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Abstract—We study Isometric Non-Rigid Shape-from-Motion (Iso-NRSfM): given multiple intrinsically calibrated monocular images,
we want to reconstruct the time-varying 3D shape of a thin-shell object undergoing isometric deformations. We show that Iso-NRSfM is
solvable from local warps, the inter-image geometric transformations. We propose a new theoretical framework based on the
Riemmanian manifold to represent the unknown 3D surfaces as embeddings of the camera’s retinal plane. This allows us to use the
manifold’s metric tensor and Christoffel Symbol (CS) fields. These are expressed in terms of the first and second order derivatives of
the inverse-depth of the 3D surfaces, which are the unknowns for Iso-NRSfM. We prove that the metric tensor and the CS are related
across images by simple rules depending only on the warps. This forms a set of important theoretical results. We show that current
solvers cannot solve for the first and second order derivatives of the inverse-depth simultaneously. We thus propose an iterative
solution in two steps. 1) We solve for the first order derivatives assuming that the second order derivatives are known. We initialise the
second order derivatives to zero, which is an infinitesimal planarity assumption. We derive a system of two cubics in two variables for
each image pair. The sum-of-squares of these polynomials is independent of the number of images and can be solved globally, forming
a well-posed problem for N ≥ 3 images. 2) We solve for the second order derivatives by initialising the first order derivatives from the
previous step. We solve a linear system of 4N − 4 equations in three variables. We iterate until the first order derivatives converge. The
solution for the first order derivatives gives the surfaces’ normal fields which we integrate to recover the 3D surfaces. The proposed
method outperforms existing work in terms of accuracy and computation cost on synthetic and real datasets.

F

1 INTRODUCTION

One of the main problems in 3D computer vision is to
reconstruct an object’s 3D shape from multiple views. This
has been solved specifically for the case of rigid objects from
inter-image visual motion and is known as Structure-from-
Motion (SfM) (Hartley and Zisserman, 2000). However, SfM
breaks down for non-rigid objects. Two ways to exploit
visual motion for non-rigid object reconstruction have been
proposed: Shape-from-Template (SfT) (Bartoli et al., 2015;
Perriollat et al., 2011; Salzmann and Fua, 2011) and Non-
Rigid Shape-from-Motion (NRSfM) (Bregler et al., 2000;
Chhatkuli et al., 2014; Gotardo and Martinez, 2011; Taylor
et al., 2010; Torresani et al., 2008; Varol et al., 2009; Vicente
and Agapito, 2012). The latter is a direct extension of SfM to
the non-rigid case. The former, however, is not. Indeed, the
inputs of SfT are a single image and the object’s template,
and its output is the object’s deformed shape. The template
is a very strong object-specific prior as it includes a reference
shape, a texture map and a deformation model. Most SfT
methods use the thin-shell isometric deformation model.
This is because isometry is a very good approximation of
the deformations of many objects. The inputs to NRSfM are
multiple images and its output is the object’s 3D shape for
every image. In NRSfM, the rigidity constraint of SfM is
replaced by constraints on the object’s shape and defor-
mation model. NRSfM methods were proposed with the
low-rank shape basis (Gotardo and Martinez, 2011; Torre-
sani et al., 2008), the trajectory basis (Akhter et al., 2009),

. code available at http://igt.ip.uca.fr/∼ab/Research/index.html

isometry (Chhatkuli et al., 2014; Vicente and Agapito, 2012)
and elasticity (Agudo et al., 2015). Existing methods suffer
one or several limitations amongst solution ambiguities, low
accuracy, ill-posedness, inability to handle missing data and
high computation cost. NRSfM thus still exists as an open
research problem.

We present a solution to NRSfM using the thin-shell
isometric deformation model, that we hereinafter denote
as Iso-NRSfM. Iso-NRSfM and the other Isometric NRSfM
methods (Chhatkuli et al., 2014; Varol et al., 2009; Vicente
and Agapito, 2012) recover the 3D shape in camera coor-
dinates. This should not be seen as a limitation of these
physics-based methods. Camera motion cannot be decou-
pled from deformations in these methods. The composition
of camera motion (which is a global isometry) with an
isometric mapping results in an isometric mapping. This
means there is an infinite number of such decompositions.
If other priors were introduced, such as rigid boundary
conditions, a meaningful camera pose could be recovered.
Statistical-model based NRSfM methods such as (Gotardo
and Martinez, 2011; Torresani et al., 2008) recover shape
and camera motion. However they use the assumption that
the deformation follows a linear basis, which may yield
substantial modeling errors in practice.

We model Iso-NRSfM using concepts from Riemannian
geometry. Our framework relates the 3D shape to the inter-
image warps. These may be computed from keypoint corre-
spondences in several ways (Bookstein, 1989; Pizarro et al.,
2016). In practice we only need to know the warps locally,
though. More specifically, we need a point track and its
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local derivatives upto second order. We assume that they
are known. We model the object’s 3D shape for each image
as a Riemmanian manifold and deformations as isometric
mappings. We parametrise each manifold by embedding
the corresponding retinal plane. This allows us to reason on
advanced surface properties, namely the metric tensor and
the CS, directly in retinal coordinates, and in relationship
to the warps. These metric properties allow us to express
the differential properties of surfaces, such as length, which
are to be preserved under isometric deformations. We for-
mulate Iso-NRSfM locally with five variables which are
functions of the first and the second order derivatives of
the inverse-depth of the surface undergoing deformation.
We write the metric tensor and the CS in terms of these
variables. We prove two new theorems showing that for
isometric deformations, the metric tensor and the CS may be
transferred between views using only the local warps. This
limits the number of variables to only five for any number
N of views. In (Parashar et al., 2016), we solved Iso-NRSfM
by assuming that the surface can be approximated with
a plane in the infinitesimal neighbourhood of each point.
This is the assumption of infinitesimal planarity, which lets
us get rid of the surface’s second order derivatives in the
expression of the CS. This limits the number of variables
to only two. These variables correspond to the first order
derivatives of surface’s inverse depth. We obtained a system
of two cubics in these two variables that involves the first
and the second order derivatives of the warps. This system
holds at each point. In this paper, which is an extended
version of (Parashar et al., 2016), we also solve Iso-NRSfM
without the assumption of infinitesimal planarity. Our solu-
tion is obtained in two steps. 1) We solve for the first order
derivatives assuming that the second order derivatives are
known. Although this step seems similar to the solution
with infinitesimal planarity (where we solve for first or-
der derivatives assuming that the second order derivatives
vanish), it is a general solution to which the solution with
infinitesimal planarity is a special case. 2) We solve for the
second order derivatives with the first order derivatives
obtained in the previous step. We obtain a system of 4N − 4
linear equations in three variables which is solved using
Linear Least Squares (LLS). We iterate these two steps until
the surface inverse-depth’s first order derivatives converge.
The solution gives an estimate of the metric tensor field, and
thus of the surface’s normal field, in all views. The shape is
finally recovered by integrating the normal field for each
view.

The proposed method has the following features. 1) It
has a linear complexity in the number of views and number
of points. 2) It uses a well-posed point-wise solution from
N ≥ 3 views, thus covering the minimum data case. 3)
It naturally handles missing data created by occlusions.
4) It substantially outperforms existing methods in terms
of complexity and accuracy, as we experimentally verified
using synthetic and real datasets. 5) Since the method is
local, the normals of point correspondences on the surface
are calculated independently of each other. Hence our meth-
ods can handle non-smooth deformations as well. In such
cases, the object can be modeled as a collection of piecewise
smooth regions. Our method could also be implemented
with parallel programming easily.

Beyond the proposed method, we bring a new theo-
retical framework to NRSfM, allowing one to exploit the
surface’s metric tensor and CS in a simple and neat way.
These properties have not been studied before for NRSfM.
We discuss the state-of-the-art in section 2 and present
our problem modelling in section 3, our reconstruction
equations in section 4, our algorithms in section 5, our
experiments in section 6 and finally conclusions in section 7.

2 PREVIOUS WORK

Existing NRSfM methods can be divided into three main
categories: i) object-wise, ii) piece-wise and iii) point-wise
methods. i) solves for the entire object’s shape at once. This
group includes methods that assume a low-dimensional
space of deformed shapes (Dai et al., 2014; Gotardo and
Martinez, 2011; Hartley and Vidal, 2008; Torresani et al.,
2008). These methods have been extensively studied in the
recent years. They may use other constraints such as tempo-
ral smoothness (Gotardo and Martinez, 2011; Torresani et al.,
2008) or point trajectory constraints (Akhter et al., 2009).
They have been shown to be accurate for objects with a low
number of deformation modes, such as a talking face and
articulated objects. These methods require prior knowledge
to set the number of shape bases, the kernel, and its param-
eters. Some improvements have been made for obtaining
the basis size automatically, but there is no guarantee that a
collection of shapes can be represented by a low number of
shape bases accurately. These methods suffer in the presence
of missing data and may present ambiguities (for instance
due to the orthographic camera assumption). i) also includes
methods using physics-based models such as isometry (Vi-
cente and Agapito, 2012), elastic deformations (Agudo et al.,
2015) and particle-based interactions (Agudo and Moreno-
Noguer, 2015). (Vicente and Agapito, 2012) copes with
missing data but involves costly non-convex optimisation,
which requires a good initialisation. (Agudo and Moreno-
Noguer, 2015; Agudo et al., 2015) require rigid motion at
the beginning of the sequence so that the object’s shape is
reconstructed using rigid SfM. Those methods are thus also
related to SfT. Recently, (Chhatkuli et al., 2016) proposed
an object-wise method which solves NRSfM by using the
Maximum Depth Heuristic (MDH) (Perriollat et al., 2011) for
isometric deformations using convex optimisation. It han-
dles missing data and very complex deformations. It reports
good experimental results and hence it is important for us
to compare with it. Our experiments show that (Chhatkuli
et al., 2016) performs better than the other compared meth-
ods: its performance is very close to our solution to Iso-
NRSfM using infinitesimal planarity. However, our iterative
method performs better than all compared methods.

