
dosimetry or patient selection purposes.5,6 MRT proto-
cols focus on ensuring a treatment is safe,rather than on
determining the absorbed dose for a particular patient
population. That may lead to possible undertreatment
or overtreatment.7–10 Despite being used for decades,
no clear formula exists yet to link the radioactivity of the
injected radiopharmaceutical with the absorbed dose in
the recipient’s tissues.

Neuroendocrine tumors (NETs) mostly arise from
endocrine cells of the embryological midgut.11 NETs
are at an advanced stage (disseminated metastasis)
in up to 25% of patients12 at presentation and are
often detected during surgery for bowel obstruction,
perforation, or bleeding.13 Establishing a well-validated
pretreatment prognostic protocol for NETs and guiding
NET patients toward the most appropriate course of
therapy are both challenging.

For treating NETs, somatostatin receptor (SSTR)
agonists labeled with 68Ga (68Ga-DOTA-SSA) are
used in positron emission tomography (PET) to diag-
nose and select suitable candidates for treatment.
SSTRs targeted with 177Lu-DOTATATE are then used
for peptide receptor radionuclide therapy (PRRT)

in SSTR-expressing tumors.2 The 177Lu-DOTATATE
PRRT application has shown positive effects on small
intestinal NETs in the NETTER-1 trial, with better objec-
tive responses and increased progression-free survival
durations than octreotide treatment.14–16 To increase
the absorbed dose while preserving organs at risk
(OARs) two main options of injecting 177Lu-DOTATATE
have been proposed:15,17 (1) a fixed four-cycle regimen
with 7.4 GBq/cycle, reassuring safety based on the
extrapolated dose limits from external beam radiation
therapy (EBRT),and (2) a varying number of cycles with
or without variable activity per cycle until OARs absorb
preset doses,9 with the first being more prevalent.

New findings supported the critical significance of
nuclear imaging in not only NET patient selection for
PRRT but also assessment of treatment response.
Authors discovered a dose–response association
between the absorbed dose in PRRT and tumor shrink-
age in both small intestinal and pancreatic NET patients,
with the association being more prominent in the latter.18

Radiomics19,20 is a new potential topic of study that
has emerged as a result of the introduction of new
technologies in imaging and the demands of precision
medicine.21 Researchers have widely exploited radiomic
characteristics in this respect for cancer prognosis and
subtyping and lesion/tissue characterization.22 In addi-
tion to the radiomic approach to identify quantitative
biomarkers, other groups investigated a dosiomic
approach, which is designed to extract spatial aspects
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ML MODEL FOR LU-177 PRETREATMENT PLANNING 3

of the dose distribution in various imaging approaches.
While dosiomics has been extensively studied in
EBRT,23,24 its application in nuclear medicine (NM) has
been relatively limited. However, there is a growing inter-
est in combining radiomics and dosiomics approaches
lately to achieve a more comprehensive and accurate
assessment of treatment response and prognosis in
cancer patients.25–28

As previously described, NETs typically respond
to PRRT with disease stabilization, but the optimal
sequence for PRRT is not yet determined due to chal-
lenges in targeting multiple tumors in the midgut area.
Dosimetric evaluation is mainly focused on protecting
vital organs, and developing tailored therapy regi-
mens to minimize radiotoxic damage to these organs.
Personalizing NET treatment is crucial, and recent
advances in artificial intelligence (AI) techniques offer
promising applications. In nuclear medicine, a one-
size-fits-all treatment planning technique is no longer
appropriate.29–31 Accurate dose prediction is important
for optimizing clinical plans, and AI has proven to be
an effective tool for predicting therapy response and
guiding tailored therapy planning in the future.32–34

ML and deep learning (DL) models have started being
used to address the challenge of personalized pre-
treatment planning in nuclear medicine, with promising
results.21,35,36 Furthermore, researchers have investi-
gated the predictive usefulness of SSTR-expressing
tumor agonists labeled with several radioisotopes,
including 177Lu-DOTATATE.

In the study conducted by Chicheportiche et al.,37 they
used linear regression analysis focusing on the relation-
ship between the absorbed dose of the first cycle and
those of subsequent cycles on the kidneys.They did not
evaluate posttreatment dose prediction or any correla-
tions among OARs.37 Also,they did not assess the ability
of the pretreatment baseline PET/CT scans to predict
the posttreatment absorbed dose, even though it has
been shown to be useful for more than only selection
purposes. Several studies suggest that the quantita-
tive measurements obtained from pretreatment PET/CT
scans using 68Ga-DOTA peptides and standard uptake
value (SUV) could be indicative of the absorbed dose
to the tumor38,39 or the OARs during PRRT.40–45 Kim
et al. presented results of a study of 13 patients investi-
gating the predictive value of 68Ga-DOTATOC PET/CT
scan in a linear regression analysis.44 They presented
a general mathematical formula which was based on
the mean SUV in 68Ga-DOTATOC PET/CT scans for
predicting the absorbed dose on critical organs (tumor,
kidneys, liver, and bone marrow) after treatment with
177Lu-DOTATATE without assessing any potential rela-
tionships between any possible treatment sessions. On
the other hand, Ezziddin et al.43 found that the pre-
treatment SUV of 68Ga-DOTATOC PET scans could
predict the absorbed dose in tumors after cycle 1 in
21 patients treated for NETs with 177Lu-Octreotate.

