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Abstract

We study Isometric Non-Rigid Shape-from-Motion (Iso-

NRSfM): given multiple intrinsically calibrated monocular

images, we want to reconstruct the time-varying 3D shape

of an object undergoing isometric deformations. We show

that Iso-NRSfM is solvable from the warps (the inter-image

geometric transformations). We propose a new theoreti-

cal framework based on Riemmanian manifolds to repre-

sent the unknown 3D surfaces, as embeddings of the cam-

era’s retinal planes. This allows us to use the manifolds’

metric tensor and Christoffel Symbol fields, which we prove

are related across images by simple rules depending only

on the warps. This forms a set of important theoretical re-

sults. Using the infinitesimal planarity formulation, it then

allows us to derive a system of two quartics in two variables

for each image pair. The sum-of-squares of these polyno-

mials is independent of the number of images and can be

solved globally, forming a well-posed problem for N ≥ 3
images, whose solution directly leads to the surface’s nor-

mal field. The proposed method outperforms existing work

in terms of accuracy and computation cost on synthetic and

real datasets.

1. Introduction

One of the main problems in 3D vision is to recon-

struct an object’s 3D shape from multiple views. This has

been solved for the specific case of rigid objects from inter-

image visual motion, and is known as Shape-from-Motion

(SfM) [13]. However, SfM breaks down for non-rigid ob-

jects. Two ways to exploit visual motion for non-rigid

object reconstruction have been proposed: Shape-from-

Template (SfT) [2, 3, 26, 5] and Non-Rigid Shape-from-

Motion (NRSfM) [4, 17, 1, 16, 25]. The latter is a direct

extension of SfM to the non-rigid case. The former how-

ever, is not. Indeed, the inputs of SfT are a single image

and the object’s template, and its output is the object’s de-

formed shape. The template is a very strong object-specific

prior, as it includes a reference shape, a texture map and a

deformation model. Most SfT methods use physics-based

deformation models such as isometry [3, 26]. This is be-

cause isometry is a very good approximation to the defor-

mation of many real objects. The inputs of NRSfM are

multiple images and its output is the object’s 3D shape for

every image. In NRSfM, the rigidity constraint of SfM is

replaced by constraints on the object’s deformation model.

NRSfM methods were proposed for a variety of deforma-

tion models: the low-rank shape basis [17], the trajectory

basis [20, 8], isometry [4, 25] and elasticity [7]. Existing

methods suffer one or several limitations amongst solution

ambiguities, low accuracy, ill-posedness, inability to handle

missing data and high computation cost. NRSfM thus still

exists as an open research problem.

We present a solution to NRSfM with the isometric de-

formation model, that we hereinafter denote Iso-NRSfM.

We model Iso-NRSfM using concepts from Riemannian

geometry. Our framework relates the 3D shape to the

inter-image warps, which we simply call warps. These

may be computed from keypoint correspondences in sev-

eral ways [10, 22], and we assume they are known. More

specifically, we model the object’s 3D shape for each image

by a Riemmanian manifold and deformations as isometric

mappings. We parameterize each manifold by embedding

the corresponding retinal plane. This allows us to reason

on advanced surface properties, namely the metric tensor

and Christoffel Symbols, directly in retinal coordinates, and

in relationship to the warps. We prove two new theorems

showing that the metric tensor and Christoffel Symbols may

be transferred between views using only the warp. For an

infinitesimally planar surface, we obtain a system of two

quartics in two variables that involves up to second order

derivatives of the warps. This system holds at each point.

Its solution gives an estimate of the metric tensor, and thus

of the surface’s normal, in all views. The shape is finally

recovered by integrating the normal fields for each view.

The proposed method has the following features. 1) It

has a linear complexity in the number of views and num-

ber of points. 2) It uses a well-posed point-wise solution

from N ≥ 3 views, thus covering the minimum data case.
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3) It naturally handles missing data created by occlusions.

4) It substantially outperforms existing methods in terms

of complexity and accuracy, as we experimentally verified

using synthetic and real datasets. Beyond the proposed

method, we bring a completely new theoretical framework

to NRSfM allowing one to exploit the surface’s metric ten-

sor and Christoffel Symbols in a simple and neat way.