Methods in ii) and iii) are sometimes also called lo-
cal methods. In piece-wise methods, one selects a simple
model that approximates the shape of a small region of the
surface. NRSfM is then solved for each region. This can
be analytical for planes (Varol et al., 2009) and local rigid
motions with both the orthographic (Taylor et al., 2010) and
perspective (Russell et al., 2014) cameras. More complex
models, such as the local quadratic models, require non-
linear iterative optimisation. After solving for each region’s
approximate shape, a second step is to stitch all pieces
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together, imposing some order of continuity in the surface.
In (Russell et al., 2011) stitching is done using submodular
optimisation. For some other models stitching can be solved
by LLS (Chhatkuli et al., 2014). Piece-wise methods need
segmenting the image domain in regions from which the
local models are computed. Region segmentation may be
costly and difficult to define optimally for general surfaces.
This has a major impact in the efficiency and accuracy of
these methods.

Point-wise methods replace local regions with infinitesi-
mal regions, which allow one to describe NRSfM as a system
of Partial Differential Equations (PDEs) involving differen-
tial properties of the shape and derivatives of the warps.
(Chhatkuli et al., 2014) presents a point-wise solution for
isometric NRSfM assuming that the surface is infinitesimally
planar. It gives analytical solutions to compute the surface’s
twofold ambiguous normal at any point from a pair of
views.

Point-wise methods form a promising solution for Iso-
NRSfM. In principle, they allow one to overcome the com-
plexity, missing data, and accuracy limitations of other
methods. However, in practice, no theoretical framework
and practical method were proposed which overcome these
limitations. Our paper attempts to fill this gap by proposing
a Riemannian framework to solve NRSfM accurately, using
small globally solvable optimisation problems, and in time
complexity linear in the number of images and points.

3 MATHEMATICAL MODEL

3.1 Notation

We use small-case Latin letters to denote scalars and small-
case Greek letters to denote functions. Bold and small Latin
letters denote 2D and 3D vectors. We use a subscript to
index the images and a superscript to index the coordinates
of a point. We use J to write the jacobians, g to denote the
metric tensor and Γ to denote the CS matrix. We give our
modelling for a pair of views. It straightforwardly gener-
alises to any number of views. We consider two surfaces
Mi and Mj , which are represented by images Ii and
Ij . A point in Ii is denoted by x and the corresponding
one in Ij by y. We do this to avoid the subscripts in the
equations. Similarly, a point on the surface Mi is denoted
by z and the corresponding point on Mj by w. We write
(k1, k2, k3, k4, k5) as the variables that represent the first
and second order derivatives of the inverse-depth of the
surface Mi, (p1, p2, p3) which are known quantities on
Mi, written in terms of the second order derivatives and
(c1, c2, c3, c4, c5, c6) which represent the CS atMi. OnMj ,
we write these expressions with a bar as (k̄1, k̄2, k̄3, k̄4, k̄5),
(p̄1, p̄2, p̄3) and (c̄1, c̄2, c̄3, c̄4, c̄5, c̄6).

3.2 General Model

Our model of NRSfM is shown in Fig. 1. We have N input
images I1, . . . , IN that show the projection of different
isometric deformations of the same surface. The registration
between the pair of images (Ii, Ij) is known and denoted
by the functions ηij and ηji, called warps, with ηij = η−1ji .
In practice, we compute these warps from keypoint cor-
respondences using (Pizarro et al., 2016). This choice is

explained and justified by theorem 4. Abusing notation, we
also use Ii to denote an image’s retinal plane, with Ii ⊂ R2.
Surfaces in 3D are modeled as Riemannian manifolds. This

Fig. 1: The proposed model of NRSfM, where each surface Mi is a
Riemannian manifold defined by embedding the corresponding retinal
plane Ii.

allows us to define lengths, angles and tangent planes on the
surface (Lee, 1997). We denote Mi ⊂ R3 the ith manifold,
which can be seen as a two-dimensional subset embedded
in 3D. We use the extrinsic definition of Mi, where a
function embeds a subset of the plane R2 into R3. With
embedding functions, one can easily compute manifold
characteristics (Lee, 2003) such as the metric tensor and the
CS. However, these characteristics change according to the
coordinate frame. We use the retinal plane Ii as coordinate
frame for Mi and define as φi ∈ C∞(Ii,R3) the image
embedding forMi. We define as ψij the isometric mapping
between manifoldsMi andMj .

3.3 Image Embeddings

The projection and embedding models we use are illustrated
in Fig. 1. We use the perspective camera as projection model.
For a 3D point z =

(
z1 z2 z3

)> with z3 > 0, we define
perspective projection Π as:

x = Π(z) x =

(
z1

z3
z2

z3

)>
, (1)

where x is the projected point’s retinal coordinates. The
image embeddings φi with i ∈ [1, N ] define the ‘inverse’ of
perspective projection for a particular surface, as they map
retinal coordinates to the 3D surface. They must satisfy the
following identity:

x = (Π ◦ φi)(x). (2)

Smooth functions that comply with equation (2) can be
expressed with a depth function ρi ∈ C∞(Ii,R), where:

φi(x) = ρi(x)
(
x 1

)>
. (3)

Alternatively, let αi = ρi
−1 be the inverse-depth function.

This allows us to re-define the image embedding in equa-
tion (3) as:

φi(x) =
1

αi(x)

(
x 1

)>
. (4)

As we show next, working with the inverse-depth for
defining the image embedding has an important role while
defining the differential properties of Iso-NRSfM.
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3.4 Metric Tensors
The metric tensor (see appendix A for more details) is a
differential quantity used to define lengths, angles and areas
on the surface (Lee, 1997). In Fig. 2, the metric tensor of
φi is denoted as gmn[φi]. We use the standard Einstein
tensor notation and thus gmn[φi] is a combined reference
to all elements of the metric tensor, a 2 × 2 matrix in this
case. According to the Einstein summation convention, the
summation is done over the indices appearing twice in the
expression. Also, the free indices in an expression (the ones
that do not appear twice in the expression) can be seen as
both the indexed element or the whole arrangement. The
indices m and n refer to the components of the coordinate
frame of φi. In Fig. 2, we have z = φi(x) and:

Fig. 2: Simplified notation for two images.

Jφi
=


∂z1

∂x1
∂z2

∂x1
∂z3

∂x1

∂z1

∂x2
∂z2

∂x2
∂z3

∂x2


>

. (5)

The metric tensor of φi is then:

gmn[φi] = J>φi
Jφi =

∂zs

∂xm
∂zk

∂xn
δsk, (6)

with δsk the Kronecker delta function. We remind that the
summation in equation (6) is done over indices s and k. The
inverse of the metric tensor is expressed with raised indices
gmn[φi]. Given the change of coordinates:

x = η(y) with y =
(
y1 y2

)>
, (7)

the metric tensor of φi ◦ η is obtained as:

gst[φi ◦ η] = J>η J>φi
Jφi

Jη =
∂xm

∂ys
∂xn

∂yt
gmn[φi]. (8)

3.5 Christoffel Symbols (CS)
CS (see appendix B for more details) of the second kind are
function arrays that describe several properties of a Rieman-
nian manifold, such as the curvature tensor, the geodesic
equations of curves and the parallel transport of vectors
in surfaces (Lee, 1997). We denote the CS of embedding
φi as Γpmn[φi]. It is useful to represent the CS of φi as
two 2 × 2 matrices Γ1

mn[φi] and Γ2
mn[φi], where the upper

indices 1 and 2 make reference to the 2D image coordinates
x =

(
x1 x2

)>, where φi is defined. The CS are given by:

Γpmn[φi] =
1

2
gpl[φi] (glm,n[φi] + gln,m[φi]− gmn,l[φi]) ,

(9)

where glm,n = ∂nglm. Given a change of coordinates x =
η(y), the CS in the new coordinates are given as:

Γqst[φi ◦ η] =
∂xm

∂ys
∂xn

∂yt
Γpmn[φi]

∂yq

∂xp
+
∂yq

∂xl
∂2xl

∂ys∂yt
. (10)

Note that even though CS are expressed with tensor nota-
tion, they are not tensors and thus equation (10) does not
correspond to the way tensors change coordinates. The CS
of the image embedding, defined via the inverse-depth in
equation (4), has a special structure given in Theorem 1,
whose proof is given in appendix C.

Theorem 1. Let x ∈ Ii, then Γpmn[φi(x)] is given by:

Γ1
mn[φi(x)] =

−1

αi

(
2αi,1 αi,2
αi,2 0

)
+

(αi)
2
Ai

Di

(
αi,11 αi,12
αi,12 αi,22

)
Γ2
mn[φi(x)] =

−1

αi

(
0 αi,1
αi,1 2αi,2

)
+

(αi)
2
Bi

Di

(
αi,11 αi,12
αi,12 αi,22

)
,

(11)

where αi,k =
∂αi
∂xk

, αi,nm =
∂2αi

∂xn∂xm
and:

Ai = −x1αi +
(

1 +
(
x1
)2)

αi,1 + x1x2αi,2

Bi = −x2αi +
(

1 +
(
x2
)2)

αi,2 + x1x2αi,1

Di =
(
αi − x1αi,1 − x2αi,2

)2
+ (αi,1)

2
+ (αi,2)

2
.