None of these investigators studied any correlations
among OARs. However, Thuillier et al.42 conducted a
study involving 10 NETs patients, in which they found
a correlation between several SUV-based parameters
on 68Ga-DOTATOC PET and 177Lu-DOTATATE SPECT
scans acquired 24 h after cycle 1. The correlation
pertained to SUV ratios among the tumor, liver, and
spleen. Similarly, Wong et al.45 observed a correlation
between pretherapy 68Ga-DOTATATE PET and post-
therapy 177Lu-DOTATATE SPECT SUV tumor-to-normal
organ ratios (liver, spleen, and kidneys) in 24 patients at
4 and 24 h after cycle 1.These studies provide evidence
of the potential usefulness of pretherapeutic scans for
predicting posttreatment doses or for establishing corre-
lations between post-and pretreatment scans in patients
undergoing treatment for NETs.

In the present retrospective study, we assessed a
new machine learning (ML)-based pretreatment plan-
ning model for predicting the dosimetry in OARs in
NET patients undergoing therapy with 177Lu-DOTATATE
(Lutathera®). We standardized our model which can be
used for the absorbed dose prediction in each OAR
over four 177Lu-DOTATATE treatment cycles and conse-
quently prevent radiotoxicity and optimize the standard
clinical practice. We used a combination of radiomic
and dosiomic features extracted from patients’ imag-
ing data. Identifying these radiodosiomic features (dose
signatures or dose expression patterns) may provide
information on treatment prediction of NETs and may
be highly useful in clinical decision-making, especially
regarding dose escalation issues.

2 MATERIALS AND METHODS

2.1 Clinical patient cohort

To extend our training data set and generalize it as
much possible, our ML model was trained with a data
set for a total of 20 NET patients at two institutions. The
first data set was for 12 patients who received treat-
ment from November 2018 to March 2021 at Centre
Léon-Bérard Center (Lyon, France), whereas the sec-
ond was for eight patients who received treatment from
July 2020 to September 2021 at the Institut de can-
cérologie Strasbourg Europe (Strasbourg, France). All
20 patients underwent PRRT with 177Lu-DOTATATE.
The first group consisted of eight female and four male
patients. Eleven of these patients had hepatic metas-
tases, six had peritoneal metastatic disease, five had
lymph node metastases, three had metastatic bone
lesions, and two had pancreatic metastatic disease. The
mean (± SD) radioactivity of 177Lu-DOTATATE injected
in these patients was 6832 (± 158) MBq. The second
group consisted of three female and five male patients.
All eight patients had hepatic metastases, seven had
peritoneal metastatic disease, four had metastatic bone
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4 ML MODEL FOR LU-177 PRETREATMENT PLANNING

lesions, two had lymph node metastases, and two
had pancreatic metastatic disease. The mean (±SD)
radioactivity of injected 177Lu-DOTATATE in this group
was 7222 (±113) MBq.

Physicians at both institutions followed the same ther-
apeutic protocol. Almost all patients underwent four
treatment cycles with about 8-week gaps between
cycles, except two patients. Specifically, patient 1 had
a time frame of 28 weeks between cycles 3 and 4,
while patient 9 had 24 weeks between cycles 2 and 3
and an injected activity equal to 3428 MBq for cycle
3. We did not have access to additional demographic
data due to institutional constrictions. Overall, the com-
plete data set for these 20 patients consisted of a
total of 186 data sets (from computed tomography
[CT] and nuclear scans); data sets for 20 pretherapy
68Ga-DOTATOC PET/CT and 73 posttherapy 177Lu-
DOTATATE single photon emission CT (SPECT)/CT
scans were collected. Specifically, concerning the post-
therapy 177Lu-DOTATATE SPECT/CT scans, the data
set consisted of 20 cycle 1 scans, 18 cycle 2 scans,
17 cycle 3 scans, and 18 cycle 4 scans. A few data
were missing in cases in which the physicians decided
the patients should not complete all of the treatment
cycles (based on the patients’ hematological or his-
tological examinations or overall clinical condition), or
SPECT/CT could not be performed owing to technical
reasons attributed to the COVID-19 pandemic. Patients
3 and 4 stopped the treatment after the second cycle.
For patient 5, posttreatment SPECT/CT scans of cycles
2 and 3 and for patient 11 SPECT/CT scans of cycle 2
were not available. The image segmentation and recon-
struction protocols are analytically detailed in Vergnaud
et al.46 Briefly, all acquisitions were performed with the
GE Discovery NM CT 670 (first dataset) or GE Discovery
NM CT 870 DR (second dataset) with MEGP collima-
tors, in 15 (first dataset) or 20 (second dataset) minutes.
Reconstructions were performed with OSEM, eight iter-
ations and eight subsets, with DEW scatter correction,
attenuation correction, and resolution recovery (depth-
varying PSF).Calibration for detected counts in MBq/mL
was performed according to the MIRD 23 protocol.47

For the purpose of the present study, we used the post-
injection SPECT/CT scans that were planned at 24 h
post every treatment cycle. All OARs (liver, kidneys, and
spleen) were manually segmented by two experienced
oncologists.