2. State-of-the-Art

Existing NRSfM methods can be divided into three main

categories: i) object-wise, ii) piece-wise and iii) point-wise

methods. i) solves for the entire object’s shape at once. This

group includes methods that assume a low-dimensional

space of deformed shapes [17, 11, 12]. These methods

have been extensively studied in the recent years with the

low-rank prior [11] and other constraints such as tempo-

ral smoothness [17] or point trajectory constraints [20, 8].

They have demonstrated to be accurate for objects with a

low number of deformation modes, such as a talking face

and articulated objects. These methods suffer in the pres-

ence of missing data and may present ambiguities [28] (for

instance due to the orthographic camera assumption). i) also

includes methods using physics-based models such as isom-

etry [25], elastic deformations [7] or particle-based interac-

tions [6]. [25] copes with missing data but involves costly

non-convex optimization, which requires a very good ini-

tialization. Recently [7, 6] proposed a sequential solution

based on elasticity [7] and particle interaction [6]. Both

methods are promising but require rigid motion at the be-

ginning of the sequence to reconstruct the object’s shape

using rigid SfM. Those methods are related to SfT.

Methods in ii) and iii) are sometimes also called local

methods. In piece-wise methods one selects a simple model

that approximates the shape of a small region of the sur-

face. NRSfM is then solved for each region. This can be

analytical for planes [1] and local rigid motions with both

the orthographic [16] and perspective [24] cameras. More

complex models, such as the local quadratic models [15],

require non-linear iterative optimization. After solving for

each region’s approximate shape, a second step is to stitch

together all reconstructions, imposing some order of conti-

nuity in the surface. In [23] stitching is done using submod-

ular optimization. For some other models stitching can be

solved by Linear Least Squares (LLS) [4]. Piece-wise meth-

ods are very problematic due to the need for segmenting the

image domain in regions from which the local models are

computed. Region segmentation is costly and difficult to

define optimally for general surfaces. This has a major im-

pact in the efficiency and accuracy of these methods.

Point-wise methods replace local regions with infinites-

imal regions, which allows one to describe NRSfM as a

system of Partial Differential Equations (PDE) involving

differential properties of the shape and derivatives of the

warps [10]. [4] presents a point-wise solution for isomet-

ric NRSfM assuming that the surface is infinitesimally pla-

nar. It gives analytical solutions to compute the surface’s

twofold ambiguous normal at any point from a pair of

views. The strategy given in [4] is to average over the nor-

mals that are compatible across different pairs. This finds

a single normal per point but requires in practice a large

amount of image pairs to be accurate and may thus be very

expensive. The global shape is then obtained by integration

of the normal fields by means of LLS. Although [4] reports

better results with respect to other methods, we show that it

fails in several other cases.

Point-wise methods form a promising solution for Iso-

NRSfM. In principle, they allow one to overcome the com-

plexity, missing data, and accuracy limitations of other

methods. However, in practice, no theoretical framework

and practical method were proposed which overcome these

limitations. Our paper attempts to fill this gap by proposing

a Riemannian framework coupled with infinitesimal pla-

narity, leading to a method solving NRSfM accurately, us-

ing small globally solvable optimization problems, and in

time complexity linear in the number of images and points.

3. Mathematical Model

3.1. General Model

Our model of NRSfM is shown in figure 1. We have N

input images I1, . . . , IN that show the projection of differ-

ent isometric deformations of the same surface. The regis-

tration between the pair of images Ii and Ij is known and

denoted by the functions ηij and ηji, called warps. In prac-

tice, we compute them from keypoint correspondences us-

ing [22]. Abusing notation, we also use Ii to denote an

image’s retinal plane, with Ii ⊂ R
2. Surfaces in 3D are

...

...

Figure 1: The proposed model of NRSfM, where each sur-

face is a Riemannian manifold.

assumed to be Riemannian manifolds. This allows us to de-

fine lengths, angles and tangent planes on the surface [18].

We denote Mi as the ith manifold, which can be seen as a

two-dimensional subset embedded in 3D, Mi ⊂ R
3. We

use the extrinsic definition of Mi, where a function embeds

a subset of the plane R2 into R
3. With embedding functions,
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one can easily compute manifold characteristics [19] such

as metric tensors and Christoffel Symbols. However, these

characteristics change according to the coordinate frame.