(12)

3.6 Commutativity under Isometry
Images and surfaces in Iso-NRSfM follow the commutative
diagram shown in Fig. 2. Therefore,

φj = ψij ◦ φi ◦ ηji
Jφj = JψijJφiJηji .

(13)

The metric tensor of φj can be written according to equa-
tion (6). It is given by

J>φj
Jφj

= J>ηjiJ
>
φi

J>ψij
Jψij

Jφi
Jηji = J>ηjiJ

>
φi

Jφi
Jηji . (14)

The fact that mappings between manifolds are isometric
(J>ψij

Jψij = I3×3) allows us to derive the following fun-
damental result: in Iso-NRSfM, both metric tensors and CS
commute between surfaces with a change of variable given by the
image warps. This result is formalised with Theorem 2 and
Corollary 1 proved in appendix C.

Theorem 2. Let ψij be an isometric mapping between the
manifolds Mi and Mj , then gmn[φj ] = gmn[φi ◦ ηji] with
(i, j) ∈ [1, N ]× [1, N ].

Corollary 1. Let ψij be an isometric mapping between the
manifolds Mi and Mj , then Γpmn[φj ] = Γpmn[φi ◦ ηji] with
(i, j) ∈ [1, N ]× [1, N ].

These results show that, given the metric tensor and
the CS for one image embedding, they can be transferred
to the rest of the embeddings using the warps, which are
known entities in Iso-NRSfM. Note that this is not true in
general when the mappings are non-isometric. This result
establishes the ground rules for developing a local solution
to Iso-NRSfM where the number of unknowns does not
grow with the number of images. The main idea is to define
the unknowns in a reference image and to use the warps to
transfer all constraints into it.
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3.7 Infinitesimal Planarity

Infinitesimal planarity refers to the assumption that a sur-
face at each point is approximately planar in its infinitesimal
neighbourhood. This is fundamentally different from piece-
wise planarity: in infinitesimal planarity, the surface is glob-
ally curved, but in an infinitesimal neighbourhood, it may
be represented by a plane. In other words, each infinitesimal
model agrees with the global surface at the point where
infinitesimal planarity is assumed, but this agreement holds
only at the zeroth order.

We study the differential properties of the image em-
bedding when the surface is a plane. We then invoke in-
finitesimal planarity to extend these properties point-wise
to non-planar surfaces. In this regard we present Theorem 3
and Corollary 2 proved in appendix C.

Theorem 3. IfM is a plane then its image embedding at x ∈ I
is φ(x) = β(x)−1(x 1)> with β a linear function.

Corollary 2. Let M be a plane and φ(x) the image embedding
at x ∈ I , the CS Γpmn[φ(x)] are given by:

Γ1
mn[φ(x)] =

1

β(x)

(
−2β1(x) −β2(x)
−β2(x) 0

)

Γ2
mn[φ(x)] =

1

β(x)

(
0 −β1(x)

−β1(x) −2β2(x)

)
,

(15)

where β1(x) =
∂β(x)

∂x1
and β2(x) =

∂β(x)

∂x2
.

Theorem 3 shows that the inverse-depth β of a planar
surface is a linear function. Corollary 2 is derived from
Theorem 1 and Theorem 3. It shows that the CS have a
simplified structure under infinitesimal planarity, where at
any point they have 3 degrees of freedom: β and its first
order derivatives. Moreover this also shows that both the
metric tensor and the CS share the same 3 unknowns.

From Corollary 2 we find the following constraints over
the elements of the CS:

Γ1
22[φ(x)] = Γ2

11[φ(x)] = 0

2Γ2
12[φ(x)] = Γ2

22[φ(x)]

Γ1
11[φ(x)] = 2Γ2

12[φ(x)].

(16)

We derive Theorem 4 from equation (16). It shows that
the warps must comply with the 2D Schwarzian deriva-
tives (Sasaki and Yoshida, 2002), which are second order
bilinear PDEs that arise in the field of projective differential
geometry.

Theorem 4. Given that Mi with i ∈ [1, N ] are planes, the
registration warps ηij with (i, j) ∈ [1, N ] × [1, N ] are point-
wise solutions of the 2D Schwarzian equations.

The 2D Schwarzian derivatives were used in (Pizarro
et al., 2016) as a penalty to compute ‘Schwarps’, smooth
warps that preserve the deformation’s local projective struc-
ture. Schwarps were shown to improve accuracy in both SfT
and NRSfM with respect to other smoothing penalties based
on the bending energy. Theorem 4 theoretically justifies our
choice to use Schwarps for computing our image warps.
Nonetheless our method can also be used with any means
to compute the local image warps.

4 RECONSTRUCTION EQUATIONS

We study local solutions to Iso-NRSfM, based on the dif-
ferential properties derived in the previous section. We
show that Iso-NRSfM can be posed as a non-linear PDE
system and that we can find non-holonomic solutions of
this system. We do not deal with boundary conditions in the
PDE as we find algebraic solutions of the system in terms of
the non-holonomic variables. This follows the same path as
(Bartoli et al., 2015) for finding local solutions in Iso-SfT.

For planes, there is a unique linear relationship between
the metric tensor and the CS, which is why Iso-NRSfM is
solvable under the assumption of infinitesimal planarity.
Corollary 2 shows that both of them can be expressed in
terms of the first order derivatives of the inverse-depth of
the surface only. We explore this relationship for non-planar
surfaces, where we need the first and the second order
derivatives of the inverse-depth of the surface to express
the metric tensor and the CS. We argue that there is no
uniqueness in the relationship between the metric tensor
and the CS anymore, and therefore, there is not a unique
solution to Iso-NRSfM locally. Then, we propose to solve
Iso-NRSfM by solving for the first and the second order
derivatives separately.

4.1 Relating the Metric Tensor and the CS

For a non-planar surface, the CS at z ∈ Mi are given by
equation (11). We define them as:

Γ1
mn[φi(x)] =

(
c1 c3
c3 c5

)
Γ2
mn[φi(x)] =

(
c2 c4
c4 c6

)
, (17)

where c1, c2, c3, c4, c5 and c6 are expressed in terms of
the first and second order derivatives of αi(x) defined in
equation (4). The expressions in equation (11) are:

c1 = −2k1 + k3Ai c2 = k3Bi
c3 = −k2 + k4Ai c4 = −k1 + k4Bi
c5 = k5Ai c6 = −2k2 + k5Bi,

(18)

with:

Ai = −x1 +
(

1 +
(
x1
)2)

k1 + x1x2k2

Bi = −x2 +
(

1 +
(
x2
)2)

k2 + x1x2k1

Di =
(
1− x1k1 − x2k2

)2
+ (k1)

2
+ (k2)

2
,

(19)

where k1 =
αi,1
αi

, k2 =
αi,2
αi

, k3 =
αi,11
αiDi

, k4 =
αi,12
αiDi

and

k5 =
αi,22
αiDi

. The jacobian and hence the metric tensor at

z can be written in terms of (k1, k2). Our goal is to find a
relationship between the metric tensor parametrised with
(k1, k2) and the CS (c1, c2, c3, c4, c5, c6). Having such a rela-
tionship, we can formulate a system of equations exploiting
the transfer of variables in the CS and metric tensor from
one surface to another. From c1 and c2 in equation (18), we
can write:

c1 + 2k1
c2

=
Ai
Bi
. (20)

Similarly, from c5 and c6 in equation (18), we can write:

c5
c6 + 2k2

=
Ai
Bi
. (21)
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From c3 and c4 in equation (18), we find
Ai
Bi

=
c3 + k2
c4 + k1

. We

substitute
Ai
Bi

in equations (20) and (21), we obtain:

(c1 + 2k1)(c4 + k1) = c2(c3 + k2)

(c6 + 2k2)(c3 + k2) = c5(c4 + k1).
(22)

From the first expression in equation (22), we find k2 =
(c1 + 2k1)(c4 + k1)

c2
− c3 and substitute it in the second

expression. We obtain the following quartic in k1:

(c4 + k1)
(
8k31 + 8 (c1 + c4) k21

+2 (c1 (c1 + 4c4) + c2 (c6 − 2c3)) k1

+2c21c4 + c1c2 (c6 − 2c3)− c22c5
)

= 0.

(23)

This gives up to four possible solutions to k1, which means
that there is not a unique relationship between the CS and
the metric tensor.

In the solution with the infinitesimal planarity assump-
tion, we had obtained a system of two cubics in two
variables for each pair of views. Combining equation (22)
with equation (18), we can express (k1, k2) in terms of the
CS (c1, c2, c3, c4, c5, c6) as a rational expression of degree
two. This gives a system of two polynomials of degree 8
in 6 variables for each pair of views. Existing solvers such
as (Henrion and Lasserre, 2003) cannot solve such high
degree polynomial systems. We conclude that the first and
second order derivatives of αi(x) cannot be solved jointly
via estimating the CS. However, we see that the expressions
of the CS in equation (18) are linear in terms of (k1, k2) and
(k3, k4, k5). By assuming (k3, k4, k5) to be known, we can
find a unique relationship between the metric tensor and the
CS and vice versa. Therefore, splitting the problem in two
steps of solving for the first and the second order derivatives
of αi(x) separately leads to a solution to Iso-NRSfM.