2.2 ML regression model

To train a ML model for predicting the absorbed doses
in the patients’ OARs over time (treatment cycle), our
data set had to be restructured into pairs of starting and
ending treatment session time points,classifying our ML
model as a regression-type one. The input domain fed

to the ML model consisted of the continuous dosiomic
features extracted from each of the pretherapy dose
biodistribution maps.These features were collected over
the whole therapy procedure as well as from the starting
time point to the ending time point for each treat-
ment cycle and combined with the patients’ anatomical
characteristics (radiomics). The absorbed OAR dose at
the ending time point for each posttreatment treatment
cycle was set as the output of the model. Determin-
ing the best combination of biomarkers acquired from
the initial 68Ga-DOTATOC PET/CT images for predict-
ing absorbed dose to OARs in any of the PRRT cycles
was one of the study’s primary goals. Various combina-
tions of features were taken into consideration by using
image-derived biomarkers and other pertinent factors
(patient weight and height and injected radioactivity of
radiopharmaceuticals used). Multivariate analysis was
performed to discard any biomarkers that did not pro-
vide complementary information and,as a result, identify
the combination of features that provided the maxi-
mum stratification correlation for the pretreatment and
posttreatment imaging sessions.

Because the study treatment lasted more than
30 weeks overall (the time frame for all four cycles
and breaks between them), the ability of our regres-
sion model to predict the absorbed dose in each OAR
was evaluated over each treatment cycle. The pro-
posed model generates four continuous dose values
representing the predicted absorbed dose in each of
the four treatment cycles of 177Lu-DOTATATE when
the input is based on the features extracted from the
68Ga DOTATOC pretreatment scans. If the model is
fed with additional dose information as the therapy pro-
gresses, it can lead to updated dose values for the
cycles that will follow. For example, if the input fea-
tures include information from cycle 1, the output will
include predictions for cycles 2, 3, and 4. The same
applies if features from multiple cycles are included
in the input, where the output will only include predic-
tions for the remaining cycles (presented at Figures 2
and 3, in the Results section). Finally, an additional
goal was to identify which radiodosiomics are opti-
mal and the appropriate feature selection method for
the creation of an overall predictive model of ther-
apy response over the course of the four cycles of
PRRT.

Nine supervised linear and non-linear-based ML
regression algorithms were evaluated: linear regres-
sion, ridge regression, extra tree regression, AdaBoost
regression, gradient boost regression, random forest
regression, decision tree regression, support vector
regression (SVR),48 and XGBoost regression.49 These
algorithms are considered state-of -the-art for classifica-
tion and regression problems.The ML regression model
was built using the Python programming language
(v.3.10.2).50
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ML MODEL FOR LU-177 PRETREATMENT PLANNING 5

2.3 Training parameters

2.3.1 Feature extraction

In total, 3412 radiodosiomic features were used to char-
acterize all OARs in both the CT images and the
dose maps for each image data set (pretherapy 68Ga-
DOTATOC and posttherapy 177Lu-DOTATATE treatment
cycles’ scans). These features cover the whole spec-
trum of the PyRadiomics library51 for all conceivable
multimodal images used in 177Lu-DOTATATE treatment
planning in clinical practice (PET,SPECT,and CT scans).
Specifically, radiomics’ and dosiomics’ features were
extracted from every possible feature class (First Order,
GLCM, GLDM, GLRLM, GLSZM, NGTDM, Shape, and
Shape2D and their corresponding wavelet-based fea-
tures). In addition to the radiomics extracted from the
patients’ anatomical characteristics, our model was fed
with the patients’ body mass index values (weight and
height). Also, extraction settings that were consistent
with the most up-to-date benchmark values according
to the Image Biomarker Standardization Initiative guide-
lines (IBSI)52 were chosen. All features were extracted
with a fixed bin and voxel size. The voxel size was set
to 1 × 1 × 1 mm3 and discretization was set to 64 bins.
Additionally, before the feature selection process (see
Section 2.3.2),all extracted features were normalized as
shown in Equation (1) to produce a scaled training data
set with zero mean variability and unit variance.

z =
𝜒 − 𝜇

𝜎

z =
x − 1

N

∑N
i=1 (xi)√∑N

i=1 (xi−𝜇)2

N

(1)

In this equation, χ is the radiodosiomic feature, μ is
the mean value of all radiodosiomic features, σ is the
SD for this mean value, and Ν is the total number of
radiodosiomic features.

2.3.2 Feature selection

Owing to the high-dimensional data set produced via
PyRadiomics library51 feature extraction, feature selec-
tion is a critical stage in the workflow of a radiomics-
based study.53,54 A mixture of feature selection strate-
gies was employed in the present study.To meaningfully
reduce the dimensionality of our training data set and
select robust features, initially, two filter-based fea-
ture selection techniques were used: an unsupervised
univariate analysis of the association among the radio-
dosiomic features (Pearson’s correlation coefficient)55

and a supervised multivariate analysis of the asso-
ciation between the radiodosiomic features and the

target feature (in our case the absorbed dose to a spe-
cific OAR) (mutual information criterion).56 Additionally,
two wrapper techniques (the feature sequential back-
ward elimination [SBS] and the forward recursive feature
elimination [RFE])48 were applied to find the best
feature combination for each of the ML regression algo-
rithms that we tested for every OAR. Figure 1 shows
a schematic of the feature selection process that we
used. Also, two ML regression algorithms that leverage
embedded feature selection approaches (the XGBoost
and ridge regression algorithms) were included in our
experiments.48,49 Specifically, the mutual information cri-
terion,which is shown in Equation (2),was used to quan-
tify the mutual reliance between the target value and the
remainder of the derived radiodosiomic features.