We use the retinal plane Ii as coordinate frame for Mi and

define φi ∈ C∞(Ii,R
3) as the image embedding for Mi.

We define ψij as the isometric mapping between manifolds

Mi and Mj .

3.2. Image Embeddings

We use the perspective camera as projection model. For

a 3D point z =
(

z1 z2 z3
)⊤

we define perspective pro-

jection Π as:

x = Π(z) x =

(

z1

z3
z2

z3

)⊤

, (1)

where x is the projected point’s retinal coordinates. The

image embeddings φi with i = 1, . . . , N define the inverse

of a perspective projection, as they map retinal coordinates

to a 3D surface. They thus satisfy the following identity:

x = (Π ◦ φi)(x) i = 1, . . . , N. (2)

Smooth functions that comply with (2) can be expressed

with a depth map ρi ∈ C∞(Ii,R), where:

φi(x) = ρi(x)
(

x 1
)⊤

i = 1, . . . , N. (3)

3.3. Metric Tensors

The metric tensor [18] of φi is denoted gmn[φi]. We use

the standard Einstein’s tensor notation and thus gmn[φi] is

a combined reference to all elements of the metric tensor, a

2 × 2 matrix in this case. The indexes m and n reference

to each component of the coordinate frame of φi, that we

denote with x =
(

x1 x2
)⊤

. We have z = φi(x), where

z =
(

z1 z2 z3
)⊤

. The metric tensor of φi is then:

gmn[φi] =
∂zs

∂xm
∂zk

∂xn
δsk, (4)

with δsk Kronecker’s delta function. We remind that the

summation in (4) is done over indices s and k. The in-

verse of the metric tensor is expressed with raised indexes

gmn[φi]. Given the change of coordinates:

x = η(y), with y =
(

y1 y2
)⊤
, (5)

the metric tensor of φi ◦ η is obtained as:

gst[φi ◦ η] =
∂xm

∂ys
∂xn

∂yt
gmn[φi], (6)

where in (6) we omit that gmn[φi] is composed with η to

simplify notation.

We introduce next a theorem regarding the relationship

between the metric tensors in the different manifolds φi
with i = 1, . . . , N if the mappings ψij with {i, j} ∈
{1, . . . , N}2 are isometric. This theorem is fundamental

for the formulation of our method.

Theorem 1. Let ψij be an isometric mapping between

the manifolds Mi and Mj describing Iso-NRSfM, then

gmn[φj ] = gmn[φi ◦ ηji] with (i, j) ∈ {1, . . . , N}2.

Proof. We first write φj in terms of φi using the isometric

mapping ψij :

φj = ψij ◦ φi ◦ ηji. (7)

From (6) and (7) we have:

gmn[φj ] = gmn[(ψij ◦φi) ◦ ηji] =
∂xs

∂ym
∂xt

∂yn
gst[ψij ◦φi].

(8)

By definition isometric mappings do not change the local

metric and so g[ψij ◦ φi] = g[φi], which applied to (8)

gives:

gmn[φj ] =
∂xs

∂ym
∂xt

∂yn
gst[φi]. (9)

Identifying (6) with (9) gives the sought equality gmn[φj ] =
gmn[φi ◦ ηji].

Theorem 1 shows that given gmn[φi], we can find the

metric tensor gmn[φj ] in the manifold Mj by making a

change of variable with the known function ηji. Note that

this is not true in general for non-isometric mappings.

