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Abstract

Circadian clocks form a fundamental mechanism that promotes the correct behav-
ior of many cellular and molecular processes by synchronizing them on a 24 hour
period. However, the circadian cycles remain difficult to describe mathematically.
To overcome this problem, we first propose a segmentation of the circadian cycle
into eight stages based on the levels of expression of the core clock components
CLOCK:BMAL1, REV-ERB and PER:CRY. This cycle segmentation is next
characterized through a piecewise affine model, whose analytical study allows us
to propose an Algorithm to generate biologically-consistent circadian oscillators.
Our study provides a characterization of the cycle dynamics in terms of four fun-
damental threshold parameters and one scaling parameter, shows robustness of
the circadian system and its period, and identifies critical points for correct cycle
progression.

Keywords: Circadian clock cycle dynamics, piecewise affine model, analytic solutions,
parameter regions, period robustness

1 Introduction

In mammals, every cell contains its own circadian clock network, a complex fam-
ily of interactions between genes and proteins that helps to control and synchronize
many cellular and molecular processes (such as heart beat, blood pressure, body tem-
perature,...). The main synchronizer of circadian clock is known to be the Earth’s
light/dark cycle, forcing circadian clock period at around 24h. The core mechanism of
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circadian clock is based on two negative feedback loops, between the complexes of pro-
teins PER:CRY and CLOCK:BMAL1 and between CLOCK:BMAL1 and REV-ERB,
allowing circadian clocks to show sustainable and rhythmic oscillations [1, 2].

The regulatory interactions of circadian clocks are frequently described with
ordinary differential equations (ODEs). Throughout the years, several mathematical
models have been developed using this framework, especially for the clock located in
the Suprachiasmatic Nucleus (SCN) [3, 4] but also for peripheral organs such as the
liver [5–7], or pancreatic beta-cells [8] or for more ‘generic’-type cells [2, 9], focusing on
different circadian clock features (such as transcription, translation, import/export,
degradation, phosphorylation...) and recovering important biological properties of cir-
cadian clocks. These models enable, among other points, to provide insights to show
circadian period and oscillation robustness whether by studying it with a reduced
number of clock molecules (mRNA or proteins) in the cell [10] or demonstrating the
role of the two loops [4].

Modeling complex dynamic of genetic regulatory networks with ODEs often neces-
sitates the use of nonlinear terms, such as Hill functions or mass action terms, that
complicate the study of these models since analytical solutions cannot be deter-
mined. An alternative framework considers the switching behaviour of the gene-protein
interactions, by which Glass [11–14] first proposed a simplified representation based
on constant rates for species production and linear degradation rates. The net-
work dynamic is then governed by threshold-dependant regulations between variables:
depending on the position of a regulatory variable relative to a given threshold, the
constant production rate of a regulated variable can be switched either high or low.

This representation was generalized to a framework also known as piecewise affine
(PWA) systems that has been widely used to analyse genetic networks in computa-
tional and theoretical [15–18] ways. It has the advantage that the set of thresholds
allows to partition the state space into distinct domains or “boxes” in which solutions
can be easily calculated piecewise and then the global solution is a concatenation of
the different pieces [17]. More specifically, the global behavior of PWA models has been
widely studied in order to prove the existence and stability of periodic solutions, often
requiring restriction to specific systems and under some assumptions such as identical
degradation rates for each variable and a single threshold per variable [16, 19]. Subse-
quent research extended to systems with several thresholds per variable (i.e. a given
variable regulating several variables does so at different thresholds) [20, 21], or with
different degradation rates [18].

A new wave of generalization of these networks was more recently developed,
with among others, the introduction of a more general concept of switching net-
works [22] associated with a method to characterize all the possible qualitative
behaviors “contained” in a given network, by combinatorially identifying regions of
parameters for which the qualitative dynamics don’t change. This method is imple-
mented through the software for Dynamical Signatures Generated by Regulatory
Networks (DSGRN) [22, 23]. Applications of this new DSGRN framework include
model validation or rejection [24], with the particular example of the yeast cell
cycle [25].

2



Continuous models that use only sigmoidal-type production terms and linear degra-
dations can usually be associated to a corresponding PWA system by approximating
the sigmoidal functions by step functions. However, in the case of models more gener-
ally described by functions of mass-action form or polynomial terms, these frameworks
cannot in general be directly applied. In this work, we propose the construction of a
piecewise affine model that approximates a reduced continuous nonlinear ODE model
of circadian clock [26] including both a Hill function and mass action terms. Due to
the polynomial terms, the previously cited methods cannot be applied, and the simpli-
fication leads to a system which is not of the classical PWA form, and which directly
relies on the knowledge of the qualitative dynamics of the ODE model and of the
general dynamics of circadian clocks.

More specifically, the qualitative behaviour refers to two features of circadian
clock cycles experimentally observed, that are the phase opposition between the com-
plexes CLOCK:BMAL1 and PER:CRY and the chronological order of protein peaks
CLOCK:BMAL1, REV-ERB and PER:CRY. The idea of using the sequence of biolog-
ical events, including minima and maxima, to qualitatively describe a system behavior
is much used in Boolean systems, and presents the advantage of avoiding the require-
ment of quantitative experimental data that can be tricky to obtain. In [24], the
authors propose a method to match models with datasets based on the sequence of bio-
logical events, that they next develop in [27] and apply in [25] to qualitatively match
yeast cell-cycle networks with various datasets. Another class of models, called hybrid
models, that are based on a formalism introduced in [28], also considers sequences of
biological events to capture the qualitative dynamic of biological networks but they
additionally include temporal features [29]. In this framework, celerities are assigned
to each qualitative state, to take into account the time that the system spends in each
state.

The construction of the piecewise affine model presented in this paper, although
including peak order and temporal constraints, strongly differs from works previously
mentioned. Indeed, the system is constructed so that its solutions follow a periodic
orbit that approximates the cycle of an ODE model, and exhibit certain qualitative
properties, such as the peak order. These requirements are guaranteed with a set of
constraints derived from the analytical solutions of our PWA model, and have the
form of limited dwell-time within some regions and of threshold inequality constraints.
Based on these constraints, a dedicated Algorithm allows to estimate and explore the
parameter space of threshold values, leading to a realistic region that ensures existence
of the circadian periodic orbit.

Therefore, through the approximation of an ODE model, our approach proposes
a characterization of the circadian clock cycle and shows that the circadian system
is robust in the sense that a periodic orbit with period near 24 hours is observed for
a wide range of threshold values. This robustness is determined by an adjustment
between the minimal concentration of PER:CRY and the maximal concentration of
CLOCK:BMAL1: the product of these two quantities may range over a large interval
and sets a scaling for the other variables in the system.
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2 Numerical and mathematical characterization of
circadian time

2.1 A model reproducing circadian clock properties

Throughout this paper, we base our analysis on the continuous circadian clock model
recently developed by Almeida et al. [26]. This model, calibrated with data from mouse
fibroblast cells [30], focuses on the transcriptional details and describes the dynamics
of the core clock protein complexes CLOCK:BMAL1, DBP, REV-ERB (representing
both REV-ERBα and REV-ERBβ) and PER:CRY (complex formed by PER2 and
CRY1). The proteins are respectively denoted B, D, R and P throughout this paper.
The ordinary differential equations of this model are:

Ḃ = VRh
−(R)− γBBP,

Ḋ = VBB − γDD, (1)

Ṙ = VDD − γRR,

Ṗ = VDD − γBBP,

where h−(R) =
k4
Rr

k4
Rr+R4 , VR = 44.4%.h−1, kRr = 80.1%, VB = 0.142%.h−1, VD =

19%.h−1, γR = 0.241h−1, γD = 0.156h−1, γB = 2.58h−1. VB , VD and VR stand for
synthesis rates and γB , γD and γR for degradation rates. This set of parameters comes
from the original model, (see Table 2 in [26]) and is used throughout this paper, unless
stated otherwise.