I (X ; Y ) = DKL
(
P(X,Y )‖PY⊗P𝜒

)
(2)

In this equation, (X,Y) represents a pair of random
variables with P(X,Y) as their joint distribution and
PX and PY as their marginal distributions. DKL is the
Kullback–Leibler divergence.57 All features having a
mutual information score lower than 0.3 were removed
from the data set as they were considered irrelevant to
the predictive assignment.

To quantify the degree and direction of the linear
relationships among all pairs of the remaining features,
the unsupervised Pearson’s correlation coefficient was
used55 as shown in Equation (3)

𝜌X,Y =
cov (X, Y )
𝜎X𝜎Y

𝜌X,Y =
𝔼 [(X − 𝜇X ) (Y − 𝜇Y )]

𝜎X𝜎Y
(3)

where (X,Y) represents a pair of random variables with
cov(X,Y) as their covariance, which can be expressed as
their expectation (𝔼). Also, μ and σ represent the mean
value and SD, respectively.

Highly correlated features with an absolute Pearson’s
correlation coefficient value greater or equal to 0.8 were
compared with one another. Features with an absolute
Pearson’s correlation coefficient value lower than 0.8
were considered redundant and excluded from the data
set.

The wrapper technique described above was
employed at the final phase of the feature selec-
tion process to find the feature subset that leads to the
best predicted performance for each of the ML algo-
rithms. Furthermore, because wrapper approaches are
algorithm-specific, the feature selection procedures for
each combination of the remaining radiodosiomic fea-
tures and ML algorithms were performed independently.

The embedded feature selection approaches were
the last steps in the feature selection process.They were
implemented in algorithms with their own built-in feature
selection methods. If an algorithm failed to produce valid
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6 ML MODEL FOR LU-177 PRETREATMENT PLANNING

F IGURE 1 Schematic of the ML model’s workflow.

results in selecting more than 10 features, it indicated
overfitting (following the 10:1 rule of thumb). Conse-
quently, the algorithm’s results were not evaluated.

2.4 Validation methods and metrics

To train and validate the model, leave-one-out cross-
validation58 was used. This approach was chosen
primarily to compensate for the small sample size.
Leave-one-out cross-validation enabled us to train the
model with more data than that with any other train-
ing and validation method.For performance comparison
and optimization reasons, mean absolute error59 was
employed as the major model performance metric to
assess the prediction performance of each of our ML
regression algorithms.

Dose maps generated through direct full Monte Carlo
(MC) simulations were used as the references. The
predicted dose values for each OAR were evaluated
and validated in comparison with the dose values that
were extracted from the ground truth dose maps. The
ground truth dose maps were based on SPECT/CT
scans taken 24 h after each treatment cycle and gen-
erated using the GATE v.9.0 MC simulation toolkit.60

To simulate the radioisotope voxelized source distribu-
tion and the patients’ anatomical characteristics, patient
PET/SPECT and CT data, respectively, were imported
into GATE, and the generated dose maps were regis-
tered to the patients’CT scans.The GATE database60,61

was used to convert CT Hounsfield units into den-
sities. The physical processes were simulated using
the standard electromagnetic emstandard_opt4 physics
package of the Geant4 10.6 software application, and
every 177Lu particle’s interaction at each voxel with a
specific material composition was simulated using the

177Lu continuous spectrum ranging from 0 to 0.498 MeV,
with a mean energy of 0.149 MeV, half -life of 6.647
days and a tissue penetration range up to 2.2 mm.2 The
voxel size of the 3D generated dose maps was set to
1 × 1 × 1 mm3 in order to have a high resolution in
dose deposition, considering the Betta emission contri-
bution. In every simulation, to reach a sufficiently low
level of statistical uncertainty, 5 × 109 primary events
were simulated. The achieved mean statistical uncer-
tainty was almost ∼2% for each OAR (liver, left and right
kidneys, and spleen) in every patient. All simulations
were executed in the “YOTTA Advanced Computing”
high-performance computing (HPC) center.62

Differences in the absorbed dose values for each
OAR were analyzed in terms of relative and absolute dif-
ferences. The mean absorbed dose differences in every
OAR were reported by calculating the mean value of
the absorbed dose and the absolute absorbed dose
differences in every OAR.

To assess the prediction performance of our ML
regression model across all treatment cycles, we cal-
culated five different performance metrics. The mean
absolute error (MAE), the root mean square error
(RMSE), the R-squared (R2), the mean percentage error
(MPE),and the mean relative error (MRE).59,63 Because
MAE, RMSE, MPE, and MRE are scale dependent, they
can be used to assess the performance of various pre-
dictive regression models for a given dataset, whereas
R2 indicates the fraction of the variation of the tar-
get value explained by the input characteristics in a
regression model. From the selected metrics, MAE was
employed as the major model performance metric in
this study for performance comparison and optimization
reasons. MAE and RMSE metrics are calculated in Gy.
Differences in the absorbed dose values for each OAR
were analyzed in terms of absolute dose differences.
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ML MODEL FOR LU-177 PRETREATMENT PLANNING 7

TABLE 1 Regression evaluation metrics (MAE, RMSE and MRE in Gy, and MPE in %) of the best performing regression algorithm for each
OAR.