4.2 Solving for the First Order Derivatives
We assume that the second order derivatives of αi(x) are
known. They can be assumed to be zero (as in the case of the
infinitesimal planarity assumption) or they can be obtained
by the method we describe next. We show how to solve
for the first order derivatives of αi(x). We also show that
this solution has a similar structure as the solution to Iso-
NRSfM under infinitesimal planarity. We first select a pair of
surfaces (Mi,Mj) (see Fig. 2) and a point x = (x1, x2)> ∈
Ii. We evaluate Γpmn[φi] at x, namely Γpmn[φi(x)]. According
to equation (11), it is given by:

Γ1
mn[φi(x)] =

(
−2k1 +Aip1 −k2 +Aip2
−k2 +Aip2 Aip3

)
Γ2
mn[φi(x)] =

(
Bip1 −k1 +Bip2

−k1 +Bip2 −2k2 +Bip3

)
,

(24)

where k1 =
β1(x)

β(x)
and k2 =

β2(x)

β(x)
. The expressions

(p1, p2, p3) are functions of second order derivatives of
αi(x) and therefore, they are known. Ai and Bi are linear
expressions in (k1, k2) according to equation (12). Next we
compute Jφi

in terms of (k1, k2):

Jφi(x) =
1

β(x)

1− k1x1 −k2x1
−k1x2 1− k2x2
−k1 −k2

 . (25)

By substitution of equation (25) in equation (6) we have:

g11[φi(x)] =
1

β(x)2

(
k1

2 +
(
k1x

1 − 1
)2

+
(
k1x

2
)2)

g12[φi(x)] =
1

β(x)2

(
k1k2

(
1 +

(
x1
)2

+
(
x2
)2)− k2x1 − k1x2)

g22[φi(x)] =
1

β(x)2

(
k2

2 +
(
k2x

1
)2

+
(
k2x

2 − 1
)2)

.

(26)

We define Gmn[φi(x)] = β(x)2gmn[φi(x)], which only
depends on (k1, k2). Let x = ηji(y). We use equation (10)
and Corollary 1 to compute Γkmn[φj(y)] = Γkmn[(φi◦ηji)(y)]
as:

Γ1
mn[(φi ◦ ηji)(y)] =

(
−2k̄1 +Aj p̄1 −k̄2 +Aj p̄2
−k̄2 +Aj p̄2 Aj p̄3

)
Γ2
mn[(φi ◦ ηji)(y)] =

(
Bj p̄1 −k̄1 +Bj p̄2

−k̄1 +Bj p̄2 −2k̄2 +Bj p̄3

)
,

(27)

where according to equation (10), (k̄1, k̄2) are linear com-
binations of (k1, k2) and (p̄1, p̄2, p̄3), which are known.
Aj and Bj are linear expressions in (k̄1, k̄2) according to
equation (12). From equation (26) one can find gst[φj(y)] in
function of (k̄1, k̄2), and thus in function of (k1, k2).

Alternatively, from equation (8) and using the definition
of Gmn[φi(x)] and Gmn[φj(y)] we have the following iden-
tity:

1

β(x)2
Gst[φj(y)] =

1

β(y)2
∂xm

∂ys
∂xn

∂yt
Gmn[φi(x)]. (28)

We cancel β(x) and β(y) by converting system (28) into the
following two equations:

G11[φj(y)]

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
= 0

G22[φj(y)]

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
= 0.

(29)

We recall that both Gmn[φi(x)] and Gst[φj(y)] are only
functions of (k1, k2) and x.

Equation (29) is a system of two cubics in vari-
ables (k1, k2) modeling Iso-NRSfM for manifolds Mi and
Mj at point x ∈ Ii. We denote the two equations as
Qij(x, η1j(x), k1, k2). By keeping the first index as the
reference manifold, for instance i = 1, and obtaining
the polynomials for the rest of the views we have 2N −
2 polynomial equations in two variables Q1(k1, k2) =
{Q1j(x, η1j(x), k1, k2)}nj=2. The solution (k1, k2) to the
polynomial system Q1(k1, k2) at the point x = x1 allows
us to reconstruct the metric tensor, the CS and the tangent
plane for point x1 in view I1. Using equation (25) we can
reconstruct Jφ1(x1) up to an unknown scale β(x1)−1. It is
not necessary to recover this scale to estimate a unit normal,
which is computed by taking the cross product of the two
columns of Jφ1(x1) and normalising.

We solve system Q1(k1, k2) by finding the values of
(k1, k2) that minimise the sum-of-squares of all polynomials
in the system. This optimisation is solved globally using



7

moment based convex optimisation (Henrion and Lasserre,
2003). The cost function’s complexity is independent of the
number of views N . Given (k1, k2), we calculate (k̄1, k̄2) by
using equation (10) at each point.

Notice that the structure of the CS given in equation (15)
for planes is very similar to equation (24) with (p1, p2, p3)
as zeros. This shows that the solution to Iso-NRSfM with
the infinitesimal planarity assumption is a special case of
this solution. We express the system with zero second
derivatives as P1(k1, k2), which is solved in a similar way
as Q1(k1, k2).

4.3 Solving for the Second Order Derivatives

We now show how to solve for the second order deriva-
tives of αi(x), assuming that the first order derivatives of
αi(x) are known from the previous step. The expressions
for the CS in equation (24) become linear in the second
order derivatives of αi(x). This means that Γpmn[φi(x)] is
a linear function of (k3, k4, k5). Given that x = ηji(y) and
equation (10), Γpmn[(φi ◦ ηji)(y)] is given by:

Γ1
mn[(φi ◦ ηji)(y)] =

(
c̄1 c̄3
c̄3 c̄5

)
Γ2
mn[(φi ◦ ηji(y))] =

(
c̄2 c̄4
c̄4 c̄6

)
,

(30)

where (c̄1, c̄2, c̄3, c̄4, c̄5, c̄6) are expressed as a linear combi-
nation of (k3, k4, k5). Therefore, atMj , (k̄3, k̄4, k̄5) are given
by the following expressions:

k̄3 =

(
c̄1 + 2k̄1

)
Aj + c̄2Bj

A2
j +B2

j

k̄4 =

(
c̄3 + k̄2

)
Aj +

(
c̄4 + k̄1

)
Bj

A2
j +B2

j

k̄5 =
c̄5Aj +

(
c̄6 + 2k̄2

)
Bj

A2
j +B2

j

.

(31)

These expressions show that (k̄3, k̄4, k̄5) can be expressed as
a linear combination of (k3, k4, k5).

In order to solve for the second order derivatives of
αi(x), we differentiate the first order reconstruction equa-
tions (29). The expressions are given in equation (32). The
derivatives of Gmn[φi(x)] in equation (29) are given in
equation (33). Equation (33) shows that the derivatives
are linear functions of (k3, k4, k5). Using equation (31),
the reconstruction equations (32) form a linear system
in three variables only, which can be solved using LLS.
Therefore, for each pair of manifolds (Mi,Mj) at point
x ∈ Ii, equation (32) is a system of four linear equations
in variables (k3, k4, k5). We denote the four equations as
Sij(x,y, k3, k4, k5). Fixing the ith manifold as a reference,
for instance i = 1, we obtain 4N − 4 linear equations
in three variables which are written as S1(k3, k4, k5) =
{S1j(x, η1j(x), k3, k4, k5)}nj=2. The solution (k3, k4, k5) to
the linear system S1(k3, k4, k5) for the point x = x1 gives
the second derivatives of αi(x). We use them to compute
a better estimate of the CS in equation (11). Using equa-
tion (31), we can obtain (k̄3, k̄4, k̄5) using (k3, k4, k5).

∂G11[φj(y)]

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−∂G12[φj(y)]

∂x1

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
+G11[φj(y)]

∂

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x1

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
= 0

∂G11[φj(y)]

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−∂G12[φj(y)]

∂x2

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
+G11[φj(y)]

∂

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x2

(
∂xm

∂y1
∂xn

∂y1
Gmn[φi(x)]

)
= 0

∂G22[φj(y)]

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−∂G12[φj(y)]

∂x1

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
+G22[φj(y)]

∂

∂x1

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x1

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
= 0

∂G22[φj(y)]

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−∂G12[φj(y)]

∂x2

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
+G22[φj(y)]

∂

∂x2

(
∂xm

∂y1
∂xn

∂y2
Gmn[φi(x)]

)
−G12[φj(y)]

∂

∂x2

(
∂xm

∂y2
∂xn

∂y2
Gmn[φi(x)]

)
= 0.

(32)

5 ALGORITHMS

We describe our solutions to Iso-NRSfM based on the theo-
retical results from the previous sections. First, we describe
the algorithm for solving Iso-NRSfM with the infinitesimal
planarity assumption and then we describe the algorithm
for the general solution. This uses the solution with the
infinitesimal planarity assumption as initialisation. The in-
puts to our system are N images of a deforming object
and their inter-image warps with respect to the first image
ηj1 and η1j . The outputs of our system are the 3D points
and normals corresponding to the point correspondences
for the N images. In our formulation, our goal is to find
the jacobian of the image embedding. The normals are then
obtained from the jacobian and the 3D points are calculated
by integrating the normal field as in (Chhatkuli et al., 2014).

5.1 Solution under Infinitesimal Planarity

With the assumption of infinitesimal planarity, we can write
the metric tensor of equation (24) and the CS of equation (26)
on a manifold Mi in terms of two variables which corre-
spond to the first order derivatives of the inverse-depth β of
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∂G11[φi(x)]

∂x1
= 2k1

(
x1k1 − 1

)
+ 2

(
εk1 − x1

) (
k3D − k12

)
∂G12[φi(x)]

∂x1
= k2

(
2x1k1 − 1

)
+
(
εk2 − x2

) (
k3D − k12

)
+
(
εk1 − x1

)
(k4D − k1k2)

∂G22[φi(x)]

∂x1
= 2x1k2

2 + 2
(
εk2 − x2

)
(k4D − k1k2)

∂G11[φi(x)]

∂x2
= 2x2k1

2 + 2
(
εk1 − x1

)
(k4D − k1k2)

∂G12[φi(x)]

∂x2
= k1

(
2x2k2 − 1

)
+
(
εk2 − x2

)
(k4D − k1k2)

+
(
εk1 − x1

) (
k5D − k22

)
∂G22[φi(x)]

∂x2
= 2k2

(
x2k2 − 1

)
+ 2

(
εk2 − x2

) (
k5D − k22

)
,

with D =
(
1− x1k1 − x2k2

)2
+ k1

2 + k2
2

and ε = 1 +
(
x1
)2

+
(
x2
)2
.