2.2 A segmentation of the circadian time into eight stages

We suggest a segmentation of the circadian time into stages based on the repression
of CLOCK:BMAL1 by REV-ERB (represented by the term VRh

−(R) in model 1)
and on the dynamics between CLOCK:BMAL1 and PER:CRY (represented by the
mutual repression term γBBP in model 1). We define the different regions by setting
thresholds on the variables B, P and R in order to segment the circadian cycle and
characterize the clock protein dynamics. Throughout this paper, we will use “stage
i” to designate the time interval spent by a circadian cycle in “region i” of the state
space. By abuse of notation, we will use “stage i” to designate both the time interval
and (as a label of) “region i”.

Let’s define Plow, a low level of reference for the variable P , Bhigh and Phigh, high
levels of reference for the variables B and P and Rint an intermediate level of reference
for R. The state space can be partitioned using all the different combinations of the
thresholds: as there are two thresholds for P , one for R and one for B, the state space
can be divided into twelve stages (see Table 1).
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Ṗ
=

V
D
D

>
0

V
D
D

>
0

V
D
D

−
V
R

<
0

V
D
D

−
γ
B
B
P
lo

w
<

0

S
ta
g
e

5
6

7
8

S
ta
g
e

R
<

R
in

t
R

<
R

in
t

R
>

R
in

t
R

>
R

in
t

co
n
d
it
io
n
s

B
>

B
h
ig

h
B

>
B

h
ig

h
B

>
B

h
ig

h
B

>
B

h
ig

h

P
lo

w
<

P
<

P
h
ig

h
P

<
P
lo

w
P

<
P
lo

w
P
lo

w
<

P
<

P
h
ig

h

C
L
O
C
K
:B

M
A
L
1

↗
↗

↘
↘

Ḃ
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However, as the circadian clock performs one cycle, the phase opposition prop-
erty between CLOCK:BMAL1 and PER:CRY has to be respected [31], refuting some
stages. This property implies that the oscillator cannot have B < Bhigh and P < Plow

simultaneously (eliminating stages 9 and 10) nor B > Bhigh and P > Phigh simulta-
neously (eliminating stages 11 and 12). The circadian cycle is then described by the
first eight stages of Table 1.

2.3 Temporal sequence of the stages

The circadian clock shows a specific order of protein peaks: BMAL1 then REV-ERB,
then PER:CRY. This property suggests a specific order among stages followed by
any circadian oscillator. Notice that the probability that two variables cross their
thresholds simultaneously is very small. So, from one stage to another, we assume that
only one variable crosses a threshold. It’s therefore not possible to pass from stage 1
to 3 for example. We define the peak of B such that B is above its threshold Bhigh,
corresponding to stages 5, 6, 7 and 8. The peak of R follows the peak of B and is
defined such that R is above Rint which is represented by stages 7, 8, 1 and 2. Finally,
the peak of P follows the peak of R and corresponds to stages 2 and 3, as P > Phigh.
A cycle that respects physiological properties (such as the order of protein peaks)
should not enter twice a same stage in a same cycle and should follow an ascending and
periodic order of stages: 1-2-3-4-5-6-7-8-1. This sequence of transitions is represented
by green arrows in Figure 1. Each stage is represented by a vertex in the space (R,
B, P ) and is defined via the thresholds Rint, Bhigh, Plow and Phigh. The unlabelled
vertices correspond to the discarded stages.

P

P
high

P
low

 

3

R

BB
high

R
int

 

4

 

5
 

6

 

2
 

1
7

8

Fig. 1 Ideal physiological order of stages followed by an oscillator as it performs one cycle

3 A piecewise affine clock model

Inspired by the piecewise affine model suggested before by our group [32] and based
on the repression of CLOCK:BMAL1 by PER:CRY, on the dynamics between REV-
ERB and CLOCK:BMAL1 and on the circadian time decomposition into eight stages,
we simplified the nonlinear continuous model of Almeida et al. (1) into a piecewise
affine one, in order to characterize the dynamic of the circadian clock cycle. A scheme
of the regulatory interaction network of the continuous model, including the negative
feedback loops and the nonlinear mechanisms, is shown in Figure 2.
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The goal is to provide an analytic treatment of the circadian system, based on the
three fundamental variables that are also represented in practically every model of the
circadian clock, to obtain:

• analytic solutions in each region of the piecewise affine system, leading to sufficient
conditions for a periodic trajectory of the circadian system;

• a characterization of the cycle dynamics in terms of four fundamental threshold
parameters;

• robustness of the circadian cycle, in terms of threshold parameters.

REV-ERBDBPCRYPER

CLOCK BMAL1

 g  h- 

Fig. 2 Network representation of the circadian clock ODE model. The two negative feedback loops
are highlighted by blue and red backgrounds. Activating interactions are shown by green arrows,
and are described by linear terms in the model. CLOCK:BMAL1 inhibition by REV:ERB is repre-
sented by a red flat-head arrow and is described, in the ODE model, by the decreasing Hill function

h−(R) =
k4
Rr

k4
Rr

+R4 . Complex formation of PER:CRY and CLOCK:BMAL1 is shown by blue arrows

and is described, in the model, by a mass action term, g(B,P ) = γBBP . The piecewise affine model
is based on this ODE model and has the same basic structure. The nonlinear functions f and g are
approximated by affine terms whose definitions depend on the position of variables relative to their
thresholds. See Table 1 for more details.

3.1 Model design

The first nonlinear term of system (1) is the decreasing Hill function VRh
−(R) which

can be simplified by a step function [17]. A straightforward choice for the threshold is
Rint, which gives:

VRh
−(R) ≈

{
0, R > Rint

VR, R < Rint

(2)

The second nonlinear term is the function from the complex formation of PER:CRY
and CLOCK:BMAL1, g(B,P )=γBBP . To linearize this polynomial term, we rely on
the dynamic of the ODE model (see [32]) and propose a solution in which this term
is either defined null, linear or constant according to the stages. The same thresholds
as for the cycle segmentation are used: Bhigh, Plow and Phigh.