Regression evaluation metrics
OARs Regression algorithm MAE RMSE R2 MPE MRE

Liver Gradient Boost 0.61 0.89 0.63 −17.95 0.34

Spleen Extra Tree Regressor 1.58 2.08 0.54 −13.56 0.33

Left kidney Gradient Boost 1.30 1.70 0.60 −9.64 0.30

Right kidney Gradient Boost 1.35 1.70 0.65 −16.11 0.37

3 RESULTS

We evaluated the ability of nine ML-based regression
algorithms to predict the absorbed dose in every OAR
(liver, spleen, and left and right kidneys) using prether-
apy 68Ga-DOTATOC PET/CT and posttherapy 177Lu-
DOTATATE SPECT/CT scans following every treatment
cycle. We extracted the real dose values for each OAR
from MC simulations, and as indicated, we considered
these dose values the ground truth for every compari-
son with our generated model’s predicted dose values.
We also evaluated our model’s performance in predict-
ing the total cumulative absorbed dose in each OAR for
every patient over the course of all four treatment cycles.

3.1 Evaluation of the performance of
the best ML-based model

Overall, the best predictive algorithms with the prether-
apy 68Ga-DOTATOC PET/CT and posttherapy 177Lu-
DOTATATE SPECT/CT scans achieved mean dose
absolute error of 0.61, 1.58, 1.30, and 1.35 for the liver,
spleen, left kidney, and right kidney, respectively. Analyti-
cal results for the best performing regression algorithm
for each OAR are presented in Table 1.

As shown in Table 1, none of the regression algo-
rithms outperformed the others in predictive perfor-
mance for all OARs.

3.2 Evaluation of the performance of
the model in predicting the absorbed dose
among all treatment cycles

We evaluated the best performing regression algo-
rithm for each OAR according to its ability to predict
the absorbed dose in every possible combination of
pretherapy 68Ga-DOTATOC PET/CT and any postther-
apy 177Lu-DOTATATE treatment cycle SPECT/CT scans
as well as any 177Lu-DOTATATE SPECT/CT treatment
cycle and the consequent 177Lu-DOTATATE SPECT/CT
treatment cycle scans.In the following tables and figures,
“Ga” stands for pretherapy 68Ga-DOTATOC scans, “C”
stands for posttherapy 177Lu-DOTATATE scans, and the

arrow symbol shows the direction of prediction, that is,
the left part is the input that predicts the output, right
part. Also, “C” is followed by the corresponding treat-
ment cycle number. In Figure 2, the mean differences
in the predicted absorbed dose are illustrated. A more
detailed analysis is depicted in Figure 3.

Incorporating information from previous treatment
cycles as inputs led to improved and consistently more
stable outcomes in most ML regression algorithms. This
effect was particularly pronounced when combining
data from the first treatment cycle with information
from the pretreatment cycle. For example, for the left
kidney, the mean (±SD) dose difference from Ga→C.4
was 0.21 ± 2.30 Gy, and that from (Ga, C.1)→C.4 was
−0.01 ± 1.47 Gy. The analytical results of all possible
combinations are presented in Table 2.

As it can be seen in Table 2, incorporating radio-
dosiomics features from the 68Ga-DOTATOC PET/CT
and first 177Lu-DOTATATE SPECT/CT treatment cycle
scans further improved the precision and minimized
the standard deviation of the predictions in nine out of
12 instances. An average improvement of 57.34% was
observed (range:17.53%–96.12%).However, it is impor-
tant to note that in three instances (i.e., Ga,C.1 → C3
in spleen and left kidney, and Ga,C.1 → C2 in right
kidney) we did not observe an improvement (absolute
differences of 0.17, 0.08, and 0.05 Gy, respectively).

3.3 Final selected features

One of the main objectives of this study was to iden-
tify radiodosiomic signatures that can facilitate the
use of anatomical and dose features for predicting
the absorbed dose escalation over the course of four
177Lu-DOTATATE treatment cycles. In Table 3, the final
selected radiodosiomic features from among the 3412
initial extracted features for the four OARs are listed.

As described above, we trained and evaluated nine
ML algorithms for every OAR. Therefore, the final
selected features differed for each OAR. Τhe Recur-
sive Feature Elimination (RFE) method consistently
exhibited superior interpretability in comparison to
Sequential Backward Selection (SBS) across all the
final best algorithms. The utilization of RFE allowed
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8 ML MODEL FOR LU-177 PRETREATMENT PLANNING

F IGURE 2 Comparison of MC simulations and mean predicted absorbed dose (in Gy) for every OAR in all patients. Ga, pretherapy
68Ga-DOTATOC scans; C, posttherapy 177Lu-DOTATATE scans.

F IGURE 3 Box-and-whisker plots of the predicted absorbed dose differences in every OAR for every possible combination of scans for the
pretreatment and posttreatment cycles. Ga, pretherapy 68Ga-DOTATOC scans; C, posttherapy 177Lu-DOTATATE scans.

TABLE 2 Differences between the predicted absorbed dose values and ground truth (MC simulations) for every pretreatment and
posttreatment imaging session in all OARs.