3.4. Christoffel Symbols

The Christoffel Symbols (CS) [18] of the second kind

are functional arrays that describe several properties of a

Riemannian manifold, such as the curvature tensor, the

geodesic equations of curves and the parallel transport of

vectors in surfaces. We denote the CS of function φi as

Γp
mn[φi]. Sometimes it is useful to represent the CS of φi

as two 2× 2 matrices Γ1
mn[φi] and Γ2

mn[φi], where 1 and 2
are bases of the coordinate frame of φi. The CS are obtained

from the metric tensor and its first derivatives:

Γp
mn[φi] =

1

2
gpl[φi] (glm,n[φi] + gln,m[φi]− gmn,l[φi]) ,

(10)

where glm,n = ∂nglm. Given a change of coordinates x =
η(y), the CS in the new coordinates are given as:

Γ
q
st[φi◦η] =

∂xm

∂ys
∂xn

∂yt
Γp
mn[φi]

∂yq

∂xp
+
∂yq

∂xl
∂2xl

∂ys∂yt
. (11)

Note that although the CS are described using tensorial no-

tation, they are not tensors and thus (11) does not corre-

spond to the way tensors change coordinates. We now give

a corollary of Theorem 1 regarding the relationship of the

CS between the manifolds in Iso-NRSfM.
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Corollary 1. Let ψij be the isometric mapping between

the manifolds Mi and Mj describing Iso-NRSfM, then

Γp
mn[φj ] = Γp

mn[φi ◦ ηji] with (i, j) ∈ {1, . . . , N}2.

Proof. As described in (10), Γp
mn[φj ] is a function of

gmn[φj ] and its derivatives. From Theorem 1 we have that

gmn[φj ] = gmn[φi ◦ ηji]. By multiplying this expression

in both sides by gmn[φj ] we have:

gmn[φj ]gmn[φj ] = gmn[φj ]gmn[φi ◦ ηji] = δmn, (12)

from which we deduce that gmn[φj ] = gmn[φi ◦ηji]. Also,

by differentiating both sides we obtain

∂lgmn[φj ] = ∂lgmn[φi ◦ ηji], (13)

obtaining gmn,l[φj ] = gmn,l[φi ◦ η]. By substitution of

these identities in (10) we obtain:

Γp
mn[φj ] =

1

2
gpl[φi ◦ ηji] (glm,n[φi ◦ ηji]+

gln,m[φi ◦ ηji]− gmn,l[φi ◦ ηji]) , (14)

and thus the equality Γp
mn[φj ] = Γp

mn[φi ◦ ηji] holds.

This corollary has a similar interpretation as Theorem 1.

If the CS are known in one manifold, isometric mappings

allow one to reconstruct them in the other manifolds via a

change of variable given by the warps.

3.5. Infinitesimal Planarity

In infinitesimal planarity one assumes that a surface is at

each point approximately planar. This is fundamentally dif-

ferent from piece-wise planarity: in infinitesimal planarity,

the surface is globally curved and represented infinitesi-

mally by an infinite set of planes. In other words, each in-

finitesimal model agrees with the global surface at the point

where infinitesimal planarity is used only at zeroth order.

We use this approximation to find a point-wise solutions

to Iso-NRSfM. We proceed by assuming that any Mi for

i ∈ {1 . . . , N} is a plane and deriving the differential prop-

erties of the image embedding φi, the metric tensor and the

CS. We use these differential properties at each point of Mi.

We give two theorems and a corollary about the special

properties of Mi with i ∈ {1, . . . , N}, assuming planarity:

1) Theorem 2 shows that the inverse depth in the embed-

ding φi is a linear function, 2) Corollary 2 states that point-

wise both the metric tensor and the CS of Mi are described

with the same 3 parameters and 3) Theorem 3 shows that

the image warps ηji must comply with the so-called 2D

Schwarzian derivatives [27], that arise in the field of pro-

jective differential geometry.

Theorem 2. If Mi is a 3D plane then its image embedding

is φi(x) = βi(x)
−1(x 1)⊤ with βi a linear function.

Proof. Suppose the embedding Mi is a plane described by

the equation n⊤z+ d = 0, where z =
(

z1 z2 z3
)⊤

and

n is the plane’s normal. From (3), the embedding is ex-

pressed with a depth function φi(x) = ρi(x)
(

x 1
)⊤

. By

combining the depth parametrization with the plane equa-

tion, we have:

n⊤ρi(x)
(

x 1
)⊤

+ d = 0, (15)

from which we compute ρi as:

ρi(x) =
−d

n⊤
(

x 1
)⊤
. (16)

By defining βi(x) = (ρi(x))
−1, φi is written as:

φi(x) = βi(x)
−1(x 1)⊤. (17)

Given Mi as a plane, its CS computed from the image

embedding φi has a special structure that we reveal in the

next corollary of Theorem 2.