First, B remains close to its level Bhigh (whilst R and P are large) implying that
the two terms VRh

−(R) and γBBP have similar values and add up to 0 in the B
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equation, leading to the following simplification:

γBBP ≈


0, R > Rint, B < Bhigh, Plow < P < Phigh

0, R > Rint, B < Bhigh, P > Phigh

VR, R < Rint, B < Bhigh, P > Phigh

(3)

These 3 equations correspond to the first three stages.
Next, we consider the dynamics between B and P . P decreases and tends to reach

its low level Plow. B increases and so the degradation term is mostly dominated by
B. The degradation term of B and P during stages 4 and 5 is then defined by:

γBBP ≈

{
γBBPlow, R < Rint, B < Bhigh, Plow < P < Phigh

γBBPlow, R < Rint, B > Bhigh, Plow < P < Phigh

(4)

At the end of stage 5, P reaches its low level Plow and B becomes close to a reference
state Beq, corresponding to the equilibrium between its production and degradation

terms, Ḃ = VR − γBBeqPlow = 0 which gives:

Beq =
VR

γBPlow
, (5)

a relationship between Beq and Plow.
Then, during stage 6, B reaches its maximum and P its minimum. We define the

degradation term by a constant δ such that during stage 6 there is a time t where
Ṗ (t) = 0:

γBBP ≈
{
γBδ, R < Rint, B > Bhigh, P < Plow (6)

The value δ stands for a product between a maximal B and a minimal P .
During stages 7 and 8, B decreases and tends to reach Beq while P increases and

crosses the threshold Plow. The degradation term is here described by:

γBBP ≈

{
γBBeqPlow, R > Rint, B > Bhigh, P < Plow

γBBeqPlow, R > Rint, B > Bhigh, Plow < P < Phigh

(7)

Finally, we define the time at which the cycle exits stage i by ti and the duration
of each stage by the difference of exiting times:

di = ti − ti−1 with i = 1..8 and t0 = t8. (8)

We set the numerical starting point of the cycle as a point reached by the oscillator at
the end of stage 5 (so t5 = 0), when P crosses its threshold, so P0 = Plow. The other
initial conditions are based on the balance between production and degradation rates
at the end of stage 6:

P0 = Plow, Bhigh < B0 ≤ Beq, D0 =
VBB0

γD
, R0 =

VDVBB0

γDγR
(9)
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In what follows, the initial condition for the PWA system is a point at the boundary
between stages 5 and 6, of the form (B0, D0, R0, P0).

With these definitions, an analytical solution can be given for the dynamics of the
model in each stage. Notice that these conditions and equations ensure positivity of B,
D and R, provided that the threshold parameters are well-defined (see Section 3.2).
As P reaches its minimum during stage 6, δ should also be defined carefully to ensure
the positivity of P (in more detail below in Section 3.3). Table 1 summarizes the defi-
nitions of each stage, as well as the equations for each variable and the function trends
expected to obtain oscillations and a consistent model, that is to say an oscillator that
goes through all the stages in the specified physiological order.

3.2 Circadian cycle as a sequence of transitions between stages

The following assumptions and propositions summarize sufficient conditions on the
values of the threshold parameters, of the scaling parameter δ and on the stage dura-
tions, to ensure that the analytical solutions represent an oscillator following the cycle
transitions in the specified physiological order for one period (as defined in Section 2.3).
Sketches of proofs are given in Appendix A.

First, some assumptions among the parameters are as follows:
A.1 VR

3γB
< δ < VR

γB
,

A.2 Bhigh < Beq = VR

γBPlow
,

A.3 Plow > 2VR

3δγB−VR

VDVB

γDγB
,

A.4 VDVBVR

γDγRγBPlow
< Rint <

VR

γR

Considering the requirements for the system to be in stage 6, Assumption A.1 ensures
that B increases and remains above Bhigh and Assumption A.4 ensures the initial
starting point R0 lower than Rint. In addition to A.1 - A.4, the following assumptions
on variables D(t) and R(t) are also needed. They are all verified by numerical results
(see in Appendix Figure A1):

A.5
VBBeq

γD
< Dmin,

A.6 D(ti) <
VR

VD
, i ∈ {2, 3, 4, 5},

A.7 VR

VD
< D(t6) < D(t7),

A.8 Rint < R(t7) < R(t8)

The next propositions state the conditions needed at each step for transition from
one stage to the next. At the starting point of the cycle, only the values of Plow and
δ are set. Then, at each step, the idea is to define the value of a specific threshold
by choosing the duration di = ti − ti−1 of stage i, such that the desired threshold is
crossed first. The duration di of stage i also depends on the duration di−1 of stage
i − 1. Since the starting point of the system occurs at the end of stage 5 (at t5),

9



the duration of stage 6 is the first one to be chosen. However, this duration directly
impacts the good progress of the cycle, since a too short or too long duration blocks
the beginning of the oscillations (see conditions of Proposition 1). Duration of stage 8
also requires precise conditions on the time intervals, to guarantee that the expected
variable crosses its given threshold. Thus, for stages 6 and 8 (Propositions 1 and 2)
an interval for the stage durations is provided, say di ∈ (di,min, di,max), to allow for
flexibility in the threshold parameter choices.

Note that the transitions between two consecutive stages from stage 2 to 6
(see Proposition 4) follow naturally from the Assumptions A.1 - A.8 and from
Propositions 1 to 3 and require no further conditions.

After one period, that is to say when the system reaches again the boundary
between stage 5 and stage 6, B(t5) ≈ B0 and P (t5) = P0. Indeed, during stage 5,
B (> Bhigh) increases and converges quickly to Beq, with Beq ≥ B0 > Bhigh and
the end of stage 5 corresponds to the moment where P equals Plow (= P0)). Then,
although D(t5) and R(t5) are observed bigger than D0 and R0, the good progress of
the cycles of the next periods through the stages is not impacted.

Proposition 1 (Stage 6 to 7 to 8). Consider the PWA system as defined in Table 1.
Assume that the following inequalities hold:

1(i) d6min < d6 such that D(t5 + d6min) > VR

VD
and ∃ d7 < (VR−δγB)d6min

VR
such

that P (t5 + d6min + d7) = Plow;

1(ii) d6 < d6max such that P (t5 + d6max) < Plow and R(t5 + d6max) <
VR

γR
.

Then, starting at the boundary between stages 5 and 6 with initial condition (B0, D0,
R0, P0) defined in (9) the system will successively cross stage 6 and enter stage 7 and
cross stage 7 and enter stage 8.

Condition 1(i) ensures that P increases at the end of stage 6 and that d6 is long
enough to ensure a solution of the equation P (t6 + d7) = Plow, with d7 such that
P crosses Plow, before B crosses Bhigh. Condition 1(ii) ensures that R crosses Rint

before P crosses Plow, and such that Rint <
VR

γR
. These conditions guarantee transi-

tions from stage 6 to 7 and from stage 7 to 8.

Proposition 2 (Stage 8 to 1). Consider the PWA system as defined in Table 1. In
addition to the inequalities of Proposition 1, assume that the following inequalities
hold:

2(i) d8min < d8 < d8max with d8min =
B(t7)−

VR
γBPlow

VR
and d8max = B(t7)

VR
;

2(ii) P (t7 + d8max) ≪ Phigh.
Then, starting from stage 8, with initial conditions B0 = B(t7), D0 = D(t7),
R0 = R(t7), P0 = P (t7) = Plow, the system will cross stage 8 and enter stage 1.
Conditions 2(i) and 2(ii) ensure that B crosses Bhigh (such that 0 < Bhigh < Beq)
before P crosses Phigh, which guarantees transition from stage 8 to 1.
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Proposition 3 (Stage 1 to 2). Consider the PWA system as defined in Table 1. In
addition to the inequalities of Propositions 1 and 2, assume that the following inequality
holds:

3(i) Phigh < P (t8 + d1max), such that R(t8 + d1max) = Rint.
Then, starting from stage 1, with initial conditions B0 = B(t8) = Bhigh, D0 = D(t8),
R0 = R(t8), P0 = P (t8), the system will cross stage 1 and enter stage 2.
Condition 3(i) ensures that P crosses Phigh before R crosses Rint, which guarantees
transition from stage 1 to 2.

