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Figure 1: Volumetric SfT versus thin-shell SfT. Existing methods are thin-shell SfT. They use deformation constraints on the

object’s surface. For instance, [4] uses isometric constraints on the object’s visible (front) surface and reconstructs the object

partially, while [16] uses isometric constraints on the object’s whole closed outer surface and reconstructs it entirely. Volu-

metric SfT uses deformation constraints on the object’s surface and interior. This greatly improves reconstruction accuracy

and facilitates reconstruction of the object’s interior. In this example, the thin-shell SfT methods [4, 16] reach a 3D error of

20 mm and 13 mm respectively on the visible surface, while the proposed volumetric SfT method reaches a 3D error of 7

mm. It reconstructs the non-visible (back) surface, for which no visual data is available, with a 3D error of 17 mm.

Abstract

The objective of Shape-from-Template (SfT) is to infer

an object’s shape from a single image and a 3D object tem-

plate. Existing methods are called thin-shell SfT as they

represent the object by its outer surface. This may be an

open surface for thin objects such as a piece of paper or a

closed surface for thicker objects such as a ball. We pro-

pose volumetric SfT, which specifically handles objects of

the latter kind. Volumetric SfT uses the object’s full volume

to express the deformation constraints and reconstructs the

object’s surface and interior deformation. This is a chal-

lenging problem because for opaque objects, only a part of

the outer surface is visible in the image. Inspired by mesh-

editing techniques, we use an As-Rigid-As-Possible (ARAP)

deformation model that softly imposes local rigidity. We

formalise ARAP isometric SfT as a constrained variational

optimisation problem which we solve using iterative opti-

misation. We present strategies to find an initial solution

based on thin-shell SfT and volume propagation. Experi-

ments with synthetic and real data show that our method

has a typical maximum relative error of 5% in reconstruct-

ing the deformation of an entire object, including its back

and interior for which no visual data is available.

1. Introduction

Reconstructing 3D objects from images is an impor-

tant problem in Computer Vision. It is solved in the case

of rigid environments with rigid Structure-from-Motion

(SfM). However, rigid SfM fails for deformable objects

such as a piece of paper, cloth or the human body. Non-

rigid reconstruction is an important current challenge with

a wide spectrum of applications in medical imaging and

the entertainment industry to name a few. Non-rigid recon-

struction encompasses at least two different problems: Non-

Rigid Structure-from-Motion (NRSfM) [2, 9, 10], which

uses a set of images of a deforming object, and Shape-from-

Template (SfT) [21, 4, 16] which uses a single image and a

textured 3D template of the object which may be matched

to the image. The objective in SfT is to obtain the object’s

deformed shape in the camera’s coordinate frame using a

deformation constraint formulated from the object’s phys-

ical material. Existing SfT methods use deformation con-

straints on the object’s outer surface, whose thickness is

considered infinitesimal. We thus call them thin-shell SfT

methods. Thin-shell SfT is very well adapted to thin ob-

jects, such as a piece of paper or a balloon, whose outer

surfaces may be well approximated by an open or a closed

surface. However, while thin-shell SfT handles thicker ob-

jects such as the woggle of figure 1 or a foam ball, it does
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not fully exploit the strong constraints induced by the ob-

ject’s non-empty interior.

We bring SfT one step further by introducing volumet-

ric SfT, defined as an SfT method which uses a deforma-

tion constraint on the object’s outer surface and interior.

An example is shown in figure 1. Volumetric SfT recon-

structs the object’s interior deformation, which is not re-

constructed by thin-shell SfT, and reconstructs the object’s

outer surface more accurately than thin-shell SfT thanks

to the stronger deformation constraint it uses. Volumetric

SfT is challenging as only the front part of the object’s sur-

face is visible in the image: the object’s back surface and

interior have to be inferred with no direct visual observa-

tions. We propose to instantiate volumetric SfT using the

As-Rigid-As-Possible (ARAP) deformation model, which

has been used extremely successfully in Computer Graph-

ics [23, 27]. The ARAP model maximises local rigid-

ity while penalising stretching, sheering and compression.