(33)

the image embedding φi. We can also write the metric tensor
and the CS on the rest of the images in terms of the variables
in the first image (equations (8) and (10) respectively), which
leads to two variables for N images. We solve the system of
two cubics in two variables of equation (29) for all images
by minimising the sum-of-squares of the polynomials. The
algorithm takes the following steps:

Inputs: Warps ηj1, j ∈ [2, N ].
1) Find point correspondences. Select a grid of points on the

first image and using the warps η1j , find the corresponding
grid of points on the rest of the images. We evaluated our
method on a 20× 20 grid of points.

2) Find (k1, k2). Evaluate the polynomial P1(k1, k2) and
solve by minimising the sum of squares using (Henrion and
Lasserre, 2003). This gives (k1, k2). Find (k̄1, k̄2) in terms of
(k1, k2) and the ηj1 warps, j ∈ [2, N ], using equation (10).

3) Find normals and 3D points. Find the jacobian in terms
of (k1, k2) using equation (25). Compute normals by taking
the cross-product of the jacobian’s columns and normalising
it. Use the method in (Chhatkuli et al., 2014) to recover the
3D surfaces by integrating the normal fields.

Outputs: Points and normals on 3D surfaces.

5.2 General Solution
We still have the metric tensors on a manifoldMi in terms
of two variables but the CS are now written in terms of five
variables, the first and the second order derivatives of the
inverse-depth αi of the image embedding φi. We iteratively
solve for the first and second order derivatives alternatively
until the first order derivatives of αi(x) converge. Our
algorithm is:

Inputs: Warps ηj1, j ∈ [2, N ].
1) Find point correspondences. This step is the same as step

1) from the previous algorithm.
2) Initialise (k1, k2) using the solution under infinitesimal

planarity. Run step 2) from the previous algorithm.
3) Find the second order derivatives (k3,k4,k5). Evaluate the

linear system S1(k3, k4, k5) and solve using LLS. This gives
(k3, k4, k5). Find (k̄3, k̄4, k̄5) using equation (31).

4) Find (k1, k2). Evaluate the sum-of-squares polynomi-
als of the system Q1(k1, k2) and find (k1, k2) by minimising
it using (Henrion and Lasserre, 2003). Find (k̄1, k̄2) in terms
of (k1, k2) and the warps ηj1, j ∈ [2, N ], using equation (10).

5) Repeat steps 3) and 4) until the solution to (k1, k2)
converges. The maximum number of iterations is set to 5.

6) Find normals and 3D points. Run step 3) from the
previous algorithm.

Outputs: Points and normals on 3D surfaces.

5.3 Complexity Analysis

We discuss the complexity of the algorithm under the in-
finitesimal planarity assumption and in the general case.
For both solutions, we assume that the warps are provided.
We calculate the warps using schwarps (Pizarro et al.,
2016), that impose the Schwarzian equations (16) as a soft
constraint. However we would like to point out that we do
not require warps between all possible pairs of images in
the sequence. We use a reference view and thus require the
computation of N − 1 warps only, not N2.

5.3.1 Solution with infinitesimal planarity

The solution to Iso-NRSfM under infinitesimal planarity
solves only one sextic polynomial for N images. This
polynomial is formed by computing the sum-of-squares of
2(N − 1) cubic polynomials (29). Forming this sextic poly-
nomial has a linear complexity but solving it is independent
of N .

5.3.2 General case

The solution to the general case solves for the first and the
second order derivatives of αi(x) in parts. The approach
for solving for the first order derivatives of αi(x) is similar
to the solution under infinitesimal planarity assumption. It
also solves one sextic polynomial and therefore, the solution
is independent of N . For the second order derivatives of
αi(x), we obtain 4(N − 1) linear equations and they are
solved using LLS. Therefore, there is a linear complexity in
forming these equations and solving them as well.

6 EXPERIMENTAL RESULTS

We tested Iso-NRSfM on synthetic and real datasets. Fig. 3
shows some images from real datasets on which the meth-
ods were evaluated. For quantitative comparison, we mea-
sured the normal error (mean difference between computed
and ground truth normals in degrees) and the depth er-
ror (mean difference between computed and ground truth
3D coordinates in mm). We denote Iso-NRSfM with in-
finitesimal planarity as infP and as iso otherwise. We
compared our method with six other NRSfM methods:
diffH (Chhatkuli et al., 2014), mdhI (Chhatkuli et al.,
2016), kerF (Gotardo and Martinez, 2011), plaH (Varol
et al., 2009), pieceI (Taylor et al., 2010), inextI (Vicente
and Agapito, 2012). All the codes for these methods were
obtained from the authors’ websites except plaH which we
re-implemented.
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Fig. 3: Some images of the rug, table mat, kinect paper and tshirt
datasets. The five rightmost images of the table mat dataset are zoomed
in to improve visibility.
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Fig. 4: Synthetic data experiments. Average normal and depth errors
with respect to number of views, noise and curvature. Best viewed in
colour.

6.1 Experiments with Synthetic Data
We simulated random views of a cylindrical surface deform-
ing isometrically. The image size is 640p × 480p and the
focal length is 400p. We tracked 400 points. We compared
all methods by varying the number of views and noise in
the images. kerF needs a temporal sequence, 10 views are
not enough for reconstruction especially for short-baseline
viewpoints. It therefore did not do well. Also, mdhI needs
the views to be very different and therefore, it also gave
very bad results on this sequence. (Chhatkuli et al., 2016)
mentioned that their method fails on such sequences. The
results are shown in Fig. 4. The results are obtained after
averaging the errors over 50 trials (the default is 1p noise

and 10 views).

6.1.1 Varying the Number of Views
infP gives a very good reconstruction for three views
which improves when more images are added. iso performs
much better than infP as it does not assume infinitesimal
planarity; this helps in reconstructing the high curvature
deformations more accurately. The errors of iso are almost
half of infP. plaH and diffH give higher errors as compared
to infP and iso with plaH being better than diffH. However,
diffH improves faster with the number of views and gives
better results than plaH for 8-10 views. The performance of
these methods is off by almost 5 degrees as compared with
infP. pieceI and inextI gives decent results only with 8-10
views but their performance is worst amongst the compared
methods. Overall, infP and iso consistently show lower
errors than all other methods.

6.1.2 Varying Noise
For the 10 images of the synthetic dataset, we observe that
all methods degrade linearly when noise varying between 1-
5 pixels is added. inextI and pieceI show a good tolerance to
noise, even though their performance is worse than all other
methods. diffH and plaH give a slightly better performance
than inextI and pieceI. Their performance degrades faster
with noise as compared to inextI and pieceI. Even though
the normal errors of diffH and plaH are comparable to
inextI and pieceI, their depth errors are lower because
they smooth normals while calculating the depth. infP and
iso give best performance with noise. iso performs better
than infP and degrades more slowly than infP. The normal
error for infP and iso is almost half as compared to other
methods.

We also made an experiment to study the influence of
noise on the warps. This is because we use warps to rep-
resent the image transformation and that estimating these
could be reducing some of the noise applied to the corre-
spondences. We simulated two synthetic images (I1 and I2)
and added a 1-5 pixels noise to point correspondences in
I2. We computed the schwarps (using B-splines) between
I1 and I2 using our default setup (30 control points and a
fixed value for the hyperparameter controlling the schwarps
smoothing). We then computed the standard deviation of
the pixel noise after computing the warps. The result is
given in the last row of table 1, where we can see that
the amount of noise is almost unaffected. We did the same
experiment with fewer control points, which resulted in
improved noise values (see the table 1). However, we found
that using fewer points has an impact on the final accuracy
as they degrade the derivatives, which directly influence the
output of our method. We conclude that the warps do not
remove the noise from the point correspondences.

6.1.3 Varying Curvature
We simulated a cylindrical surface with a varying radius.
The curvature is the inverse of the radius. We simulated 10
surfaces with the radius varying from 2 to 11 and used 10
different views of each surface for the experiment. We see
that the performance of iso and infP is best amongst the
compared methods. Their performance is very similar when
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Noise (in pixels)→
B-spline control points 1 2 3 4 5

10 .53 .92 1.55 1.94 2.46
20 .99 2.00 2.94 3.93 4.90
30 1.00 2.06 3.02 4.07 5.14

TABLE 1: Performance of warps in noisy conditions. The warps reduce
the noise only when fewer control points are used, but then significantly
degrade their derivatives.

the surfaces are almost flat or less bent. As the curvature
of the surfaces increase, we can see that iso performs much
better than infP. iso handles high deformations better than
infP because it estimates the second order derivatives of
the surface while infP assumes them to be zero. diffH and
plaH need wide baseline views with different deformations,
therefore, their performance is worse or comparable with
inextI and pieceI.

6.2 Experiments with Real Data

We conducted experiments with the four datasets shown in
Fig. 3 and performed two types of experiments. The tshirt
dataset is a wide baseline dataset and the rest of them are
short baseline datasets. Our observations are summarised
below.

6.2.1 Experiments on Short Sequences

The rug, table mat and kinect paper datasets are long
sequences (159, 60 and 191 images with 350, 300 and 1500
point correspondences) and the t-shirt is a short dataset (10
images, 85 point correspondences). The long sequences are
uniformly reduced by picking 10 images at regular intervals
in the sequence. The results are shown in Fig. 5. The results
for the tshirt dataset are averaged over 20 trials of randomly
sampled images. The figure clearly shows that iso works
best among the compared methods while the performance
of mdhI and infP is quite good as well.