Proposition 4 (Stage 2 to 6). Consider the PWA system as defined in Table 1.
Assume that inequalities of Propositions 1-3 hold. Then, starting from stage 2, with
initial conditions B0 = B(t1), D0 = D(t1), R0 = R(t1), P0 = P (t1) = Phigh, the
system will cross stage 2 and successively evolve through stages 3, 4, 5 and finally 6,
in this order.

3.3 Algorithm for numerical estimation of circadian cycle
threshold parameters

We use the conditions defined before in the propositions and propose Algorithm 1
to estimate the five-dimensional parameter space, composed of the four thresholds
Bhigh, Rint, Plow and Phigh and the scaling factor δ, such that any oscillator of the
PWA model follows the specified physiological stage order for several periods. Both
definitions and conditions of the system ensure positivity of B, D, and R but positivity
of P has to be verified, so we add a condition in this sense (see steps 3 and 4 of
Algorithm 1).

As input of Algorithm 1, we take the same parameters as the ones of the continu-
ous model 1, except for γR. This parameter has a big impact on the period and allows
us to adjust the period around 24h for a better coherence with biological clocks (the
initial value of γR gave periods around 33h).
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Algorithm 1. Numerical estimation of the threshold parameters.
0. Input: VR = 44.4, kRr = 80.1, VB = 0.142, VD = 19, γR = 0.7, γD = 0.156, γB = 2.58.

1. Pick δ such that VR
3γB

< δ < VR
γB

.

2. Pick Plow such that Plow > 2VR
3δγB−VR

VDVB
γDγB

, and define Beq = VR
γBPlow

, B0 = Beq,

D0 =
VBBeq

γD
, R0 =

VDVBBeq

γDγR
, P0 = Plow.

3. Compute tPmin
solving D(tPmin

) = δγB

VD
, with initial conditions of 2.

4. Check:
• if P (tPmin

) > 0 go to 5.
• if P (tPmin

) < 0 go back to 1 and pick another δ.

5. Pick d6 such that d6min < d6 < d6max with d6min such that D(t5 + d6min) >
VR
VD

and

d6max such that P (t5 + d6max) < Plow and R(t5 + d6max) <
VR
γR

6. Compute d7 such that P (t6 + d7) = Plow.

7. Check:

• if d7 <
(VR−δγB)d6

VR
go to 8.

• if there is no solution or if d7 >
(VR−δγB)d6

VR
go back to 5 and pick another d6.

8. Compute Rint such that Rint = R(t5 + d6).

9. Pick d8 such that
B(t7)−

VR
γBPlow

VR
< d8 <

B(t7)
VR

.

10. Compute Bhigh such that B(t7 + d8) = Bhigh.

11. Compute d1max such that R(t8 + d1max) = Rint

12. Compute Phigh such that P (t8) + padd = Phigh, with padd = 200 initially.

13. Check:
• if P (t8 + d1max) > Phigh go to 14.
• if P (t8 + d1max) < Phigh go back to 12 with padd = padd − 10.

14. Check if the oscillator goes through all the eight stages in the specified physiological
order for several periods and save the threshold parameter values and δ.

15. Output: set of parameters describing a circadian cycle: δ, Plow, Rint, Bhigh, Phigh.

4 Continuous and PWA models share qualitative
properties

Since our goal is to faithfully approximate the dynamics of the continuous model (1)
by piecewise affine equations, we theoretically show that the PWA model reproduces
the same qualitative properties as the continuous model, that we next illustrate with
numerical simulations. The five-dimensional parameter space of the PWA model is
estimated by computing with Algorithm 1 around 2000 combinations of values for the
thresholds and δ (see Section 5.1 for more details). The results show that the PWA
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model is robust in the sense that the oscillators built from the set of threshold parame-
ters generated by Algorithm 1 all have the same qualitative behaviour, independently
of the exact values of the thresholds.

4.1 Theoretical robustness of qualitative properties

The construction of the PWA system provides a robust order of protein peaks and of
maximal values and ensures the phase opposition between B and P for any oscillator
whose threshold parameters were generated by Algorithm 1. Indeed Algorithm 1 sat-
isfies a set of constraints on the threshold parameter values which ensures the progress
of the oscillator through the eight stages in the expected order, which itself guaran-
tees the peak-ordering and phase opposition properties, as shown in Proposition 5.

Proposition 5. Under Assumptions A.1-A.8 and Propositions 1 to 4, the following
hold:

(a) The maximum of B is reached at the boundary between stages 6 and 7 and B
is at its minimum during stages 1, 2 and 3;
(b) The maximum of P is reached at the boundary between stages 2 and 3 and
the minimum of P is reached during stage 6;
(c) The maximum of R is reached in between the maxima of B and P .

Proof: (a) The variable B peaks when B is above its threshold Bhigh, which is
during stages 5 to 8. Especially, since during stages 5 and 6B strictly increases (in stage
5, B increases and tends to Beq and in stage 6 Ḃ = VR − γBδ > 0 with Assumption

A.1) and during stages 7 and 8 B strictly decreases (Ḃ = −VR < 0), B reaches its
maximal value at the boundary between stages 6 and 7 for any set of parameters
returned by Algorithm 1. During stages 1, 2 and 3, B is constant and equal to its
minimal value, which is just below Bhigh.

(b) P peaks when P is above Phigh, which is during stages 2 and 3. The boundary
between these two stages marks the point where P reaches its maximal value, with
P strictly increasing during stage 2 (Ṗ = VDD > 0) and P strictly decreasing during
stage 3 (Ṗ = VDD−VR < 0 with Assumption A.6). P reaches its lowest values during
stages 6 and 7, when P is below Plow. The system definition and Proposition 1 induce
P minimal value during stage 6.

(c) R peaks when R is above its threshold, which is during stages 7, 8, 1 and 2.
Since the maximal value of B (transition from stages 6 and 7) corresponds to the
time where R increases above Rint, and since the maximal value of P (transition from
stages 2 and 3) corresponds to the time where R decreases below Rint, the maximal
value of R necessarily occurs between the maximal values of B and P (and is in fact
always observed during stage 1).

For any set of parameters returned by Algorithm 1, (a) and (b) demonstrate the
phase opposition between B and P with B (resp. P ) reaching its maximal value in the
same stage as the minimal value of P (resp. B), and (c) shows the peak order B, R, P .
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4.2 Cycle oscillations and phase portraits

From a numerical point of view, Figure 3(a) shows an example of an oscillator whose
threshold values have been computed by Algorithm 1 while Figure 3(b) represents the
oscillations of the continuous model. As might be expected, the maximal and minimal
amplitudes of each protein vary between the two model formalisms, with the maximal
value of P increasing by a factor of 1.5 and the maximal value R decreasing by about
the same factor, while maximal value of B remains similar (for the PWA oscillator
compared to the continuous one). In any case, the order among amplitudes and the
phase opposition between B and P are maintained, as are the forms of the curves and
their dynamics.
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CLOCK:BMAL1Stages DBP PER:CRYREV-ERB

Fig. 3 Oscillations and cycle segmentation for (a) one oscillator generated by Algorithm 1 with
δ =12.55, Bhigh =0.10, Rint=45.21, Plow=71.28 and Phigh=290.55 and (b) for the continuous model
(1).