More specifically, ARAP has been widely used to perform

mesh editing of animated characters [28, 29] because the

resulting deformations locally preserve the object’s struc-

ture.

Contrary to thin-shell SfT, volumetric SfT is largely un-

explored. The closest method to volumetric SfT is per-

haps [26], where SfT has been combined with silhouette-

based reconstruction. The template is first reconstructed

from a reference image using a silhouette-based method

inspired from [13]. This method reconstructs objects that

have a plane of symmetry parallel to the image plane and

does not infer concavities, which is also a limitation of

most silhouette-based methods [13, 14]. The template is

then deformed using a data term based on silhouette, area

and orthographic reprojection constraints. The deforma-

tion model extends thin-shell isometry by placing virtual

nodes in the object’s interior, with the objective of preserv-

ing the object’s volume. The method has a flip ambiguity

which cannot be resolved automatically, owing to the or-

thographic camera model. In contrast, we solve volumetric

SfT without restricting the topology of the object and us-

ing the perspective camera. By using ARAP, our method

preserves the object’s interior structure while jointly recon-

structing the deformation of the object’s full outer surface

and interior, as illustrated in figure 2. The scope of SfT is

to handle objects such as a piece of paper or cloth whose

shape is unpredictable and thus lives in a large space. This

is different from methods whose aim is to reconstruct an

object-class such as the set of faces, whose shape space can

be approximated well by a smaller dimensional statistical

model [8, 24, 25].

Technically, we bring two main contributions. First,

we show that, unlike thin-shell isometry, imposing volume

isometry exactly reduces to global rigidity. This motivates

the use of ARAP, which maximises rigidity locally, thus

3D template with a   
virtual cylinder inside

Reconstructed deformation of the cylinder 
for two deformations of the object

Figure 2: As opposed to thin-shell SfT, volumetric SfT re-

constructs the object’s interior deformation. In this example

using the data from figure 1, a virtual cylinder is placed in-

side the woggle’s template. It is then deformed using the

deformation reconstructed by volumetric SfT to aid visu-

alization of the object’s reconstructed interior deformation.

The second deformation is the one shown in figure 1.

preserving the object’s structure, while complying with the

reprojection constraints.

ARAP volumetric SfT involves solving a non-convex

constrained variational optimisation problem. We discretise

the object’s volume and relax the constraints to convert the

variational problem into an unconstrained non-linear least-

squares optimisation problem. This problem can then be

solved with standard numerical solvers such as Levenberg-

Marquardt. Second, we contribute with two heuristic ini-

tialisation methods. These methods use isometric thin-shell

SfT and propagate the result through the object’s volume.

Experimental results on synthetic and real data show that

volumetric SfT improves accuracy to a large extent com-

pared to state-of-the-art thin-shell SfT methods.

2. Previous Work

Almost all existing SfT methods are thin-shell SfT:

they use a thin-shell deformation model with physical con-

straints, such as isometry [21, 22, 4], conformity (angle pre-

serving) [4] and linear elasticity [15, 11]. Thin-shell isom-

etry and conformity are formulated with geometric, thick-

less surfaces. Thin-shell isometry has been the most stud-

ied model and leads to a well-posed and analytically solv-

able SfT problem [4]. Interestingly, linear elasticity as used

in [15, 11] follows the plate theory. It requires the surface

model to include thickness, which must however be ‘small’

so that out-of-plane object deformations may be neglected.

In continuum mechanics, this means that the thickness is

at least ten times smaller than the object’s largest dimen-

sion. These methods are thus thin-shell SfT. They require
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one to provide the Young modulus of the object’s material

and, more importantly, boundary conditions expressed as a

set of known 3D point coordinates, which may restrict their

applicability. We propose volumetric SfT which, in con-

trast to thin-shell SfT, recovers the deformation of the ob-

ject’s outer surface and interior, does not restrict the object’s

shape to follow the plate theory, does not require knowing

the Young modulus and does not need boundary conditions.