Corollary 2. If Mi is a plane then Γp
mn[φi] is given by:

Γ1
mn[φi] =

1

βi

(

−2βi1 −βi2
−βi2 0

)

Γ2
mn[φi] =

1

βi

(

0 −βi1
−βi1 −2βi2

) (18)

where βi1 =
∂βi

∂x1
and βi2 =

∂βi

∂x2
.

Proof. This proof requires the manipulation of large ex-

pressions, and we thus only sketch it for the sake of read-

ability. From the definition of φi in (17), we can write the

Jacobian matrix of φi as:

Jφi
(x) =

1

βi(x)2

(

βi(x)− x1βi1
(x) −x1βi2

(x)
−x2βi1

(x) βi(x)− x2βi2
(x)

−βi1
(x) −βi2

(x)

)

.

(19)

Note that if z = φi(x), the element at the sth row and kth

column of Jφi
(x) corresponds to dzs

dxk . Next we compute

the CS by substituting (19) in (4). The metric tensor and its

first derivates are then fed into (10) to obtain (18).

Theorem 3. Given that Mi with i = {1, . . . , N} are in-

finitesimal planes, the registration warps ηij with i, j ∈
{1, . . . , N}2 are point-wise solutions of the 2D Schwarzian

equations.

Proof. The elements of the CS for Mi with i = {1, . . . , N}
have the form of (18), and thus must comply with the fol-
lowing algebraic constraints:

Γ
1

22
[φi] = Γ

2

11
[φi] = 0 2Γ2

12
[φi] = Γ

2

22
[φi] Γ

1

11
[φi] = 2Γ2

12
[φi]
(20)
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where i ∈ {1, . . . , N}. From Corollary 1 we have
Γ[φj ]

p
mn = Γ[φi ◦ ηji]

p
mn. Now we use (11) to compute

Γ[φi ◦ ηji]
p
nm in function of βi, βi1, βi2 and the derivatives

of ηji up to second order. By forcing conditions in (20) in

Γ[φi ◦ ηji] we obtain four second order PDEs only in ηji.
Given that y = ηji(x) we obtain:

(∂2

11
y1)(∂1y

2) − (∂2

11
y2)(∂1y

1) = 0
(∂2

22
y1)(∂2y

2) − (∂2

22
y2)(∂2y

1) = 0
(∂11y

1)(∂2y
2) − (∂11y

2)(∂2y
2)+

2
(

(∂12y
1)(∂1y

2) − (∂12y
2)(∂1y

1)
)

= 0
(∂22y

1)(∂1y
2) − (∂22y

2)(∂1y
1)+

2
(

(∂12y
1)(∂2y

2) − (∂12y
2)(∂2y

1)
)

= 0

(21)

the 2D Schwarzian equations of [22], where point-wise pro-

jective warps were investigated.

4. Reconstruction Equations

4.1. Point­Wise Solution

We show now that local solutions to the NRSfM problem

are obtained from a system of two quartics in two variables.

We first select a pair of surfaces Mi and Mj and a point

x = (x1, x2)⊤ ∈ Ii. We evaluate Γp
mn[φi] at x, namely

Γp
mn[φi(x)], and use two unknown scalar variables, k1 and

k2 to parametrize the CS using (18) as follows:

Γ[φi(x)]
1
mn =

(

−2k1 −k2

−k2 0

)

Γ[φi(x)]
2
mn =

(

0 −k1

−k1 −2k2

)

,

(22)

where k1 = βi1

βi

and k2 = βi2

βi

. Next we expand Jφi
ac-

cording to (19) using k1 and k2:

Jφi
(x) =

1

βi(x)





1− k1x
1 −k2x

1

−k1x
2 1− k2x

2

−k1 −k2



 (23)

By substitution of equation (23) into equation (4) we have:

g11[φi(x)] =
1

βi(x)2
(

k2

1 + (k1x
1
− 1)2 + (k1x

2)2
)

g12[φi(x)] =
1

βi(x)2
(

k1k2(1 + (x1)2 + (x2)2)− k2x
1
− k1x

2
)

g22[φi(x)] =
1

βi(x)2
(

k2

2 + (k2x
1)2 + (k2x

2
− 1)2

)