These observations are confirmed by Figure 4, which shows the phase portraits of
the continuous model with those of several oscillators from the PWA model, with dif-
ferent values of threshold parameters and of the scaling factor δ. Figure 4(a) highlights
the phase opposition property, recovered by both models: when B reaches its high-
est values, P is low and inversely. Similarly, Figure 4(b) shows the similar dynamic
between P and R, shared by all the oscillators: successively, R increases and reaches
its highest values while P is at its intermediate ones, and then, as R decreases, P
increases, peaks and decreases. From these figures, it is clear that the simplified PWA
model closely represents the dynamical properties of the continuous model over a large
range of its threshold parameters.

5 Cycle robustness: quantitative analysis and
critical elements

We first introduce the following elements which will next serve as comparative analysis
tools between all the oscillators generated by Algorithm 1. Letting X ∈ {B,R, P},
define:
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model (dashed black line) and for the PWA model (with different threshold parameters and one color
stands for one δ value). Curves are normalized between 0 and 1 for comparison.

1. AXϕ
: threshold value (called Xϕ) relative to the amplitude (Xmax−Xmin) of the

corresponding variable (X):

AXϕ
=

Xϕ −Xmin

Xmax −Xmin
· 100 (10)

2. τXϕ
: time in hours that each variable (X) remains above its corresponding

threshold (Xϕ) over one period (T ), corresponding also to protein peak duration:

τXϕ
=

tend − tin
T

, such that X(t) > Xϕ,∀t ∈ [tin, tend] (11)

5.1 Five-dimensional parameter space of the PWA model

The parameter space of the PWA model is composed of the four threshold parame-
ters: Bhigh, Rint, Plow and Phigh, and of one scaling factor: δ. Figure 5 represents this
five-dimensional parameter space as estimated by Algorithm 1 but, for a clearer com-
parison, the figure represents the relative amplitudes for each threshold parameter,
as defined in equation (10). Thus, relatively to the amplitude of their corresponding
variables, the values of Rint, Plow and Phigh allowing the expected oscillations can
be taken in a large range of concentrations. Notice nevertheless that ARint

and APlow

increase or decrease directly with δ while the relation between δ and APhigh
is less

clear. The way the system is constructed implies that the minimal value of B will
always be close to Bhigh and thus ABhigh

is small.
Although the region of threshold parameter values is wide, the periods (called T)

of the oscillations of the PWA model remain in a small interval and are consistent
with a circadian clock period, from 22 to 26h.

5.2 Duration of protein peaks

Figure 6(a) represents the peak durations, as defined in equation (11), for each set
of thresholds computed by Algorithm 1. Notice first that the duration of REV-ERB
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Fig. 5 (a),(b) Sets of threshold values computed by Algorithm 1 ensuring a correct representation
of circadian clocks oscillations relatively to the amplitude of their corresponding variable (in %),
and their associated period (T). One hexagon corresponds to one oscillator and its associated set of
threshold and scaling parameters. One color for each δ.
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Fig. 6 Duration of protein peaks (a) and stage durations (b) in hours. One hexagon corresponds to
one set of parameters. One color for each δ.

peak is inversely proportional to CLOCK:BMAL1 peak and to the scaling factor δ,
highlighting one negative feedback loops characterizing circadian clocks: the more
REV-ERB is expressed, the more CLOCK:BMAL1 is repressed, and inversely. The
relation between τBhigh

and τPhigh
is less clear since the value of Phigh is assessed last

by Algorithm 1 and does not have a major influence on the correct progress of the
cycle through the stages.
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Then, the peak of B lasts between 7h and 10h and the peak of P lasts between 10h
and 14h. The peak of R shows a larger range of durations, from 7 to 13h. Although no
constraint about protein peak durations were given, the durations of B and P peaks
reasonably correspond to biological results [31]. Concerning R, the oscillators with
the biggest δ (δ ≳ 11) have a shorter peak of R (between 7 and 10h) and seem more
consistent with biological results [33].

5.3 Duration of stages and relation to daylight/night intervals

As the circadian oscillator performs one cycle, it goes through well-marked steps
highlighted by our stages. Figure 7 represents minimal and maximal values of stage
durations after one period according to conditions from Propositions 1 to 4, while
Figure 6(b) represent stage durations for the set of oscillators generated by Algorithm
1, after several periods.

As explained in Section 3.2, the duration of stage 6 is the first one to be defined,
and directly depends on the values of δ and Plow. It varies from 1 to 3h and increases
with δ and Plow. Then, stages 7 and 8 are very short and last less than one hour.
Duration of stages 1 and 2 evolve inversely with δ. During stage 1, which lasts from 2.5
to 5h, P progressively increases, repressing B while R is still expressed. Stage 2 lasts
from 3.5 to 8h and a short stage 2 represents an earlier degradation of R compared
to a long stage 2. Concerning stage 3, its duration seems to evolve similarly to δ, and
goes from 3 to 8h. Stage 4 is short and lasts less than half an hour. Finally, duration
of stage 5 is around 6 hours and stays consistent from an oscillator to another.

Next, we draw a closer comparison between our analytic stages and the experimen-
tal Circadian Time phases as described by Takahashi et al. [31] in the mouse liver and
establish a correspondence with daylight and night hours. At Circadian Time CT0, the
circadian cycle is in a poised state, until transcriptional activity of CLOCK:BMAL1
is derepressed. Then, until CT12, (subjective daylight hours), both CLOCK:BMAL1
transcriptional activity and REV-ERB expression are observed, with a respective peak
at approximately CT8 [31] and CT8-10 [31, 33–35]. Subjective night hours extend
from CT12 to CT24 and are characterized by high levels of PER:CRY.

In our segmentation, stage 4 corresponds to a weak expression of all the variables
and the cycle enters stage 4 when P decreases under its threshold Phigh, while R and
B are low and leaves stage 4 when B increases above Bhigh. From a biological point
of view, as soon as PER and CRY are degraded, CLOCK:BMAL1 is derepressed and
starts its transcriptional activity. A short stage 4 could represent a fast derepression
of B as soon as the levels of P are low and can be associated at the end of the poised
state [31].

Then, since the peak of B is represented by stages 5 to 8 (when B > Bhigh) and
since we observed the maximal value of R during stage 1, we assume that daylight
hours are represented by stages 5 to 1, with stage 1 marking the transition between
daylight and night hours, around CT12. The peak of P occurs during stages 2 and 3
(when P > Phigh), and these two stages can be associated to night hours.
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Fig. 7 (a) Minimal and maximal possible duration of stage 6 over δ according to conditions of
Proposition 1 (lines in blue tones for d6min and in orange tones for d6max ). In each color, a darker line
corresponds to a bigger Plow. (b) Durations of stage 7 over δ according to the minimal (lines in blue
tones) and maximal (lines in orange tones) duration of stage 6. (c) Minimal and maximal possible
duration of stage 8 over δ according to conditions of Proposition 2 (dashed lines for d8min and solid
lines for d8max ) and according to the minimal and maximal duration of stage 6. (d-h) Durations of
stages 1 to 5 are computed based on the minimal and maximal durations of stages 6 and 8. The lines
use the same color and style code as for (a-c).