A related goal was pursued in [26] where a silhouette-based

method was combined with SfT. However, as discussed in

the introduction in detail, this method requires stronger im-

age cues, including silhouette and point correspondences,

and recovers two-way ambiguous shape solutions. In con-

trast, volumetric SfT only requires point correspondences

and produces a unique solution.

3. Modelling

Notation. We use Greek letters for functions and bold let-

ters for vectors and matrices. Scalars are in regular italics.

We use calligraphic letters for sets, and |A| for the size of

set A. We use the operator Jϕ for the Jacobian of ϕ.

Geometric model. Figure 3 shows a general diagram

of volumetric SfT extending an existing thin-shell frame-

work [4, 7]. We denote the 3D template as the volume

VT ⊂ R
3, the unknown deformed volume as VS ⊂ R

3,

and their respective outer surfaces as ∂VT and ∂VS . We

denote as S ⊂ ∂VS the deformed object’s visible surface

part, i.e. the part which is directly observed in the input

image I ⊂ R
2, and T ⊂ ∂VT the corresponding part in

the template surface. We use a 2D surface parameterisa-

tion space F , called the flattened template. This allows us

to represent the template’s outer surface ∂VT by a known

invertible embedding ∆ ∈ C2(F ,R3). In practice, F and

∆ may be computed from ∂VT by any flattening method;

we use conformal flattening [3]. Using F , the unknown

deformed surface S may be represented by an embedding

ϕ ∈ C2(F ,R3). The deformation between VT and VS is

the unknown mapping ψ ∈ C2(VT ,R
3).

The task in volumetric SfT is not only to compute the

volume VS of the deformed object, but to find a full volume

deformation function ψ ∈ C2(VT ,R
3), matching points be-

tween the object’s template and deformed states. This is a

challenging task, as most of VS is not directly observed in

the image: assuming the object is opaque, the only visual in-

formation comes from the outer surface’s visible part. The

surface embedding ϕ may of course be directly recovered

from the volume deformation ψ computed by volumetric

SfT as ϕ = ψ ◦ ∆. Depending on the formulation, thin-

shell SfT computes either the surface embedding ϕ [4] or a

3D surface deformation, which is a restriction of ψ to ∂VT
[16]. The full volume deformation ψ cannot be directly re-

covered in either case. Our initialisation strategy for vol-

umetric SfT involves inferring ψ from ϕ through two new

Flattened 
Template

Deformed Volume

Image

Surface Embedding

Warp

Template Volume

F
la

tt
e

n
in

g

Volume Deformation

known

unknown

known

known

Image 
Projection

unknown

Figure 3: General diagram of volumetric SfT. The visible

surface part is shown in blue.

solutions which we name volume interpolation.

Finally, we define as η ∈ C2(F ,R2) the registration

warp between F and the image. The warp η may be es-

timated automatically from point correspondences [19, 18].

Estimating the warp directly gives two pieces of informa-

tion. First, it identifies the subset G ⊂ F corresponding to

the surface’s visible part in the flattened template. Second,

it establishes the reprojection constraint on ϕ and ψ as:

η = Π ◦ ϕ = Π ◦ ψ ◦∆, (1)

where Π denotes perspective projection in coordinates nor-

malised with respect to the camera’s intrinsics Π(Q) =
1
Qz

(Qx Qy)
⊤ with Q = (QxQy Qz)

⊤.

Deformation model. Thin-shell isometry allows SfT to re-

solve the visible surface part uniquely [4] and to extrapo-

late the non-visible surface part [16]. Applied to an object’s

interior volume, isometry yields the following differential

constraint on the mapping ψ:

J⊤
ψJψ = I3×3. (2)

According to the Mazur-Ulam theorem [20], equation (2)

constrains ψ to be a rigid transformation. So as to model

deformations, one must relax equation (2). One possibility

is the so-called ARAP heuristic [23], which means search-

ing for ψ such that

∥

∥

∥
J⊤
ψJψ − I3×3

∥

∥

∥

2

p
is minimised over VT .