(24)

We define Gmn = βi(x)
2gmn[φi(x)], which only depends

on k1 and k2. We now use x = ηji(y) and from (11) we

obtain Γp
mn[φi ◦ ηji(y)]:

Γ1
mn[(φi ◦ ηji)(y)] =

(

−2k̄1 −k̄2
−k̄2 0

)

Γ2
mn[(φi ◦ ηji)(y)] =

(

0 −k̄1
−k̄1 −2k̄2

)

,

(25)

where k̄1 and k̄2 are linear combinations of k1 and k2.

Rewriting (24) for φj(y) we obtain gmn[φj(y)] in function

of k̄1, k̄2 and βj(y). We then define Gmn = βj(y)
2g[φi ◦

ηji(y)]mn. From (6) and using the definitions of Gmn and

Gmn we have the following equations:

1

βi(x)2
Gst =

1

βj(y)2
∂xm

∂ys
∂xn

∂yt
Gmn. (26)

We cancel βi(x) and βj(y) by converting the system in (26)

into the following two equations:

G11

(

∂xm

∂y1
∂xn

∂y2
Gmn

)

−G12

(

∂xm

∂y1
∂xn

∂y1
Gmn

)

= 0

G11

(

∂xm

∂y2
∂xn

∂y2
Gmn

)

−G22

(

∂xm

∂y1
∂xn

∂y1
Gmn

)

= 0, (27)

which may be written in matrix form as:

Gst ∝
∂xm

∂ys
∂xn

∂yt
Gmn. (28)

Equation (27) is a system of two quartics in two vari-

ables k1 and k2, modeling Iso-NRSfM for manifolds Mi

and Mj at point x ∈ Ii. We denote the two equa-

tions as Pi,j(x, k1, k2). By keeping the first index as the

reference manifold, for instance i = 1, and obtaining

the polynomials for the rest of views we obtain 2n − 2
polynomial equations in two variables P1(x, k1, k2) =
{P1,j(x, k1, k2)}

n
j=2. The solution in k1 and k2 to the poly-

nomial system P1(x, k1, k2) for a point x = x0 allows us to

reconstruct the metric tensor, the CS and the tangent plane

for point x0 in view I1. Using equation (23) we can re-

construct Jφi
(x0) up to an unknown scale βi(x0)

−1. It is

not necessary to recover this scale to estimate the unitary

normal, computed by taking the cross product of the two

columns of Jφi
(x0) and normalizing.

4.2. Algorithm

We describe our solution to NRSfM based on the theo-

retical results drawn from the previous sections. The inputs

of our system is a set of N images of a deforming object

and the outputs are the evaluated depths and normals of the

deformable objects depicted in each of N images. We fix

a reference image such as i = 1, and match point corre-

spondences between the reference image and the rest of the

images. From the matched correspondences, we evaluate

η1j warps using Schwarps [22] and extract a grid of points

on all images. For each point x in the grid we can write

the polynomial system described in (27). ForN images, we

have 2N − 2 polynomials with only 2 variables k1 and k2
(the CS of the reference image). There are two main steps

in our algorithm: 1) Find the CS of all images. We compute

a sum-of-squares of the 2N − 2 polynomials obtained from

(27) and find k1 and k2 by minimising this sum-of-squares

polynomial using [14]. By using k1 and k2, we can write

the CS for the rest of the images using (11). 2) Evaluate

depths and normals of the N deformable objects. Now that

we have the CS for the grid points in all the images, the

normals can be obtained by normalising the cross-product
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Figure 2: Some images of the rug (top) and cat (bottom) datasets. The five rightmost images of the cat dataset are zoomed in

to improve visibility.
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Figure 3: Synthetic data experiments. Average shape and

depth errors with respect to number of views and noise.

of the two columns of the jacobian defined in (23) in terms

of the CS. Then, we use the method described in [4] to re-

cover the surfaces by integrating the normal fields.