We can thus associate night hours to stages 2 and 3 and daylight hours to stages
4, 5, 6, 7, 8 and 1. In our model, night hours last around 10 to 14h and daylight hours
are in a narrower interval, and are around 11-12h.
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5.4 Two critical dynamical elements

Our analysis of stage durations and transitions identifies two critical moments during
the circadian cycle: the first is the estimation of the duration of stage 6, where the
system is defined by the scaling factor δ and which allows for Plow and Rint assessment,
and the second is the evaluation of the duration of stage 8, which allows for Bhigh and
Phigh assessment.

In our piecewise affine model, the scaling factor δ represents the product of the
concentrations of PER:CRY and CLOCK:BMAL1, when they are in phase opposition
with PER:CRY at its minimum value. In fact, during this interval, it is difficult to
approximate the dynamics of the degradation term γBBP by a linear term in the
continuous model. The best (and simpler) option was to consider that the product is
constant and equal to some δ for a suitable time interval. And, indeed, this value defines
a kind of scaling of the cycle that directly impacts the first threshold parameters to
be defined (Plow and Rint), varying them in direct proportion to δ (see Figure 5(a)).

It is interesting to note that, as the factor δ ranges over a large interval, it sets
the scale for the other threshold parameters while keeping the total period close to 24
hours (in an interval between 22 and 26 hours).

Another critical point in the cycle appears at stage 8, when extra conditions on
the crossing times of the variables B and P are needed to guarantee the correct
order of transition (see Proposition 2). In fact, stage 8 marks the last moments before
CLOCK:BMAL1 repression and is of short duration (less than 1h). P is at an inter-
mediate value and increasing, and should effectively repress B before P itself crosses
Phigh (since P and B cannot be simultaneously above their highest thresholds). The
variable R should wait for B repression before it also starts decreasing, which is ver-
ified by Assumption A.8. In other words, the dynamics at stage 8 potentially allows
for different outcomes, so time control needs to be more strict in order to rule out the
undesirable outcomes.

Globally, a well-defined duration of the stages 6-8 allows for a good assessment of
all the threshold parameters, ensuring the expected progress of the oscillator through
the stages and sustained oscillations.

6 Discussion

Our study is one of the first to propose a more precise, analytical and quantita-
tive characterization of circadian clock cycle dynamics based on the approximation
of a continuous model [26] including mass-action terms by piecewise affine (PWA)
equations. In this perspective, we proposed a segmentation of the circadian cycle into
stages and to focus on a periodic sequence of transitions, consistent with qualitative
properties of circadian cycles. Our main contribution is to propose a method to iden-
tify the parameter space of real threshold values leading to oscillators with the same
periodic dynamics, defined by the specific sequence of transitions. This sequence is
ensured by a set of inequality constraints on the threshold parameters and on some
stage durations established from analytical solutions. An Algorithm satisfying all these
conditions allows to explore, according to the scaling value δ, the region of threshold
values. Our analysis shows that the PWA model allows for a large range of threshold
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parameters that exhibit the same dynamical behaviour, with a periodic orbit of about
24h.

An interesting feature of this model is the multiple roles of the thresholds. First
used to divide the state space into well-defined regions, their real values turn out to
be important to guarantee a periodic trajectory for the system. They finally allow to
assess and show robustness of our system. Another interesting feature is the factor δ
representing the product of the minimal concentration of PER:CRY and maximal of
CLOCK:BMAL1. This parameter provides a scaling for the PWA model such that,
for each value of δ, a corresponding set of threshold parameters exists, that generates
an ordered circadian cycle with period around 24 hours. In this way, a large range of
allowed concentrations is established for the PWA, supporting high robustness of the
system based on an inverse proportionality between PER:CRY and CLOCK:BMAL1,
B = δ

γBP , as the maximal concentration of CLOCK:BMAL1 becomes high, the min-
imum of PER:CRY should become smaller. Thus, among other quantitative points,
our analysis indicates that the two concentrations minimal PER:CRY and maximal
CLOCK:BMAL1 play a large role in setting the oscillatory regime of the cycle, and
guarantee its robustness over a wide range of threshold values.

Our characterization of the circadian cycle involved the approximation of a mass-
action term into piecewise affine equations, which was made possible by the knowledge
of qualitative properties of the ODE model we approximated. An open direction
remains the development of a general method for approximating mass-action terms
through piecewise affine expressions in a suitable partition of the state space. Never-
theless, our analysis of the term γBBP may be useful for application in other clock
models, where a similar term represents protein sequestering through binding. Some
examples include models for Neurospora crassa [36], where other proteins play roles
similar to BMAL1, PER and CRY.
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Appendix A Illustration of Assumptions A.6-A.8
and proofs of Propositions 1 to 4

8 9 10 11 12 13 14

δ

0.5

0.75

1.0

1.25

1.5

1.75

2.0

VR
VD

D
(t
2
)

8 9 10 11 12 13 14

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

D
(t
3
)

8 9 10 11 12 13 14

0.25

0.5

0.75

1.0

1.25

1.5

1.75

2.0

D
(t
5
)

8 9 10 11 12 13 14

3.0

3.5

4.0

4.5

5.0

D
(t
6
)

8 9 10 11 12 13 14

3.0

3.5

4.0

4.5

5.0

5.5

D
(t
7)

8 9 10 11 12 13 14
0

10

20

30

40

R
(t
8
)-
R
(t
7
)

a) b)

c) d)

e) f)

VR
VD

VR
VD

VR
VD

VR
VD

δ

δ δ

δδ

Fig. A1 Numerical simulations justifying Assumptions A.6-A.8 (see Section 3.2). (a-e) Values of

D(ti), i ∈ {2, 3, 5, 6, 7} to compare with VR
VD

: illustration of Assumptions A.6 and A.7. (f) R(t8)−R(t7)

to compare with 0: illustration of Assumption A.8. Each ending stage value depends on δ, Plow (a
darker line corresponds to a bigger Plow), the duration of stage 6 (lines in blue tones for d6min and
in orange tones for d6max ) and the duration of stage 8 (dashed lines for d8min and solid lines for
d8max ). See caption of Figure 7 for more details.

Proof of Proposition 1: Consider the system during stage 6, that is to say for
t5 < t < t6. Since Ḃ = VR − γBδ, Assumption A.1 implies that B(t) strictly increases,
so B(t) remains higher than Bhigh.
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Then, we can show that in [t5,t6], D(t) increases. Indeed, Ḋ(t) = VBB(t)−γDD(t).
Replacing B(t) and D(t) by their analytical solutions during stage 6, with initial
conditions Bhigh < B0 ≤ Beq and D0 = VBB0

γD
,

Ḋ(t) =
VB(VR − δγB)

γD
(1− e−γD(t−t5)).