We propose to combine ARAP with the reprojection con-

straint to preserve the object’s local structure while driving

its deformation to comply with the image constraints.

4. Volumetric SfT

We present ARAP volumetric SfT, which finds the defor-

mation ψ that transforms the volume VT into the unknown

volume VS whose surface is partially observed in I.
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4.1. Formulation and NonConvex Solution

Problem formulation. Combining the reprojection con-

straint (1) with ARAP leads to the following variational

problem:

min
ψ
ρ

∫

VT

∥
∥
∥J

⊤

ψJψ − I

∥
∥
∥
2

p
dVT

︸ ︷︷ ︸

ARAP penalty

+(1 − ρ)

∫

G

‖η − Π ◦ ψ ◦ ∆‖
2

2
dG

︸ ︷︷ ︸

Reprojection

. (3)

The reprojection constraint is convex, but the ARAP penalty

is not. Problem (3) is thus difficult to solve, as it involves in-

tegrals and equality constraints. Local analytical solutions,

as the ones proposed in [4] for thin-shell SfT, are not ap-

plicable at non-visible points since they do not have a data

term. This is because the reprojection constraint applies on

the visible surface part S only, corresponding to the subset

G of the flattened template.

Discretisation and optimisation. We evenly discretise the

template volume VT with a set of 3D points PVT . We define

the deformation functional ǫd[ψ] :

ǫd[ψ] =
1

|PVT |

∑

P∈PVT

∥

∥J⊤
ψ (P)Jψ(P)− I3×3

∥

∥

2

p
. (4)

We write ǫr[ψ] over a regular discretisation PG of G:

ǫr[ψ] =
1

|PG |

∑

p∈PG

‖η(p)−Π(ψ(∆(p)))‖22. (5)

Finally, we optimise the following unconstrained non-linear

least-squares problem:

ψ = argmin
ψ
ρǫd[ψ] + (1− ρ)ǫr[ψ] 0 < ρ < 1, (6)

where ρ is a weight that balances the ARAP penalty and the

reprojection constraint.

In order to find a numerical solution to problem (6),

we use a parametric representation of the solution ψ̃ ∈
C2(VT ×R

n,R3), where n is the dimension of the parame-

ter space. Let L ∈ R
n be the parameter vector and Q ∈ VT ,

we have ψ̃(Q,L) ∈ VS . We have multiple choices for ψ̃

such as the popular linear basis expansion representations

(the NURBS [17], the Thin-Plate Splines (TPS) [5], the B-

Spline [6], tetrahedron mesh displacements, etc.). We use

the TPS representation.

Problem (6) is then optimised using Levenberg-

Marquardt. Iterative methods can be highly accurate but be-

cause problem (6) is non-convex due to the ARAP penalty,

the iterations may converge to a non-global minimum.

Therefore, it is important to provide an initial solution close

to the global minimum.

4.2. Convex Initialisation

Our initialisation strategy finds an approximate solution

ψ0 to problem (3) in two main steps.

1) Isometric thin-shell SfT. We first compute the em-

bedding ϕ that represents the visible surface S . We approx-

imate the deformation from T to S by thin-shell isometry,

giving the following problem reformulation:

Find ϕ s.t.

{

J⊤
ϕJϕ = J⊤

∆J∆

η = Π ◦ ψ ◦∆
on G, (7)

where Jϕ is a 3 × 2 matrix. Problem (7) has an analytical

solution given in [4].