5. Experimental Results

We report experiments with synthetic data and five sets

of real data. We compared our method1 with five other

NRSfM methods Chhatkuli [4], Varol [1], Taylor [16], Vi-

cente [25], Torresani [17], Gotardo [20] (only for tem-

poral sequences). The code for these methods was ob-

tained from the authors’ websites except Varol which we

re-implemented. We measure the shape error (mean dif-

ference between computed and ground truth normals in de-

grees) and depth error (mean difference between computed

and ground truth 3D coordinates) to quantify the results.

Experiments with synthetic data. We simulated random

scenes of a cylindrical surface deforming isometrically. The

image size is 640p × 480p and the focal length is 400p.

We tracked 400 points. We compared all methods by vary-

ing the number of views and noise in the images. The re-

sults are shown in figure 3. The results are obtained after

averaging the errors over 50 trials (the default is 1p noise

and 10 views). On varying number of views: Our method

1The code is available at https://github.com/shaifaliparashar.
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(b) Cat dataset
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(c) Kinect paper dataset

4 6 8 10
10

20

30

40

50

S
h

a
p

e
 E

rr
o

r 
(i

n
 d

e
g

re
e

s
)

Number of views
4 6 8 10

20

40

60

80

100

D
e

p
th

 E
rr

o
r 

(i
n

 m
m

)

Number of views

(d) Hulk dataset
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Figure 4: Real data experiments. Shape and depth errors

with number of views varying from 3 to 10.

gives a very good reconstruction for 3 views which im-

proves when more images are added. Varol, Vicente and
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Figure 5: Real data experiments made on the entire rug, cat

and kinect paper datasets.

Chhatkuli also perform a good reconstruction on varying

number of views. Taylor gives decent results with 8-10

views. Torresani needs a video sequence or views with

wide-baseline viewpoints, 10 views are not enough for re-

construction especially when they are low-baseline view-

points. It therefore did not do well. The proposed method

has consistently lower error then all others. The stan-

dard deviation of the depth error (in mm, for 10 images)

is 2.38, 22.96, 8.78, 6.70, 6.48, 6.36 for our method, Torre-

sani, Chhatkuli, Varol, Taylor and Vicente respectively. This

shows that that our method is also very consistent in terms

of reconstruction. On varying noise: For the 10 images of

the synthetic dataset, we observe that all methods change

the error linearly when noise varying from 1-5 pixels is

added. Vicente and Taylor show a good tolerance to noise,

even though their performance is worse than other meth-

ods. Our method, Chhatkuli and Varol give higher errors

with noise greater than 3 pixels. Our method gives the best

performance in the 1-3 pixel noise which is what we expect

in real images.

Experiments with real data. We conducted experiments

with five datasets: the hulk and t-shirt datasets (10 different

images of a paper and a cloth deformed isometrically; pub-

lic dataset [4]), the kinect paper dataset (a video sequence

of 191 frames and 1500 points of a paper deformed isomet-

rically; public dataset [9]), the rug dataset (159 images of

a rug deforming isometrically, captured using kinect, points

obtained using [21]) and the cat dataset (60 images of a table
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Figure 6: Reconstruction error maps for the rug, cat and

kinect paper datasets. The depth errors are depicted in mm.

Method Rug Cat Kinect paper

Our method 34.9 - 16.7 9.6 - 16.9 7.1 - 9.6

Gotardo 67.1 - 19.8 17.8 - 19.2 20.6 - 18.7

Torresani 92.7 - 33.3 40.9 - 24.7 22.9 - 26.9

Vicente X 19.1 - 22.4 X

Table 1: Summary of methods compared on the complete

sequences. Each block represents the average depth error

(in mm) - shape error (in ◦).

mat deforming isometrically, captured using kinect, points

obtained using [21]) (see figure 2). Our observations are
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% missing data Rug Cat Kinect paper

0 28.8 - 15.5 4.8 - 5.1 7.1 - 10.9

10 29.0 - 16.1 5.2 - 5.4 7.5 - 11.2

20 29.3 - 16.7 5.9 - 5.6 7.8 - 11.9

30 29.8 - 17.3 6.6 - 5.9 8.3 - 12.6

40 30.2 - 17.6 7.2 - 6.4 9.1 - 13.1

50 30.7 - 18.0 7.9 - 7.0 9.7 - 13.9

Table 2: Performance of our method in case of missing data.