Absorbed dose difference (Gy)
Liver Spleen Left kidney Right kidney

Treatment cyclesa,b Mean [95% CI] SD Mean [95% CI] SD Mean [95% CI] SD Mean [95% CI] SD

Ga→C.1 0.17 [−0.37, 0.98] 1.10 -0.55 [−1.39, 0.34] 1.95 0.11 [−0.74, 0.95] 1.90 0.14 [−0.64, 1.01] 1.91

Ga→C.2 0.30 [−0.37, 0.98] 1.35 -0.19 [−1.45, 1.06] 2.52 0.11 [−1.03, 1.24] 2.29 -0.01 [−0.72, 1.01] 1.70

Ga→C.3 0.09 [−0.36, 0.54] 0.88 0.14 [−1.19, 1.41] 2.54 0.25 [−1.19, 1.27] 2.45 0.29 [−0.77, 1.13] 1.78

Ga→C.4 0.16 [−0.30, 0.62] 0.98 0.17 [−1.10, 1.43] 2.71 0.21 [−0.76, 1.15] 2.03 0.17 [−0.75, 1.24] 1.97

(Ga,C.1)→C.2 0.09 [−0.24, 0.42] 0.66 -0.03 [−0.88, 0.99] 1.81 0.09 [−0.54, 0.72] 1.27 -0.06 [−0.96, 0.63] 1.60

(Ga,C.1)→C.3 -0.05 [−0.51, 0.40] 0.89 0.31 [−0.57, 1.20] 1.72 0.33 [−0.48, 1.13] 1.57 0.12 [−0.90, 1.04] 1.86

(Ga,C.1)→C.4 -0.02 [−0.31, 0.27] 0.62 0.11 [−0.81, 1.02] 1.95 0.01 [−0.68, 0.70] 1.47 0.12 [−0.80, 0.63] 1.66

(Ga,C.1,C.2)→C.3 0.03 [−0.37, 0.43] 0.75 0.68 [−0.16, 1.52] 1.57 0.37 [−0.18, 0.92] 1.03 0.29 [−0.34, 1.02] 1.46

(Ga,C.1,C.2)→C.4 0.17 [−0.22, 0.57] 0.74 0.26 [−0.72, 1.24] 1.84 0.06 [−0.60, 0.72] 1.23 0.07 [−0.70, 1.02] 1.65

(Ga,C.1,C.2,C.3)→C.4 0.09 [−0.25, 0.43] 0.66 0.34 [−0.84, 1.52] 2.29 -0.02 [−0.83 ,0.79] 1.58 0.32 [−0.58, 1.07] 1.54
aGa, pretherapy 68Ga-DOTATOC scans; C.1-4, posttherapy 177Lu-DOTATATE scans for cycles 1-4.
bThe arrow symbol shows the direction of prediction, that is, the left part is the input that predicts the output, right part.
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ML MODEL FOR LU-177 PRETREATMENT PLANNING 9

TABLE 3 Radiodosiomic features producing the best results in the model’s prediction accuracy (best performing algorithm in parentheses).

Target organ: liver (gradient boost)

Features’ origin Features (8)

Other Days_Between_Treatment

Liver wavelet-HLL_firstorder_Dose_Map_Liver_Mean
wavelet-LLH_gldm_Dose_Map_Liver_DependenceNonUniformityNormalized
wavelet-LLL_firstorder_Dose_Map_Liver_Entropy

Spleen original_glszm_Dose_Map_Spleen_SizeZoneNonUniformity
wavelet-HHH_glszm_Dose_Map_Spleen_ZoneVariance
wavelet-LLL_glszm_Dose_Map_Spleen_ZoneEntropy

Left kidney wavelet-HLH_glszm_Dose_Map_Left_Kidney_ZoneVariance

Target organ: spleen (extra tree regressor)

Features (7)

Other Days_Between_Treatment

Height

Liver original_shape_CT_Liver_MeshVolume
original_shape_CT_Liver_Flatness
wavelet-HHH_gldm__Dose_Map__Liver_LargeDependenceLowGrayLevelEmphasis

Spleen wavelet-HLH_firstorder_Dose_Map_Spleen_Variance

Right kidney wavelet-LLL_firstorder_Dose_Map_Right_Kidney_10Percentile

Target organ: left kidney (gradient boost)

Features (10)

Other Days_Between_Treatment

Weight

Height

Liver wavelet-HLH_gldm_Dose_Map_Liver_SmallDependenceLowGrayLevelEmphasis
wavelet-HLH_glszm_Dose_Map_Liver_SmallAreaEmphasis

Spleen wavelet-LHL_firstorder_Dose_Map_Spleen_Uniformity

Left kidney wavelet-HLL_firstorder_Dose_Map_Left_Kidney_Mean

Right kidney original_shape_CT_Right_Kidney_SurfaceVolumeRatio
original_shape_CT_Right_Kidney_MinorAxisLength
wavelet-LLH_glrlm_Dose_Map_Right_Kidney_RunLengthNonUniformity

Target organ: right kidney (gradient boost)

Features (10)

Other Days_Between_Treatment

Height

Liver original_glrlm_Dose_Map_Liver_GrayLevelNonUniformity

wavelet-LLL_glcm_Dose_Map_Liver_Idn

wavelet-LLL_glrlm_Dose_Map_Liver_LongRunHighGrayLevelEmphasis

Left kidney wavelet-HLL_firstorder_Dose_Map_Left_Kidney_Mean
wavelet-LLH_glrlm_Dose_Map_Left_Kidney_LongRunLowGrayLevelEmphasis

Right kidney original_shape_CT_Right_Kidney_SurfaceVolumeRatio
wavelet-LLH_glszm_Dose_Map_Right_Kidney_ZonePercentage
wavelet-HHH_glszm_Dose_Map_Right_Kidney_SizeZoneNonUniformityNormalized

Note: The first column lists the origin from which the features were extracted, whereas the second column lists the selected features.

us to identify and retain the most informative features
while discarding less relevant ones, resulting in a more
comprehensible and meaningful representation of the
OARs’ impact on the chosen algorithms. This facilitated
more insightful analysis and decision-making in the
context of organ-at-risk considerations.