2) Volume interpolation. We use ϕ to infer ψ represent-

ing the full volume deformation. We propose two strategies.

i) Global Smoothness (GS). Our first strategy is based

on the assumption that the deformation of the volume is

smooth. We can, therefore, formulate the problem as find-

ing the smoothest volumetric deformation such that the de-

formation at the surface agrees with the solution from thin-

shell SfT. We write the discretised transport error:

ǫe[ψ] =
1

|PG |

∑

p∈PG

‖ϕ(p)− ψ(∆(p))‖22. (8)

Because ϕ was computed in step 1), this is a linear least-

squares cost in ψ. We then compute ψ0 as the solution of

the following system:

ψ0 = argmin
ψ
αǫe[ψ] + (1− α)ǫs[ψ] 0 < α < 1, (9)

where ǫs =
∫∫

‖d
2ψ
dp2 ‖

2
2dp is a smoothing term called the

bending energy and α is a weight balancing the transport

error and smoothness. As in the non-convex solution, we

use a TPS representation of ψ. The bending energy is then a

quadratic function of the TPS parameters [5], making prob-

lem (9) linear least-squares, thus convex and easily solv-

able. GS is a natural way of initialising ψ from ϕ, but as

smoothness is the only constraint it uses to propagate the

visible surface deformation, it may spoil the object’s inner

local structure by causing local shear, shrinking and exten-

sion. Our second volume interpolation method addresses

this issue.

ii) Local Rigidity (LR). This method is based on the idea

that from thin-shell SfT, we can compute a local rigid trans-

form at every point on the visible surface to propagate shape

through the object’s volume, in an ARAP manner. The key

idea is to initialise ψ on the surface’s visible part from ϕ,

and use local rigidity to iteratively ‘complete’ ψ. This is

implemented by iteratively drawing local rigid transforma-

tions to locally extrapolate the deformation. Concretely, we

first find correspondences to all points in PVT (which may

be seen as a discretisation of ψ) and then fit a continuous

parametric representation of ψ. We write the corresponding

point of P ∈ PVT as Q(P).
We first use Delaunay triangulation of the point set PVT

to define a tetrahedral mesh. A given tetrahedron has four
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vertices, which we denote as Pn1
, Pn2

, Pn3
and Pn4

.

Drawing a local rigid transformation is achieved by se-

Planar  vertices of a 
tetrahedron (known)

Out-of-Plane  vertices of 
a tetrahedron (known)

Out-of-Plane  vertices of 
a tetrahedron (unknown)

Figure 4: Volume interpolation using Local Rigidity.

lecting a tetrahedron which has three vertices, say the first

three ones, lying in the ‘completed’ domain of ψ, for which

Qni = Q(Pni) exist for i = 1, . . . , 3. At the early itera-

tions, this means that these three vertices will have to be in

the surface’s visible part, and that Qni = ϕ(∆−1(Pni)),
i = 1, . . . , 3. From these three correspondences {Pni ↔
Qni}, i = 1, . . . , 3, we fit a rigid transform Ω in the least-

squares sense using [12]. Completing ψ by local rigidity is

then simply done by setting Q(Pn4
) = Ω(Pn4

). At each

iteration, we cycle through all tetrahedra with three vertices

lying in the completed domain of ψ. This obviously causes

the fourth vertex of many tetrahedra to receive multiple pre-

dictions, as several tetrahedra may share it as their single

unknown vertex. In order to approximate ARAP as best

possible, we keep the prediction for which Ω was fitted with

the lowest error. We stop the iterations when all points in

PVT have been given a correspondence.

We finally define the discretised transport error:

ǫ′e[ψ] =
1

|PVT |

∑

P∈PVT

‖Q(P)− ψ(P)‖22, (10)

and obtain ψ0 as the solution of the following optimisation

problem:

ψ0 = argmin
ψ
αǫ′e[ψ] + (1− α)ǫs[ψ] 0 < α < 1, (11)

where α is a weight balancing the transport error and

smoothness. Equation (11) is linear least-squares, thus con-

vex and easily solved.