Assumption A.1 gives VB(VR−δγB)
γD

> 0. Since t− t5 > 0, Ḋ(t) > 0 and D(t) increases.

Conditions A.1 and A.3 imply a decrease of P (t) at the beginning of stage 6:

Ṗ (t5) = VDD(t5)− δγB ≤ VDVBVR

γDγBPlow
− δγB < 0.

Next, set σ = VDVB(VR−γBδ)
γD

and notice that,

Ṙ(t) = VDD(t)−γRR(t) =
σ

γD − γR

(
e−γD(t−t5) − e−γR(t−t5)

)
+

σ

γR

(
1− e−γR(t−t5)

)
which satisfies Ṙ(t5) > 0, so Ṙ(t) > 0 for some time interval after entering stage 6. To
guarantee that the system evolves to stage 7, it is necessary that P (t) increases at the
end of stage 6 and that R(t) reaches Rint before P (t) reaches Plow. This is assured
by conditions 1(i) and 1(ii), which provide appropriate conditions on the duration
d6 = t6 − t5. The system enters stage 7.

Consider the system during stage 7, that is t6 < t < t7. Since Ḃ(t) = −VR in this
interval, B(t) decreases according to the expression B(t) = B(t6) − VR(t − t6). By
Assumption A.7, D(t6) >

VR

VD
. At the beginning of stage 7 we have R(t6) = Rint <

VR

γR

(by Assumption A.4). Then, for an interval t ∈ (t6, t6 + o7), with o7 > 0 both R(t)
and P (t) increase:

Ṙ(t) = VDD(t)− γRR(t) > VD
VR

VD
− γRRint > 0

Ṗ (t) = VDD(t)− VR ≈ VDD(t6)− VR > 0.

Now, we want to find a duration d7 such that P (t) crosses its threshold Plow

before B(t) decreases to Bhigh. To achieve this, set P (t6 + d7) = Plow and B(t6 +
d7) = B(t6)− VRd7 > Bhigh. Substituting for B(t6) obtains:

B(t5) + (VR − γBδ)d6 − VRd7 > Bhigh ⇔ VRd7 < B(t5)−Bhigh + (VR − γBδ)d6

This last inequality holds by condition 1(i) and since B(t5) = B0 > Bhigh, ensuring
that the system enters stage 8.

Proof of Proposition 2: Consider the system during stage 8, that is t7 < t <
t8. Since Ḃ(t) = −VR in this interval, B(t) decreases according to the expression
B(t) = B(t7)− VR(t− t7). By Assumption A.8, R(t8) > Rint. By Assumption A.7,
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D(t7) >
VR

VD
, which implies Ṗ (t7) = VDD(t7)−VR > 0 and P (t) increases in an interval

[t7, t7 + o8), with o7 > 0.
By condition 2(ii), P (t7 + d8max) < Phigh. To check that B is the first variable to

cross its threshold, compute the values of B(t) at the instants t7+d8min and t7+d8max,
as given by equalities 2(i):

B(t7 + d8min) = B(t7)− VR(t7 + d8min − t7) = B(t7)− (B(t7)−Beq) = Beq,

B(t7 + d8max) = B(t7)− VR(t7 + d8max − t7) = B(t7)−B(t7) = 0,

and recall that Beq > Bhigh. So, since B(t) is continuous, there exists some d8 with
d8min < d8 < d8max, such that B(t7 + d8) = Bhigh. The system enters stage 1.

Proof of Proposition 3: Consider the system during stage 1, that is t8 < t < t1.
During this interval, Ḃ(t) = 0, implying that B(t) remains constant. Since B(t) enters
stage 1 as B(t) crosses below Bhigh, we can write B(t) ≈ Bhigh.

The equation for P is Ṗ (t) = VDD(t) > 0 implying that P (t) increases. Then,
condition 3(i) implies that P (t) will cross its threshold Phigh before R(t) crosses Rint.
The system enters stage 2.

Proof of Proposition 4: In [t8,t3], Ḃ(t) = 0 implies that B(t) is constant, with
B(t) ≈ Bhigh. While B(t) is constant, D(t) satisfies Ḋ(t) = VBBhigh − γDD(t) and
has the form:

D(t) =

(
D(t8)−

VBBhigh

γD

)
e−γD(t−t8) +

VBBhigh

γD
. (A1)

Since Dmin >
VBBeq

γD
>

VBBhigh

γD
(by Assumption A.5), D(t) decreases and approaches

Dmin as t increases. Eventually, R(t) also decreases for t < t3 and approaches

R(t3) =
VDVBBhigh

γRγD
.

In [t1, t2], Ṗ (t) = VDD(t) > 0 implies that P (t) increases and will remain above
Phigh. Therefore, the next variable to cross a threshold is R(t), it decreases and will
reach R(t2) = Rint, so the system enters stage 3.

In [t2, t3], D(t2) <
VR

VD
by Assumption A.6, and D(t) is still decreasing. Now this

implies Ṗ = VDD − VR < 0, so P decreases until it crosses Phigh = P (t3), and the
system enters stage 4.

Consider next the system during stage 4, that is to say t3 < t < t4. As the oscillator
enters stage 4, B(t3) ≲ Bhigh, R(t3) ≪ Rint and P (t3) = Phigh.

Since Bhigh < Beq = VR

γBPlow
(see Assumption A.2), in an interval [t3, t3 + o4],

with o4 > 0, B(t) will increase since Ḃ(t) = VR − γBB(t)Plow > 0. But, notice that
B(t3) ≲ Bhigh at the end of stage 3, which implies that B(t3 + ε) > Bhigh for any
ε > 0. Therefore, B(t) will cross its threshold with B(t4) = Bhigh, the system enters
stage 5, and d4 = t4 − t3 is necessarily a very short interval.
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Finally, consider the system during stage 5, that is to say t4 < t < t5. For
t8 < t < t4 we had B(t) ≈ Bhigh so, at the beginning of stage 5, B satisfies

Ḃ(t) = VR − γBB(t)Plow > 0. B(t) increases and converges quickly to Beq. Thus, we
can write B(t) ≈ Beq during stage 5.

On some interval [t4, t4+o5), with o5 > 0 both D(t) and R(t) continue to decrease,
as indicated by equation (A1). Namely R(t) < Rint.

In stage 5, P (t) is governed by the equation Ṗ (t) = VDD(t) − γBB(t)Plow. By
Assumption A.6, during stage 4 and 5, D(t) < VR

VD
. Ṗ (t) ≈ VDD(t) − γBBeqPlow ≈

VDD(t)− VR < 0 P decreases until it crosses Plow at P (t5), defining the entry of the
system into stage 6.

Appendix B Transitions from refuted stages

In this Section, to complete our analysis, we provide a piecewise affine model for
the biologically refuted stages 9-12 and draw the possible transitions. These stages
are characterized by combinations of values for the complexes CLOCK:BMAL1 and
PER:CRY that are contradictory to the phase opposition typically observed between
those two complexes, since the variables B and P are both below their minimal thresh-
olds in stages 9 and 10, and both above their maximal thresholds in stages 11 and
12. In this context, the equations governing the dynamics in stages 9-12 do not play
a role in the algorithm which prevents transitions into these stages. However, it may
be conceived that the system might be temporarily shifted to one of these stages, as
in the case of a perturbation. To treat these cases, we next show that all trajectories
starting in either of these four stages eventually leave them to enter one of the healthy
cycle stages.