4 DISCUSSION

PRRT using radiolabeled SSTR agonists is a
well-tolerated treatment for NETs, but reliable
data on long-term adverse consequences are
limited.64–67
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10 ML MODEL FOR LU-177 PRETREATMENT PLANNING

The aim of the present research was to study the
feasibility of utilizing dosiomics features, as those have
been successfully exploited in EBRT and uncover radio-
dosiomic features that can enable dose measurements
of OARs in PRRT for treating NETs.To meet this aim,we
evaluated multiple ML-based prediction algorithms and
corresponding dose escalation-associated factors. We
investigated the predictive usefulness of 3D radiomic
features extracted from each patient’s pretreatment and
posttreatment dose maps and developed a model that
incorporated anatomical radiomic and dosiomic features
to predict the absorbed dose in each OAR in patients
with NETs treated with 177Lu-DOTATATE at 24 h.

To the best of our knowledge, this is the first study
to develop a dosimetry ML-based model in patients
undergoing treatment of NETs with 177Lu-DOTATATE.
To ensure the safety of 177Lu-DOTATATE therapy,
we devised a cutting-edge personalized, OAR-based
dosimetry approach for monitoring radiotoxicity through-
out long-term treatment (>31 weeks) while also identify-
ing associated patient-based clinical characteristics with
the highest prognostic value.

In the proposed methodology for treatment planning
described herein, after evaluating nine ML regression
algorithms, our model scored a mean absolute dose
error of 0.61 for the liver (by gradient boost regressor),
1.58 for the spleen (by extra tree regressor), 1.30 for the
left kidney (by gradient boost regressor), and 1.35 for
the right kidney (by gradient boost regressor) between
pretherapy 68Ga-DOTATOC PET/CT and posttherapy
177Lu-DOTATATE SPECT/CT scans. Evaluation of the
best regression algorithm for each OAR based on its
ability to predict the absorbed dose in each and every
pretherapy combination of 68Ga-DOTATOC PET/CT
and any post-therapy 177Lu-DOTATATE treatment cycle
scans, as well as any subsequent 177Lu-DOTATATE
SPECT/CT scans after a 177Lu-DOTATATE treatment
cycle, showed mean differences, between the predicted
absorbed dose values and ground truth (MC simula-
tions), less than 1 Gy, ranges from −0.55 to 0.68 Gy.
Furthermore, using results of initial treatment cycles
as input absorbed dose differences in a single time
point tended to decrease along with their corresponding
SDs. PET studies have shown that pretreatment 68Ga-
DOTATOC PET scans may be useful in determining the
optimal activity, and consequently the absorbed dose,
for PRRT.38,39,68 Training our model without considering
features extracted from the pretherapy 68Ga-DOTATOC
PET/CT scans was not investigated. Our focus was
on developing a comprehensive pretreatment planning
dose predictive model that would incorporate the highly
promising predictive ability of the pretherapy scans, as
demonstrated in previous studies.42–45

Although SPECT or PET imaging can offer valu-
able information about the distribution of radioactivity
within the tissue, the absorbed dose map provides more
direct information about the actual radiation dose that

the tissue receives. This is particularly important for
short-range beta emitters like Lu-177, which primar-
ily deposit their radiation energy locally in the tissue
with minimal gamma radiation emission. To ensure the
model’s accuracy, we used training datasets derived
from MC simulations, providing ground truth informa-
tion. By analyzing the absorbed dose map, regions
receiving the desired dose can be identified and the
treatment plan can be adjusted, potentially improving
efficacy and minimizing side effects. We achieved this
by exploiting sophisticated ML-based regression algo-
rithms to personalize the proposed PRRT treatment plan
for patients with NETs. We chose not to limit the issue
to a simple, straightforward linear regression problem of
dose values, like Chicheportiche et al.37 did, but rather
to also correlate doses to OARs with patient-specific
and dose distribution-specific characteristics in every
possible treatment session for every OAR.

Previous studies presented in the Introduction sec-
tion relied on linear regression models.37,44 In contrast,
we demonstrated that non-linear-based ML models
produce more accurate results of dose prediction for
PRRT that do linear-based ML models. Owing to their
interpretability and resistance to overfitting with com-
plex,high-dimensional data sets,non-linear-based algo-
rithms (gradient boost or extra tree regressor) proved
to be more capable of producing precise predictions
with greater capacity for generalization than were linear
algorithms.

Both ML and DL based treatment plans have shown
remarkable predictive ability in nuclear medicine.36,69,70

We aimed to develop a model that can predict the
absorbed dose from pretreatment imaging sessions
but additionally identify patient- and dose-specific fea-
tures for the purpose of discovering possible corre-
lations between these features. These features can
only be identified using ML-based models. As shown
in Table 3, wavelet-based features had high predictive
value.Although anatomical-based features are less than
the dosiomics features, anatomical CT-based features
and the patient’s body mass index (for the spleen, the
left and the right kidney) were highly correlated features.
Of note, for every specific target OAR, features of at
least two other OARs had an impact on predicting the
absorbed dose in the target OAR. These findings not
only prove that it is feasible to predict dose relations
from pretreatment scans, but also highlight the need for
further studies to investigate the correlation between
OARs.