5. Experimental Results

We report experiments with synthetic data and three sets

of real data with different geometries and materials: a wog-

gle, a sponge and an arm. The refinement solution (3) is

tested using the L1 and L2 norms, and is then called L1-

refinement and L2-refinement respectively. The two ini-

tialisation solutions are called GS-initialisation and LR-

initialisation. We also compare with two isometric thin-

shell SfT methods [4, 16], which were discussed as being
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Figure 5: Synthetic data experiments.The graphs on the left

show the 3D volume error and the ones on the right show

the error on the 3D visible surface.

representative of the state-of-the-art in the introduction. We

use a constant weight ρ = 0.005 in the refinement prob-

lem (6) (for both L1-refinement and L2-refinement) and a

constant weight α = 0.0001 in both equation (9) for GS-

initialisation and equation (11) for LR-initialisation. We

noticed that the algorithms were not very sensitive to these

values up to an order of magnitude.

Experiments with synthetic data.

We test our method for volumetric SfT in various condi-

tions of noise, deformation and correspondences. We simu-

late a box of dimension 20× 20× 10 cm3 and deform it by

bending each of its layers along a vertical rule with some

varying bending angle. The higher the bending angle, the

more important the box’s deformation. If the bending an-

gle is zero, the box is undeformed. We then create a virtual

image of the box by projecting it using a perspective cam-

era and add noise in pixels. The default bending angle is 10

degrees.

The results are shown in figure 5, and are averages over

multiple runs for each geometric configuration. The three

graphs on the left column of figure 5 show the 3D volume

error in mm, computed as the RMSE (Root Mean Square

Error) over a dense grid of points sampled over the ob-

ject’s outer surface and interior. The results on these graphs

thus only concern the proposed volumetric SfT methods.

We observe that the refinement methods all do significantly

better than all initialisation methods. LR-initialisation does

consistently and substantially better than GS-initialisation.

This is explained by the fact that LR-initialisation follows
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Figure 6: Results on the woggle. The green boxes show the best performing algorithm for each deformation level.
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the ARAP methodology for local propagation, while GS-

initialisation simply uses smoothness, which is a weaker

constraint. L2-refinement does generally better than L1-

refinement, except when the deformation increases beyond

a certain point. All methods degrade with the amount of

deformation and noise. Increasing the number of points im-

proves the refinement methods but slightly degrades the ini-

tialisation methods. The three graphs on the right column

of figure 5 show the visible surface error in mm, computed

as the RMSE over a dense grid of points sampled over the

object’s visible surface. The same observations which we

made for the refinement methods on the 3D volume error

can be made, and the general trends also apply to the two

tested thin-shell SfT methods. Importantly, we observe that

volumetric SfT does consistently and in several case sub-

stantially better than thin-shell SfT, even if the measured

error concerns only the visible surface part, which is theo-

retically handled well by both types of methods. This means

that the extra constraints used in volumetric SfT compared

to thin-shell SfT have a very positive influence on this part

of the reconstruction too.

Experiments with real data.

We evaluate the performance of the methods with three

real-world objects captured across a range of deformed

states.

Test data and ground truth acquisition. The three ob-

jects are a foam tube called a woggle (figure 6), a sponge

(figure 7) and a human arm (figure 8). We construct the 3D

template of each object using Photoscan, a dense rigid SfM

package [1]. To achieve this we photograph the objects in

a rigid pose from a number of different viewpoints in order

to capture the full 3D geometry (we use 47, 55 and 78 im-

ages for the three objects respectively). We apply a small

amount of manual post-processing to fill holes and make

the templates watertight. Then we physically apply forces

to the real objects to obtain a set of deformed shapes, which

we grouped into three levels: low, medium and high defor-

mation. For each level we compute the ground truth shape

by photographing again the deformed object from approxi-

mately 50 viewpoints and then running Photoscan. Because

Photoscan provides the reconstructed object and the pose

for each camera image, this provides us with the ground

truth shape of the object’s outer surface (including the back

surface) in camera coordinates.