Each block represents the average depth error (in mm) -

shape error (in ◦).

summarised below. The rug, cat and kinect paper datasets

are long sequences and the hulk and t-shirt are short datasets

(10 images, 110 and 85 point correspondences only). We

have designed two kinds of experiments: 1) Experiments

where the long sequences are uniformly sampled and we

compare our results with the rest of the methods (see fig-

ure 4). The results for the hulk and t-shirt datasets are av-

eraged over 20 trials of randomly picking up images. 2)

Experiments with entire sequences (see figure 5). Since our

method can easily handle a large number of images, it is im-

portant to show results on large sequences. A limitation of

current NRSfM methods is that they cannot handle a large

number of views. Also, several NRSfM methods [4, 1] re-

construct the reference image only and are computationally

expensive to recover the other shapes. Torresani, Gotardo

reconstruct the entire imageset in one execution and there-

fore, we compare our method with both of them on long

sequences. The cat dataset is a relatively short sequence (60

images) therefore, we added the results of Vicente for this

dataset on the entire sequence. Chhatkuli and Varol need

to compute homographies between image pairs, therefore,

they grow non-linearly with the number of views. For 60

images, the execution time goes up to 45 min for a single

reconstruction. Therefore, we did not compare against them

even on the cat sequence. Taylor breaks on the cat sequence,

therefore we did not include it. One must also note that Vi-

cente, Taylor and Torresani grow with the number of views

and point correspondences, therefore, they are not very ef-

ficient with a large number of views.

Rug, cat and kinect paper datasets. The length of the

portion of the rug, table mat and paper tracked is 1m,

35cm and 30cm respectively. Figure 4(a-c) show that

our method works best amongst the compared methods for

these datasets. We perform consistently better than the other

methods by a significant margin in these datasets. This is

quite in accordance with the results obtained for the syn-

thetic data. Varol, Chhatkuli also show good results on these

datasets. Vicente has a comparable depth error but relatively

higher shape error on these datsets. This indicates that the

reconstruction is more or less placed at the right place but

the object is flat. Taylor gives bad results on the rug and

cat dataset but decent results on the kinect paper dataset be-

cause it is a good dataset for orthographic methods as there

is not too much perspective in the deformations. Torresani

gives bad results because 10 views are not enough.

However, when compared against our method on the en-

tire sequences, Torresani gives better results because of the

higher number of views (see figure 5). Gotardo performs

better than Torresani on all the sequences and gives decent

results on the cat and rug dataset. Figure 6 shows the recon-

struction error maps for the rug, cat and kinect paper dataset

on some of the images used to compare all methods in fig-

ure 4. Table 1 summarises the performance of the compared

methods on the complete sequences.

Hulk and T-shirt datasets. The length of the portion of the

paper and cloth tracked is 24cm and 20cm respectively.

Figure 4(d-e) shows that our performance is very close to

Chhatkuli which is significantly better than other methods.

Chhatkuli is particularly better than Varol on these datasets

because it deals with wide-baseline data very effectively.

Torresani gives sensible results because even though there

are fewer views, the deformations are large and over wide-

baseline viewpoints.

Missing data. Current NRSfM methods do not deal with

occlusions and missing data effectively. Since our approach

is local, it deals with such conditions very effectively. Table

2 shows the average depth and shape error obtained on the

3 datasets when 0 − 50% data is missing from at least one

of the views. The errors shown in the table are calculated

only for the views which have missing data.

6. Conclusions

We proposed a theoretical framework for solving

NRSfM locally for surfaces deforming isometrically using

Riemannian geometry for manifolds for N ≥ 3 views. Un-

like other methods, the proposed method has only two vari-

ables for N views. Therefore, it easily handles large num-

bers of views. The complexity is linear which is a sub-

stantial improvement over the current state-of-the-art meth-

ods. We tested our method on datasets with wide-baseline

and short-baseline viewpoints, large and small deforma-

tions. Our results show that the proposed method consis-

tently gives significantly better results than the state-of-the-

art methods even for as few as 3 views. For future work, we

will explore the possibility of extending this framework to

non-isometric deformations.
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