To define the PWA model in stages 9-12, we need the corresponding approximation
of the nonlinear inactivation term γBBP . For low B and low P (stages 9 and 10), the
inactivation term is quite small and we use the same approximations as in the adjacent
stages with low B and intermediate P (stages 4 and 1, respectively). For high B and
P (stages 11 and 12), the inactivation term should be significant and we assume that
it is proportional to P while B is fixed at large value:

γBBP ≈


γBBPlow, R < Rint, B < Bhigh, P < Plow

0, R > Rint, B < Bhigh, P < Plow

γBBeqP, R < Rint, B > Bhigh, P > Phigh

γBBeqP, R > Rint, B > Bhigh, P > Phigh.

(B2)

We can now check that any trajectory starting in one of these four stages eventually
enters a stage in the healthy circadian cycle.

Proposition 6. Consider the PWA system as defined in Tables 1 and B1, and sat-
isfying Assumptions A.1 to A.4. Then, a trajectory starting in one of stages 9 - 12
eventually crosses to another stage, as follows:

• Stage 9 to 4, 6 or 10;
• Stage 10 to 1 or 9;
• Stage 11 to 3, 5, or 12;
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• Stage 12 to 2, 8, or 11.
Proof: In stage 9, Ḃ = VR−γBBPlow and Ṗ = VDD−γBBPlow. From Assumption

A.2, B < Bhigh < VR

γBPlow
, so Ḃ > 0 and B will increase until it crosses its threshold.

Since no specific information is available on D or R, we assume that, depending on
their initial conditions, trajectories starting in 9 may also cross either the Plow or
Rint thresholds first. That is from 9 to 4, 6, or 10.

In stage 10, Ḃ = 0 and Ṗ = VDD so B remains constant while P increases and
trajectories will eventually cross the Plow threshold. Depending on the B value, some
trajectories may cross Rint first. From 10 to 1 or 9.

We analyse stages 11 and 12 as a single state: the equations for P , D and R are
the same, while that for B is Ḃ = VR − γBBeqP in stage 11 and Ḃ = −γBBeqP
in stage 12. Since Phigh > VR

γBBeq
= Plow (by definition of Beq), it follows that

Ḃ < VR − γBBeqPhigh strictly decreases on stages 11 and 12. However, we do not
have enough knowledge of D and R to establish a specific order in crossing for all tra-
jectories. Since trajectories may depend on initial condition, we consider that either
of the three thresholds can be crossed from 11 and 12, enabling three transitions from
each of these stages (from 11 to 3, 5 or 12 and from 12 to 2, 8 or 11).

Note that this set of transitions theoretically allows the existence of (artificial)
cycles of the form 9 ⇆ 10 or 11 ⇆ 12. But we next show that such cycles are unstable,
in the sense that the trajectories always leave them after finite time.

Proposition 7. Consider the PWA system as defined in Tables 1 and B1, and satis-
fying Assumptions A.1 to A.4. Any cycles of the form 9 ⇆ 10 or 11 ⇆ 12 are unstable,
that is, any trajectory leaves in finite time.

Proof: An infinite cycle of the form 9 ⇆ 10 may happen, if Rint is always the
first threshold to be crossed for all times. On crossing between these two stages,
the equations of R and D remain unchanged. Hence, by continuity of solutions, the
derivative of R doesn’t immediately change sign upon switching, and we may assume
that R(t) continues increasing (for transition 9 → 10) or decreasing (for transition
10 → 9) for some time ϵ after the switch. Suppose that there exists a sequence of Rint

crossings between 9 and 10, starting by the transition 9 → 10: t9,0 < t10,1 < t9,2 <
t10,3 < · · · < ti,j < · · · , tending to infinity, and where ti,j denotes the exit time of
stage i at the jth transition between stages 9 and 10 (i = 9, 10 and j tends to infinity).
To get a contradiction and show that trajectories must leave such a cycle after a finite
time interval, note that B stays constant in 10 but increases and tends to VR

γBPlow
in 9

according to:

B(t) = e−γBPlow(t−t0)(B(t0)−
VR

γBPlow
) +

VR

γBPlow

with Bhigh < VR

γBPlow
(from Assumption A.2).
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We have that: B(t9,0) = B(t10,1) < B(t9,2) = B(t10,3) < · · · < B(t9,j) =
B(t10,j+1) < Bhigh < B(t9,j+2) <

VR

γBPlow
. Therefore, there exists a finite instant t9,∗

such that: B(t9,∗) > Bhigh.
At t9,∗, Bhigh is the first threshold to be crossed, and hence the trajectory crosses

from 9 to 6, breaking the artificial cycle and entering the healthy cycle. Notice that
since in stage 10 P increases (Ṗ = VDD > 0), it may be possible that P increases
above its threshold Plow before B crosses Bhigh but, since we don’t know the tendency
of P in stage 9, it is easier to guarantee the exit from stages 9-10 with the crossing of
Bhigh by B.

Similarly, suppose that a trajectory follows a cycle of the form 11 ⇆ 12, with a
sequence of switches at times t11,0 < t12,1 < t11,2 < t12,3 < · · · < ti,j < · · · , with
i = 11, 12 and j → ∞. Recall that B > Bhigh and P > Phigh in stages 11 and 12,

recall also Beq = VR

γBPlow
and note that B equation satisfies Ḃ = VR−γBBeqP < VR−

γBBeqPhigh < 0 in stage 11 and Ḃ = −γBBeqP < −γBBeqPhigh < VR−γBBeqPhigh <
0 in stage 12.

Therefore, B decreases along both stages 11 and 12, with B(t) < B(t0) +
VR − γBBeqPhigh)t. Thus, starting from the transition 11 → 12 we have that:
B(t11,0) > B(t12,1) > B(t11,3) > · · · > Bhigh > B(ti,j). There is a finite instant

t.,∗ =
Bhigh−B(t0)

(VR−γBBeqPhigh)
at which the trajectory will cross to either stage 2 or 3, break-

ing the 11 ⇆ 12 cycle and entering the healthy cycle. Similarly to the first part of
the proof, notice that determining the tendency of P in stages 11 and 12 is difficult,
and P may cross Phigh first but to guarantee the exit from stages 11-12, it is easier
to consider the crossing of Bhigh by B.

The state transition graph corresponding to the PWA system in Table 1 together
with the equations for stages 9-12 in Table B1, is shown in Figure B2. The healthy
cycle is represented by green arrows and each transition from the next stage is ensured
by Assumptions A.1-A.8, by conditions from Propositions 1-4 and provided that the
cycle started at the point (B0, D0, R0, P0) at the boundary between stages 5 and 6
(as defined by Eq. 9). The arrows in black are the transitions eliminated by Propo-
sitions 1-4. The gray arrows represent transitions from the biologically refuted stages
and assume no hypothesis on the initial conditions of trajectories. Therefore, a tra-
jectory evolving from one of the refuted stages 9-12 into one of the healthy cycle may
not immediately follow the healthy cycle sequence of transitions. However, simulations
show that trajectories do follow this sequence after a finite time.
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