Similarly to the vast majority of previous SfT methods,

ours takes as input point correspondences between the 3D

template and the input image. These can be computed au-

tomatically using for instance SIFT combined with outlier

detection [19, 18]. However, to keep the results indepen-

dent of the matching algorithm, we define correspondences

manually. For the three objects this gives between 50 to

350 correspondences per image. We click between 30 to 40
correspondences per image and create the others using TPS

interpolation [5].

Performance metrics and method comparison. We cal-

culate two types of 3D errors, Ef and Eb, both expressed

in mm, for the visible and non-visible surface parts respec-

tively, as the RMSE discrepancy between the true and re-

constructed 3D points at the correspondences. For each of

the three datasets, and each of the three deformation lev-

els, the top of each figure shows the template, the input im-

age and the ground truth shape. On each figure, the defor-

mation goes through low, medium and high level from left

to right. The rows then show the results of both initialisa-

tion methods and their use to initialisation both refinement

methods, giving a total of six combinations. The 3D errors

Ef , including the two thin-shell methods, are finally sum-

marised in table 1. We observe that LR-initialisation gives

consistently better results than GS-initialisation, which is in

accordance with our observations made on simulated data.

The difference becomes very important for stronger defor-

mations. This has a very small impact on the refinement

results, for both refinement methods. We can observe small

differences between the two refinement methods. How-

ever, refinement+LR converges faster than refinement+GS

because LR-initialisation is closer to the correct solution.

However, none of them is consistently better than the other,

even if for the woggle L2-refinement is slightly more ac-

curate, whereas for the sponge and arm L1-refinement is

slightly more accurate. The 3D error Ef for volumetric SfT

for both refinement methods is consistently smaller than for

thin-shell SfT. Depending on the dataset and the deforma-

tion level, it is between two and ten times smaller. This con-

firms our observations made on simulated data that, even if

the surface’s visible part is handled naturally by both volu-

metric and thin-shell SfT, the stronger volume deformation

constraints used by the former allows it to obtain a much

more accurate result.

The results shown in figures 6, 7 and 8 show that the re-

constructed object shape is visually close to the true shape.

This means that volumetric SfT could allow a user to handle

a physical object as a proxy interactor in applications such

as virtual shape editing. Quantitatively, the woggle, sponge

and arm are 37 cm, 15 cm and 20 cm long, respectively.

The relative highest error over the whole reconstructed vol-

ume deformation, for the highest level of deformation, is

thus smaller than 5%, 7% and 5% of the objects’ size, re-

spectively. Our unoptimised MATLAB implementation on

a standard desktop with 3.1GHz processor takes between

10 - 25 seconds for the refinement to converge. The com-

putation time for LR-initialisation is 3-5 seconds while for

GS-initialisation it is 1-2 seconds.

6. Conclusion and Future Work

We presented volumetric SfT, which reconstructs an ob-

ject from a single image and a 3D template, by using de-
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Figure 8: Results on the arm. The green boxes show the best performing algorithm for each deformation level.

Tube Data Sponge Data Arm Data

Input Image

Front

Back

Error Analysis

(in mm) Low Med. High Low Med. High Low Med. High

Thin-shell SfT [4] 11.8 16.0 19.8 8.0 15.3 31.8 18.5 20.1 33.4

Thin-shell SfT [16] 10.4 11.4 12.7 6.0 25.5 35.4 15.5 18.9 35.7

GS-initialisation 11.1 13.5 17.3 6.9 15.1 31.6 15 18.3 31.6

LR-initialisation 10.8 11.3 13.8 6.9 13.0 28.5 13.5 14.2 25.6

L1-refinement + GS 2.1 6.7 11.0 5.4 5.2 7.0 3.4 4.1 5.2

L1-refinement + LR 1.8 6.4 9.0 5.3 5.1 6.9 2.9 4.1 5.1

L2-refinement + GS 2.2 5.6 7.1 3.4 4.9 8.5 3.0 4.5 7.3

L2-refinement + LR 2.1 5.6 7.1 3.6 4.5 8.3 2.7 4.2 6.8

Table 1: (left) 3D visible surface error Ef for the datasets shown in figures 6, 7 and 8. (right) In practice, volumetric SfT

always converges with LR or GS-initialisation. But, in order to create conditions of failure, we initialised the refinement at

equation (11) very far from the optimal solution. Testing with the top right image led to the local minimum shown bottom

right.