6.2.1.1 Rug dataset: iso and infP have the best per-
formance on this dataset; iso being better than infP. mdhI
improves with the number of views and gives comparable
results to infP for 7-10 views. diffH and plaH show a worse
performance than mdhI, with plaH being better. inextI and
pieceI are orthographic methods and therefore, they did not
do well on this dataset as it has too much perspective in the
deformations. inextI’s depth error is comparable to plaH
but normal error is much higher. This indicates flattening of
surfaces during the reconstruction.

6.2.1.2 Table mat dataset: iso has the best per-
formance on this dataset. infP and mdhI show a similar
performance in this dataset, and they are closest to iso
as compared with other methods. diffH and plaH show
a worse performance than mdhI, with plaH being a little
bit better than diffH. inextI and pieceI are orthographic
methods and therefore, they did not do well.

6.2.1.3 Kinect paper dataset: mdhI has the best
performance on this dataset. infP and iso are very close
to mdhI. inextI and pieceI have the worst normal error as
compared to other methods. Their errors are almost twice
as the best performing methods mdhI, infP and iso. diffH
and plaH show better performance in terms of normals as
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Fig. 5: Experiments on short sequences. The average normal and depth
error for each experiment with number of views varying between 3-10
is shown. The views of the rug, table mat and kinect paper datasets
are selected by uniform sampling the long sequences. The views of the
tshirt dataset are selected by randomly sampling the dataset and the
results are averaged over 20 trials. Best viewed in colour.

compared to inextI and pieceI. The performance of diffH,
plaH, inextI and pieceI in terms of depth error is similar.

6.2.1.4 Tshirt dataset: iso has the best performance
on this dataset with infP and mdhI being very close to iso.
diffH is slightly worse than infP and mdhI. plaH follows a
similar trend as diffH, but its performance is worse. inextI
and pieceI have poor results on this dataset because they
cannot handle such deformations.

6.2.1.5 Summary of experiments on short se-
quences: iso and infP give the best performance on the
rug and table mat datasets while mdhI gives best results
on the kinect paper dataset. It is important to note that iso
and infP converge quickly as compared to the rest of the
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Fig. 6: Reconstruction error maps and renderings for the rug, table mat,
kinect paper and tshirt datasets. We remind that mdhI reconstructs only
the visible part of the surface. Therefore, the rendering and error map
for the kinect paper dataset is broken for this method.

methods. They show very good results for as few as three
views. iso converges much quicker than infP; the errors
seem to have been stabilised with four views only. Fig. 6
shows 3D reconstruction error maps for the rug, table mat,
kinect paper and tshirt datasets. We showed results for iso,
infP and mdhI only because they are the most competitive
methods amongst the compared methods. In case of occlu-
sion, iso and infP can reconstruct the entire surface as long
as the surface is visible in at least three images, therefore,
even if the kinect paper dataset is occluded by a hand, it
can be reconstructed by them. However, mdhI reconstructs
only the visible part of each surface. Therefore we observe
the occlusion in the reconstruction and rendering as well.

6.2.2 Experiments on Long Sequences
The rug, table mat and kinect paper datasets are long
sequences with 60, 159 and 193 images. Since our method
can easily handle a large number of images, it is important
to show results on large sequences by considering all images
in the dataset. A limitation of current NRSfM methods is
that they cannot handle a large number of views. Also,
several NRSfM methods such as diffH and plaH (Chhatkuli
et al., 2014; Varol et al., 2009) reconstruct the reference
image only and are computationally expensive to recover
the other shapes. kerF reconstructs the entire image set in
one execution and therefore, we compare our method with
kerF on long sequences. The cat dataset is a relatively short
sequences (60 images) therefore, we added the results of
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(c) Kinect paper dataset

Fig. 7: Experiments on long sequences. The average normal and depth
error for each frame is shown. The experiment with inextI is only
performed for the table mat dataset. Best viewed in colour.

inextI for this dataset on the entire sequence. Fig. 7 shows
the comparison of our method with others. It is very clearly
visible that our method performs much better than the
compared methods. mdhI and infP show good results as
well. Table 2 summarises the results of these methods.

6.2.2.1 Rug dataset: iso gives the best results
among the compared methods on this dataset. infP’s per-
formance is slightly worse than iso. mdhI shows better
performance than kerF, but it is worse than iso and infP.

6.2.2.2 Table mat dataset: iso has the best perfor-
mance with infP being very close to it. mdhI shows better
performance than kerF, but both of them are worse than
iso and infP. pieceI has the worst performance amongst
the compared methods. diffH and plaH need to compute
homographies between image pairs, therefore, they grow
non-linearly with the number of views. For 60 images, the
execution time goes upto 45 min for a single reconstruction.
Therefore, we did not compare with them. pieceI breaks
on this sequence, therefore we did not include it. The
comparison with inextI is done only for this sequence as
it is a relatively smaller sequence. One must also note that
inextI, pieceI grow with the number of views and point
correspondences, therefore, they are not very efficient with
a large number of views.
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Fig. 8: Images (10, 20, 30, 40, 50) of a partially stretched rubber like
surface. The first image has the least deformation and the last one has
the most.

Rug Table mat Kinect paper

Methods En Ed En Ed En Ed

iso 12.9 27.2 10.5 8.2 7.8 6.1
infP 16.7 34.9 12.3 9.6 9.6 7.1
mdhI 18.8 42.3 16.4 10.5 4.8 4.4
kerF 20.0 66.6 19.0 20.0 18.7 24.8
inextI - - 22.4 19.0 - -

TABLE 2: Summary of experiments on long sequences. The average
normal (En) and depth error (Ed), are measured in degrees and mm
respectively and shown over the entire sequences.

6.2.2.3 Kinect paper dataset: mdhI shows the best
results on this dataset. iso and infP have similar perfor-
mance but they are worse than mdhI. kerF has the worst
performance; it is at least twice as worse than the rest of
the methods. It is because this sequence has outliers; and
therefore the performance of kerF is affected. One must note
that iso, infP and kerF reconstruct the occluded part of the
paper while mdhI only recovers the visible paper in each
frame.

6.2.2.4 Summary of experiments on long se-
quences : Table 2 summarises the results of the compared
methods on the rug, table mat and kinect paper datasets.
iso and infP give the best performance on rug and the
table mat datasets while mdhI gives the best results on the
kinect paper dataset. kerF gives decent results on the rug
and table mat datasets but does not do well on the kinect
paper dataset. However, its performance is always worse
than iso, infP and mdhI. inextI was only compared on the
table mat dataset; it gives the worst results as compared to
the other methods.

6.2.2.5 Summary of experiments: In the experi-
ments that we performed, we observed that iso and infP
show the best results amongst all compared methods. mdhI
shows a good performance. Its results are comparable to
ours for the tshirt and kinect paper datasets. This method
is based on the maximum depth heuristic (MDH), it usually
requires a lot of images with different viewpoints to give
good results. diffH and plaH are based on homography de-
composition. They suffer from ambiguities in the normals.
They disambiguate the normals assuming the smoothness
of the surfaces which is not a strong assumption to make.
These methods work well with wide baseline datasets. kerF
is a method based on statistical modeling designed to work
for video sequences. It needs a good estimation of the
radius of the kernel in which the similarities between the
two shapes are measured. pieceI and inextI are methods
based on orthographic projection. They suffer from convex-
concave flip ambiguities.

Experiment 1 2 3 4 5

No. of images 10 20 30 40 50
infP 19.1 26.6 29.3 32.7 36.1
iso 14.1 22.7 27.0 28.3 34.8

TABLE 3: Mean shape error (in degrees) for the experiment with
partially stretched surface. The error increases with the number of
images as the deformation increases. iso performs better than infP.

Fig. 9: Experiment with an almost stationary object. The first five images
of the table mat sequence are used. The reconstruction of iso is shown
in red. The ground truth is indicated with black. Es represents the mean
shape error (in degrees). Ed represents the mean depth error (in mm).
The performance of iso is almost the same as infP on these five images.

6.3 Experiment with an Elastic Object
Our methods model deformations with isometry. In case of
non-isometric deformations, theorem 2 and corollary 1 do
not hold and therefore, there is no meaningful theoretical
solution guaranteed. However, we solve Iso-NRSfM by find-
ing a set of CS that minimise the sum of squares of polyno-
mials in equation (29). Therefore, we made an experiment
to test Iso-NRSfM with objects deforming non-isometrically
in order to test the limitation for our methods infP and iso.
We used the partially stretched surface dataset introduced
in (Ozgur and Bartoli, 2016). It consists of 50 shapes of an
elastic surface partially stretched from its longest side in a
sequential order. The images are shown in Fig. 8. We made
five experiments on this dataset. These experiments include
10, 20, 30, 40 and 50 images respectively. The experiment
with 10 images has the least elastic deformation (this can
be seen in Fig. 8) and the one with 50 images has the most
elastic deformation. For each experiment, we calculate the
shape error for each image. The mean shape error calculated
over the entire image set in each experiment increases about
linearly with the degree of extension. Therefore, we see that
the method does not collapse completely for non-isometric
deformations but gracefully degrades. Table 3 summarises
the results of this experiment.