4.1 Limitations

Although our study yielded substantial and encouraging
results, it had some limitations. First and foremost, the
patient cohort was limited because of COVID-19-related
issues that precluded some patients from completing
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ML MODEL FOR LU-177 PRETREATMENT PLANNING 11

all four cycles of 177Lu-DOTATATE therapy. Also, the
participating clinics did not follow the exact same scan-
ning protocol after the therapy, as follow-up SPECT/CT
scans post therapy are not mandatory. The challenge in
gathering integrated follow-up data on patients’ scans
stems primarily from the fact that no protocol requires
177Lu-DOTATATE SPECT/CT for any patient after PRRT
for NETs. In addition, as a result of the not-mandatory
posttreatment scans, we could not acquire all of the
posttreatment 177Lu-DOTATATE SPECT/CT scans for
some patients.By using ML-based methods,we adapted
to a limited data set. Augmenting our dataset in the
future will further verify and standardize our identified
features’ findings. The results for our prediction model
may be impacted by imbalance in its training owing to
the number of missed treatment sessions. Furthermore,
even though a study by Sandström et al.7 showed that
the absorbed dose in bone marrow is seldom a limiting
factor to complete the treatment; several recent studies
have emphasized the importance of the bone marrow
as an OAR, which may influence the treatment.2,71,72

We did not investigate the radiodosiomic correlation
between pretherapy and posttherapy treatment ses-
sions with bone marrow as an OAR in the present study,
although we can study it in the future. In our study, scans
were taken from different PET or SPECT/CT scanners
with potential variations in image reconstruction pro-
tocols and different scanning parameters. Augmenting
a data set with data from different hospitals would
boost the model’s generalization ability and make its
results more applicable to other studies.Additionally, the
potential of the combination of radiomic and dosiomic
features has yet to be described in the literature or
demonstrated clinically. Therefore, conclusive interpre-
tation of feature sets composition is lacking. We did not
examine different feature extraction parameterization
or selection approaches, so an emphasis on specific
features may have produced different outcomes. We
anticipate that divergent results might emerge if we train
our models on radiomic features derived from the raw
PET or SPECT activity maps, rather than the generated
high-resolution dose maps.Moreover,assumptions were
made regarding constant effective half -life, and the use
of a single time point for dosimetry prediction. As this
study was focused on standardizing an AI methodology
for dosimetry prediction, we aimed to introduce an
alternative dosimetry procedure for NETs treatment by
utilizing a ML-based model.To achieve this,we executed
MC simulations on post-injection SPECT/CT scans at
an indicative specific time point for every treatment
cycle, to standardize the performance of the predic-
tion model. Our model’s predictive ability may be further
enhanced by time-activity curves to calculate cumulative
dose incorporating pharmacokinetics. The X90, radius
of the sphere in which 90% of the beta-emitter’s energy
is deposited, of Lu-177 in water is 0.6 mm73 while in
our study the dose maps had a voxel size of 1 × 1 × 1

mm3. As we are performing dosimetry in organ level, we
anticipate that these differences would not significantly
impact the dosimetry prediction, but this is a work that
needs to be further investigated in a future study. Finally,
patients’ laboratory test results (e.g., hematological
and biochemical tests) are not integrated into our ML
prediction model. Future research should focus on the
relationship between radiodosiomics and laboratory
test results. This may also improve the model’s predic-
tive ability and adoption in clinical practice. In this study
we evaluated and standardized the proposed prediction
model,and we didn’t clinically investigate the cumulative
absorbed dose over the cycles. The proposed model
may be further exploited in clinical dosimetry, predicting
the total cumulative dose for all the treatment cycles.

As shown in several published studies,74,75 radiomic
features highlight the complementary value of texture
in improving models’ accuracies on predicting absorbed
dose. Our findings further emphasize the need for
developing individualized, data-driven risk profiles in
prediction models for PRRT because they strongly
depend on patient-specific characteristics, such as the
patient’s body mass index. Our results demonstrate that
the ML-based model’s prediction performance can be
influenced considerably by the radiodosiomic feature
selection technique and regression model used. Simple
linear regression models cannot outperform non-linear-
based ML models like gradient descent or support
vector machines using clinical data sets with limited
data. More research is needed before we can make
firm conclusions about the effective use of automated
models in nuclear molecular radiotherapy and, eventu-
ally,development of a precise,patient-specific treatment
plan for PRRT in NETs.

5 CONCLUSIONS

Our findings described herein will help future stud-
ies to develop optimized MRT approaches for patients
with NETs in a prospective manner. For effective tai-
lored dosimetry, an accurate planning agent must be
used prior to 177Lu-DOTATATE therapy. The absorbed
dose predicted using the planning agent must corre-
spond with the absorbed dose from the therapeutic
isotope (68Ga-DOTATOC and 177Lu-DOTATATE in our
study). A dosimetry plan before treatment overall and
during 177Lu-DOTATATE therapy in particular,that is,suf-
ficiently accurate would allow for the selection of optimal
activity levels that provide the highest probability of suc-
cessful tumor suppression for each therapy cycle while
also reducing radiation-induced harm to healthy tissues.
Thus, by refining the absorbed dose estimation with
proper radiomics and dosiomic features and improv-
ing the safety and efficacy of 177Lu-DOTATATE therapy,
NET patient outcomes may improve. In future research,
investigators should analyze more patient data than we
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12 ML MODEL FOR LU-177 PRETREATMENT PLANNING

did in this study to verify this model for use in regular
clinical practice.
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