formation constraints on the object’s outer surface and in-

terior. Previous thin-shell SfT methods use constraints on

the object’s outer surface only. Volumetric SfT is thus to be

used with non-empty and non-flat objects. We proposed an

implementation of volumetric SfT using ARAP. Our imple-

mentation uses non-convex refinement and has an initialisa-

tion procedure following an ARAP propagation of a surface

deformation obtained by thin-shell SfT through the object’s

volume. On method has significantly more accurate results

than state-of-the-art isometric thin-shell SfT, reducing the

error of an order of magnitude in some cases. ARAP volu-

metric SfT opens the way to doing Human-Computer Inter-

action using a proxy object such as a cushion and a simple

monocular webcam. Volumetric SfT may also be instanti-

ated with other deformation models, such as biomechanical

models.
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[3] A. Sheffer, B. Lévy, M. Mogilnitsky and A. Bogomyakov.

ABF++: Fast and Robust Angle Based Flattening. In SIG-

GRAPH, 2005.

[4] A. Bartoli, Y. Gérard, F. Chadebecq, and T. Collins. On

template-based reconstruction from a single view: Analyt-

ical solutions and proofs of well-posedness for developable,

isometric and conformal surfaces. In CVPR, 2012.

[5] F. L. Bookstein. Principal warps: Thin-plate splines and the

decomposition of deformations. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 11:567–585, 1989.

[6] Carl and D. Boor. A practical guide to splines., volume 27.

Springer-Verlag New York, 1978.

[7] A. Chhatkuli, D. Pizarro, and A. Bartoli. Stable Template-

Based Isometric 3D Reconstruction in All Imaging Condi-

tions by Linear Least-Squares. In CVPR, 2014.

[8] D. Anguelov and P. Srinivasan and D. Koller and S. Thrun

and J. Rodgers and J. Davis. Scape: shape completion

and animation of people. ACM Transactions on Graphics,

24:408–416, 2005.

[9] Y. Dai, H. Li, and M. He. A simple prior-free method

for non-rigid structure-from-motion factorization. In CVPR,

2012.

[10] R. Garg, A. Roussos, and L. Agapito. Dense variational re-

construction of non-rigid surfaces from monocular video. In

CVPR, 2013.

[11] N. Haouchine, J. Dequidt, M. Bergr, and S. Cotin. Single

view augmentation of 3D elastic objects. In ISMAR, 2014.

[12] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed-

form solution of absolute orientation using orthonormal

matrices. Journal of the Optical Society of America A,

5(7):1127–1135, July 1988.

[13] M. Oswald and E. Toppe and D. Cremers. Fast and glob-

ally optimal single view reconstruction of curved objects. In

CVPR, 2012.

[14] M. Prasad and A. Zisserman and A. Fitzgibbon. Single view

reconstruction of curved surfaces. In CVPR, 2006.

[15] A. Malti, R. Hartley, A. Bartoli, and J. Kim. Monocular

template-based 3D reconstruction of extensible surfaces with

local linear elasticity. In CVPR, 2013.

[16] J. Ostlund, T. Ngo, and P. Fua. Monocular 3D Shape Recov-

ery using Laplacian Meshes. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2013.

[17] L. Piegl. On NURBS: a survey. IEEE Computer Graphics

and Applications, 11:55–71, 1991.

[18] J. Pilet, V. Lepetit, and P. Fua. Real-time non-rigid surface

detection. In CVPR, 2005.

[19] D. Pizarro and A. Bartoli. Feature-based deformable surface

detection with self-occlusion reasoning. International Jour-

nal of Computer Vision, 97:54–70, 2012.
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