6.4 Computation Time Comparison
We compared the performance of our methods with the
others in terms of computation time on a standard computer
with 8GB RAM. Ours and the rest of the methods are
implemented in MATLAB. infP takes ≈ 10 seconds for
any number of images. iso is initialised with infP, and
the solution to the first and the second order derivatives
of αi(x) is found iteratively upto 5 iterations. Solving for
the first order derivatives takes a similar duration as infP
while solving for second order derivatives and integrating
normals have a linear complexity but they are very fast. We
made an experiment with 10, 30 and 60 views. We observed
that the computation time of iso (≈ 60 seconds) and infP
(≈10 seconds) is almost the same (very small increase) in
the three experiments. mdhI and kerF also are very fast but
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infP iso mdhI kerF plaH diffH pieceI inextI

10 11.2 51 8.9 14.1 65 86 180 210
30 13.1 52.4 21.3 26.3 3090 2280 850 1299
60 14.8 55.1 65.8 44.8 - - - -

TABLE 4: Comparison of computation time (in seconds) for 10, 30 and
60 views. The best performing method is highlighted in bold. infP and
iso show a much lower increase in computation time while plaH, diffH,
pieceI and inextI show a drastic increase. They could not be evaluated
for 60 views.

the computation time increases significantly as the number
of images increases. plaH, diffH, pieceI and inextI show
a drastic increase in computation time on changing the
number of images from 10 to 30. We did not compute these
timings for 60 images. Table 4 summarises the results.

6.5 Experiment with an Almost Stationary Object

We made an experiment with an almost stationary object. In
the table mat dataset, we picked the first 5 frames which
are shown in Fig. 9. The mat is almost stationary. We
observed that our methods iso and infP did get a decent
reconstruction for these datasets. The errors are higher as
compared to the experiments with the full sequence, as
expected. Fig. 9 shows the images and the reconstruction.
The results are shown for iso. The performance of infP was
almost the same as iso. This shows that the solution to Iso-
NRSfM is well-posed. There is always a solution for N ≥ 3,
as long as the images are not exactly the same.

7 CONCLUSIONS

We proposed a theoretical framework for modelling and
solving NRSfM locally for surfaces deforming isometrically.
It uses Riemannian manifolds and applies to the minimal
and redundant cases of N ≥ 3 views. Unlike existing
methods, the proposed method has only five variables to
solve for N views. Therefore, it can handle a large number
of views. The complexity is linear, which is a substantial im-
provement from the current state-of-the-art. We tested our
method on datasets with wide-baseline and short-baseline
viewpoints, large and small deformations. Our results show
that the proposed methods consistently give significantly
better results than the state-of-the-art methods even for as
few as three views. For future work, we will explore the
possibility of extending this framework to non-isometric
deformations.
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Alcalá (Spain) since 2012. He is a mem-
ber of the GEINTRA group and an in-
vited member in the ALCoV-ISIT group
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APPENDIX A
METRIC TENSORS

In order to describe a physical surface, one must define a
coordinate system where measurements like lengths, angles
and areas can be defined. The metric tensor (Lee, 1997) is
a function which is defined on a physical surface to obtain
these measurements. We use a simple example to develop a
better understanding of the metric tensor. For this purpose,
we consider an infinitesimal vector ~v in the Euclidean 3-
space.

If we use a Cartesian coordinate system, we can define
the length ds of ~v using Pythagoras’ law for distances as:

ds2 = dx2+dy2+dz2 =
(
dx dy dz

)1 0 0
0 1 0
0 0 1

dxdy
dz

 ,
(34)

where dx, dy and dz represent the components of ~v in x,
y and z coordinates respectively and the identity matrix
in equation (34) is the metric tensor. The metric tensor is
denoted as g. The identity metric tensor implies that the
distances remain constant as one moves along the coor-
dinate frame. Now if we measure the length of the same
infinitesimal vector ~v in a spherical coordinate system (r, θ,
φ), we have:

ds2 = dr2 + r2dθ2 + r2sin2θdφ2

=
(
dr dθ dφ

)1 0 0
0 r2 0
0 0 r2sin2 θ

drdθ
dφ

 , (35)

Here, the metric tensor g is not the identity and changes
at each point. This is necessary in order to measure the
same distances at various locations in the coordinate frame.
Fig. 10 shows two pointsA andB represented on a spherical
coordinate system. Moving these points to A′ and B′, in the
direction of the r−coordinate, will also change the distance
between them. However, this does not happen in a Cartesian
coordinate system. On further elaboration, we see that the

Fig. 10: Translating points A and B in spherical coordinates.

change of coordinates from Cartesian to spherical (described
by the transformation function f ), results in the following
expression for the metric tensor:

(x, y, z) = f(r, θ, φ) g = JTf Jf (36)

In this case g depends only on Jf as the metric tensor in the
Cartesian coordinate system is the identity.

Moving on to the application of this theory in our work,
we have a surface Mi (see Fig. 2) undergoing an isometric

deformation which leads to Mj . A point z ∈ Mi becomes
w ∈Mj . Since ψij is an isometric deformation, the infinites-
imal distances around w will be the same as that of z, as
both of them represent the same point on different isometric
surfaces. This is analogous to equations (34) and (35).

APPENDIX B
CHRISTOFFEL SYMBOLS (CS)

In the previous section we saw that the metric tensor in
a Cartesian coordinate system (equation (34)) is written as
an identity matrix, but this may not be true for the metric
tensors in other coordinate systems (equation (35)). In such
coordinate systems, since the metric tensor keeps on chang-
ing with the coordinates, we can define its change using CS.
Therefore, CS is a set of numbers which are the components
of vectors that represent the change in metric tensor. They
are defined as the CS of first kind (Γcab) and the CS of
second kind (Γdab) related by the expression Γcab = gcdΓ

d
ab.

Therefore it is very easy to recover the CS of one kind given
the other ones. In our work, we found that the expressions
of the CS of second kind were simpler and therefore, we use
only these. In the Cartesian coordinate system, the metric
tensor is the identity and therefore, all the CS of second
kind are zero. However, in the spherical coordinate system,
the metric tensor is variable and the CS of second kind are:

Γr =

0 0 0
0 −r 0
0 0 −r sin2 θ

 Γθ =

 0 r−1 0
r−1 0 0
0 0 − sin θ cos θ


Γφ =

 0 0 r−1

0 0 cot θ
r−1 cot θ 0

 .

(37)

They are expressed in terms of the metric tensor and its first
order derivatives. Therefore, we can define them at various
surfaces and use them in our framework, just like the metric
tensor. The CS are given by:

Γpmn =
1

2
gpl (glm,n + gln,m − gmn,l) , (38)

where glm,n = ∂nglm and gpl = (gpl)
−1. We write the

derivatives of the metric tensor for the spherical coordinate
system as:

∂rg =

0 0 0
0 2r 0
0 0 2r sin2 θ

 ∂θg =

0 0 0
0 0 0
0 0 r2 sin 2θ


∂φg =

0 0 0
0 0 0
0 0 0

 .
(39)

Given gpl =

1 0 0
0 r−2 0
0 0 r−2sin−2 θ

 and glm,n (obtained in

equation (39)), we obtain the CS of the spherical coordinate
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system given in equation (37) using equation (38). For
example, Γrθθ, according to equation (38) is given by

Γrθθ =
1

2
grr (grθ,θ + grθ,θ − gθθ,r)

+
1

2
grθ (gθθ,θ + gθθ,θ − gθθ,θ)

+
1

2
grφ (gφθ,θ + gφθ,θ − gθθ,φ)

=
1

2
(0 + 0− 2r) + 0 + 0 = −r.

(40)

APPENDIX C
THEOREMS AND THEIR PROOFS

Theorem 1. Let x ∈ Ii, then Γpmn[φi(x)] is given by:

Γ1
mn[φi(x)] =

−1

αi

(
2αi,1 αi,2
αi,2 0

)
+

(αi)
2
Ai

Di

(
αi,11 αi,12
αi,12 αi,22

)
Γ2
mn[φi(x)] =

−1

αi

(
0 αi,1
αi,1 2αi,2

)
+

(αi)
2
Bi

Di

(
αi,11 αi,12
αi,12 αi,22

)
,

(41)

where αi,k =
∂αi
∂xk

, αi,nm =
∂2αi

∂xn∂xm
and:

Ai = −x1αi +
(

1 +
(
x1
)2)

αi,1 + x1x2αi,2

Bi = −x2αi +
(

1 +
(
x2
)2)

αi,2 + x1x2αi,1

Di =
(
αi − x1αi,1 − x2αi,2

)2
+ (αi,1)

2
+ (αi,2)

2
.

(42)

Proof. From the definition of φi(x) in equation (4), we can
write the Jacobian matrix of φi(x) as:

Jφi(x) =
1

α2
i

αi − x1αi,1 −x1αi,2
−x2αi,1 αi − x2αi,2
−αi,1 −αi,2

. (43)

Next we compute the metric tensor by substituting the
Jacobian matrix from equation (43) in equation (6). The
metric tensor is given by

g11[φi(x)] =
1

α4
i

(
ε2 (αi,1)

2
+ (αi)

2 − 2x1αiαi,1
)

g12[φi(x)] =
1

α4
i

(
ε2αi,1αi,2 − x1αiαi,2 − x2αiαi,1

)
g22[φi(x)] =

1

α4
i

(
ε2 (αi,2)

2
+ (αi)

2 − 2x2αiαi,2
)
.

(44)

where ε2 = 1 +
(
x1
)2

+
(
x2
)2. The inverse of metric tensor

is given by

g11[φi(x)] =
g22[φi(x)]

det(g[φi(x)])
=

(αi)
8
g22[φi(x)]

Di

g12[φi(x)] =
−g12[φi(x)]

det(g[φi(x)])
=
− (αi)

8
g12[φi(x)]

Di

g22[φi(x)] =
g11[φi(x)]

det(g[φi(x)])
=

(αi)
8
g11[φi(x)]

Di
.

(45)

The derivatives of the metric tensor are given by

g11,1[φi(x)] = −4αi,1
αi

g11[φi(x)] +
2Eiαi,11

(αi)
4

g12,1[φi(x)] = −4αi,1
αi

g12[φi(x)]− Hi

(αi)
4 +

Eiαi,12 + Fiαi,11

(αi)
4

g22,1[φi(x)] = −4αi,1
αi

g22[φi(x)] +
2Li

(αi)
4 +

2Fiαi,12

(αi)
4

g11,2[φi(x)] = −4αi,2
αi

g11[φi(x)] +
2Hi

(αi)
4 +

2Eiαi,12

(αi)
4

g12,2[φi(x)] = −4αi,2
αi

g12[φi(x)]− Li

(αi)
4 +

Eiαi,22 + Fiαi,12

(αi)
4

g22,2[φi(x)] = −4αi,2
αi

g22[φi(x)] +
2Fiαi,22

(αi)
4 ,

where Ei =
(

1 +
(
x1
)2

+
(
x2
)2)

αi,1 − x1αi,

Fi =
(

1 +
(
x1
)2

+
(
x2
)2)

αi,2 − x2αi,

Hi = x2 (αi,1)
2

+ αiαi,2 − x1αi,1αi,2,
and Li = x1 (αi,2)

2
αi,1αi +−x2αi,1αi,2.

(46)

According to equation (9), the CS are given by

Γpmn[φi(x)] =

1

2
gp1[φi(x)] (g1m,n[φi(x)] + g1n,m[φi(x)]− gmn,1[φi(x)]) +

1

2
gp2[φi(x)] (g2m,n[φi(x)] + g2n,m[φi(x)]− gmn,2[φi(x)]) .

(47)

Using the metric tensor and its derivative from equa-
tions (44) and (46) in the expression for the CS given in
equation (47), gives the result in equation (41). For example,
Γ1
11[φi(x)] is given by

Γ1
11[φi(x)] =

1

2
g11[φi(x)] (g11,1[φi(x)])

+
1

2
g12[φi(x)] (2g21,1[φi(x)]− g11,2[φi(x)])

=
(αi)

8
g22[φi(x)]

Di

(
−2αi,1

αi
g11[φi(x)] +

Eiαi,11

(αi)
4

)

− (αi)
8
g12[φi(x)]

Di

(
−4αi,1

αi
g12[φi(x)]− 2Hi

(αi)
4

)

− (αi)
8
g12[φi(x)]

Di

(
Fiαi,11

(αi)
4 +

2αi,2
αi

g11[φi(x)]

)

=
−2αi,1
αi

+
(αi)

2
Ai

Di
.

(48)

Theorem 2. Let ψij be an isometric mapping between the
manifolds Mi and Mj , then gmn[φj ] = gmn[φi ◦ ηji] with
(i, j) ∈ [1, N ]× [1, N ].

Proof. We first write φj in terms of φi using the isometric
mapping ψij :

φj = ψij ◦ φi ◦ ηji. (49)
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From equations (8) and (49) we have:

gmn[φj ] = gmn[(ψij◦φi)◦ηji] =
∂xs

∂ym
∂xt

∂yn
gst[ψij◦φi]. (50)

By definition, isometric mappings do not change the local
metric and so g[ψij ◦ φi] = g[φi], which applied to equa-
tion (50) gives:

gmn[φj ] =
∂xs

∂ym
∂xt

∂yn
gst[φi]. (51)

Identifying equation (8) with equation (51) gives the sought
equality gmn[φj ] = gmn[φi ◦ ηji].

Corollary 1. Let ψij be an isometric mapping between the
manifolds Mi and Mj , then Γpmn[φj ] = Γpmn[φi ◦ ηji] with
(i, j) ∈ [1, N ]× [1, N ].

Proof. As described in equation (9), Γpmn[φj ] is a function of
gmn[φj ] and its derivatives. From Theorem 2 we have that
gmn[φj ] = gmn[φi ◦ ηji]. By multiplying this expression in
both sides by gmn[φj ] we have:

gmn[φj ]gmn[φj ] = gmn[φj ]gmn[φi ◦ ηji] = δmn, (52)

from which we deduce that gmn[φj ] = gmn[φi ◦ ηji]. Also,
by differentiating gmn[φj ] = gmn[φi ◦ ηji] on both sides we
have:

∂lgmn[φj ] = ∂lgmn[φi ◦ ηji], (53)

giving gmn,l[φj ] = gmn,l[φi ◦ ηji]. By substitution of these
identities in equation (51) we obtain:

Γpmn[φj ] =

1

2
gpl[φi ◦ ηji](glm,n[φi ◦ ηji] + gln,m[φi ◦ ηji]− gmn,l[φi ◦ ηji]),

and thus the equality Γpmn[φj ] = Γpmn[φi ◦ ηji] holds.

Theorem 3. IfM is a plane then its image embedding at x ∈ I
is φ(x) = β(x)−1(x 1)> with β a linear function.

Proof. Suppose M is a plane described by the equation
n>z+d = 0, where z =

(
z1 z2 z3

)> and n is the plane’s
normal. From equation (3), the embedding is expressed with
a depth function φ(x) = ρ(x)

(
x 1

)>. By combining the
depth parametrisation with the plane equation, we have:

n>ρ(x)
(
x 1

)>
+ d = 0, (54)

from which we compute ρ as:

ρ(x) =
−d

n>
(
x 1

)> . (55)

By defining β(x) = (ρ(x))−1, φ is written as:

φ(x) = β(x)−1(x 1)>. (56)

Corollary 2. Let M be a plane and φ(x) the image embedding
at x ∈ I , the CS Γpmn[φ(x)] are given by:

Γ1
mn[φ(x)] =

1

β(x)

(
−2β1(x) −β2(x)
−β2(x) 0

)

Γ2
mn[φ(x)] =

1

β(x)

(
0 −β1(x)

−β1(x) −2β2(x)

)
,

(57)

where β1(x) =
∂β(x)

∂x1
and β2(x) =

∂β(x)

∂x2
.

Proof. From the definition of φ(x) in equation (56), we can
write the Jacobian matrix of φ(x) as:

Jφ(x) =
1

β(x)2

β(x)− x1β1(x) −x1β2(x)
−x2β1(x) β(x)− x2β2(x)
−β1(x) −β2(x)

.
(58)

Using equation (6), the metric tensor at φ(x) can be written
as J>φ(x)Jφ(x) . The expression is given by

g11[φ(x)] =
1

β4

(
ε2 (β1)

2
+ β2 − 2x1ββ1

)
g12[φ(x)] =

1

β4

(
ε2β1β2 − x1ββ2 − x2ββ1

)
g22[φ(x)] =

1

β4

(
ε2 (β2)

2
+ β2 − 2x2ββ2

)
.

(59)

where ε2 = 1 +
(
x1
)2

+
(
x2
)2. The derivatives of the metric

tensor are given by:

g11,1[φ(x)] = −4β1
β

g11[φ(x)]

g12,1[φ(x)] = −4β1
β

g12[φ(x)]− H

(β)
4

g22,1[φ(x)] = −4β1
β

g22[φ(x)] +
2L

(β)
4

g11,2[φ(x)] = −4β2
β

g11[φ(x)] +
2H

(β)
4

g12,2[φ(x)] = −4β2
β

g12[φ(x)]− L

(β)
4

g22,2[φ(x)] = −4β2
β

g22[φ(x)].

(60)

where H = x2 (β1)
2
+ββ2−x1β1β2 and L = x1 (β2)

2
β1β+

−x2β1β2. Note that there are no second order derivatives
in the above expression because they vanish in the case of
planes. This leads to the CS in equation (57).

Theorem 4. Given that Mi with i ∈ [1, N ] are planes, the
registration warps ηij with (i, j) ∈ [1, N ] × [1, N ] are point-
wise solutions of the 2D Schwarzian equations.

Proof. The elements of the CS for Mi with i = [1, . . . , N ]
have the form of (15), and thus must comply with the
following algebraic constraints:

Γ1
22[φi] =Γ2

11[φi] = 0

2Γ2
12[φi] =Γ2

22[φi]

Γ1
11[φi] =2Γ2

12[φi].

(61)

From Corollary 1 we have Γpmn[φj ] = Γpmn[φi ◦ ηji]. Now
we use equation (10) to compute Γpnm[φi ◦ηji] from Γpnm[φi]
given in equation (57). Given that x = ηji(y), we write

Γpnm[φi ◦ ηji] =

∂1y
p

(
−2

βi,1
βi

∂mx
1∂nx

1 − βi,2
βi

(
∂mx

1∂nx
2 + ∂mx

2∂nx
1
))

+

∂2y
p

(
−2

βi,2
βi

∂mx
2∂nx

2 − βi,1
βi

(
∂mx

1∂nx
2 + ∂mx

2∂nx
1
))

+

∂1y
p∂2mnx

1 + ∂2y
p∂2mnx

2.
(62)
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By forcing conditions in equation (61) in Γ[φi◦ηji] we obtain
the following four second order PDEs only in ηji(

∂211x
1
) (
∂1x

2
)
−
(
∂211x

2
) (
∂1x

1
)

= 0(
∂222x

1
) (
∂2x

2
)
−
(
∂222x

2
) (
∂2x

1
)

= 0(
∂11x

1
) (
∂2x

2
)
−
(
∂11x

2
) (
∂2x

2
)

+2
((
∂12x

1
) (
∂1x

2
)
−
(
∂12x

2
) (
∂1x

1
))

= 0(
∂22x

1
) (
∂1x

2
)
−
(
∂22x

2
) (
∂1x

1
)

+2
((
∂12x

1
) (
∂2x

2
)
−
(
∂12x

2
) (
∂2x

1
))

= 0.

(63)

These are the 2D Schwarzian equations introduced
in (Pizarro et al., 2016), where point-wise projective warps
were investigated.


