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Abstract. We present self-calibrating isometric non-rigid structure-
from-motion (SCIso-NRSfM), the first method to reconstruct a non-rigid
object from at least three monocular images with constant but unknown
focal length. The majority of NRSfM methods using the perspective cam-
era simply assume that the calibration is known. SCIso-NRSfM leverages
the recent powerful differential approaches to NRSfM, based on formu-
lating local polynomial constraints, where local means correspondence-
wise. In NRSfM, the local shape may be solved from these constraints.
In SCIso-NRSfM, the difficulty is to also solve for the focal length as
a global variable. We propose to eliminate the shape using resultants,
obtaining univariate polynomials for the focal length only, whose sum of
squares can then be globally minimized. SCIso-NRSfM thus solves for
the focal length by integrating the constraints for all correspondences
and the whole image set. Once this is done, the local shape is easily re-
covered. Our experiments show that its performance is very close to the
state-of-the-art methods that use a calibrated camera.

Keywords: NRSfM, self-calibration, uncalibrated camera, differential
geometry, metric tensor, Christoffel symbols, resultants

1 Introduction

Estimating the intrinsic camera parameters from images is known as camera
self-calibration. In Structure-from-Motion (SfM), which is a mature technique
for the 3D reconstruction of rigid objects from monocular images, the intrin-
sic parameters are required to achieve Euclidean 3D reconstruction [12]. SfM
may use calibrated images directly [23, 29] or uncalibrated images with self-
calibration [26, 22]. SfM was extended to handle non-rigid (deformable) objects
in the last two decades with Non-Rigid Structure-from-Motion (NRSfM). While
most recent SfM methods use the perspective camera, many early NRSfM meth-
ods [9, 34, 28, 3, 7, 30] use a metric affine camera, namely the orthographic or
weak-perspective camera. They handle uncalibrated images because these met-
ric affine cameras only have a scale factor as intrinsic parameter, which couples
with the scale of the 3D structure in the reconstruction equations. However, the
use of these metric affine cameras restricts the imaging conditions [12], which
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limits practical applicability. Concretely, the affine camera models do not cap-
ture the perspective effect and may thus be inaccurate. They may also yield flip
ambiguities in the reconstruction. More recent NRSfM methods [17, 6, 5, 18] use
the perspective camera. They can thus cope with broader imaging conditions,
are generally more accurate and do not suffer from the flip ambiguities. However,
they assume that the camera is calibrated, which puts a different limit on their
applicability. Two exceptions are [17, 24], which assume that parts of the scene
remain rigid. These rigid parts are used to self-calibrate the camera using an
SfM method such as [20]. The estimated calibration is then used in a calibrated
NRSfM method. Therefore [17, 24] do not solve the problem of self-calibration
in NRSfM strictly speaking but use a workaround based on a sensible but very
strong assumption on the scene contents. Since there is a positive gain in choos-
ing the perspective camera, self-calibrating NRSfM appears to be a natural and
important problem to study.

We study self-calibrating NRSfM for isometrically deforming surfaces, widely
used in recent work [18, 5, 24, 34, 28, 4, 33]. Isometry is one of the most intuitive
deformation model and approximates the majority of real-life deformations. In
order to deal with uncalibrated images, we use the common assumption that the
camera has square pixels and a known principal point lying at the image cen-
ter. Thus, the only intrinsic parameter which needs to be estimated is the focal
length. Assuming that the focal length is constant, we propose a solution based
on solving a univariate polynomial, modeling the contribution of N ≥ 3 images
in a least-squares fashion. Our method takes inspiration from a recent solution
to isometric NRSfM [18]. This solution uses the image warps to constrain the
differential 3D structure. The method uses advanced concepts from Riemannian
geometry, namely the Metric Tensor (MT) and the Christoffel Symbols (CS).
The MT represents the local surface structure and the CS expresses the rate
of change of the MT. In addition, the method uses the concept of infinitesi-
mal planarity, which is widely used in differential geometry. According to this
assumption, the surface is planar at an infinitesimal level but maintains its cur-
vature at the global level. The method arrives at Partial Differential Equations
(PDEs) that can be converted to algebraic equations in two shape variables and
solved locally. By locally we mean that the solution is obtained at each point
correspondence independently. The two variables, related to the local 3D shape,
are computed in [18] by minimizing the sum-of-squares of the algebraic equations
using a computationally expensive polynomial optimization engine [13]. This lo-
cal solution handles both wide and short baseline data and naturally copes with
missing data and occlusions.

We introduce the focal length as an additional variable to the Riemannian
framework of [18]. This leaves the CS unaltered but changes the MT. The re-
construction equations also change, containing the two local shape variables,
similarly to [18], and a global variable representing the focal length. These equa-
tions are degree 5 polynomials, which means that the derivative of their sum-of-
squares is a degree 9 polynomial in 3 variables, which is by far out of bounds for
the existing polynomial optimization engines such as [13]. We propose a solution
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by segregating the global focal length from the local shape variables using the
resultants. We obtain univariate polynomials in terms of the focal length. In
spite of their high degree, they can be easily solved globally by minimizing their
sum-of-squares using a standard root finding algorithm. This global formulation
accumulates the local constraints for all correspondences and all images, mak-
ing the focal length well-constrained and the solution stable. We finally use the
focal length estimate to solve isometric NRSfM locally. Our solution improves
on [18] by dropping the dependency on [13]. Concretely, it minimizes the sum-of-
squares of univariate polynomials for each of the two shape variables, obtained
using the resultant of the original multivariate reconstruction equations. Our ex-
periments show that the focal length estimated by SCIso-NRSfM is close to the
ground truth and the 3D reconstructed shape very close to calibrated NRSfM
methods [5, 18]. We also compare with the NRSfM methods [9, 34] that use an
orthographic camera and found that these are outperformed by SCIso-NRSfM.

2 State-of-the-Art and Contributions

Self-calibration has been extensively studied for SfM. It follows one of several
possible scenarios where the camera intrinsics are partially constrained. The first
solution [8] introduced the Kruppa equations, which use the epipolar geometry
to draw constraints on the camera intrinsics. However, they suffer from singular-
ities. Later, [21] proposed a stratified approach where a projective reconstruction
is upgraded to affine using a modulus constraint, and further upgraded to Eu-
clidean using linear constraints [11]. In contrast, a direct projective to metric
upgrade was done by [14]. The most successful approach finds the explicit loca-
tion of the absolute quadric using its dual [31]. It obtains a global solution to
the fixed camera intrinsic scenario by solving algebraic equations. Based on this
model, [20] proposed a linear algorithm to estimate a varying focal length.

Self-calibration was scarcely studied for deformable objects, partly because
the subject is more recent than SfM and partly because it forms a less constrained
problem. A related problem to NRSfM is Shape-from-Template (SfT) which uses
a deformable 3D template and a single input image [1, 25]. A solution to isometric
SfT with focal length calibration was proposed in [2]. It works by solving for the
focal length locally and using the median of these local solutions as final estimate.
The local solutions were found to have a large spread across the input image.
This is because locally the focal length is weakly constrained.

Self-calibration in NRSfM forms a difficult and open problem. First, the suc-
cessful algebraic framework of the dual absolute quadric is based on the rigidity
constraint and can thus not be borrowed from SfM. Second, the differential
method for calibration in SfT showed signs of instabilities, even if SfT is a much
more constrained problem than NRSfM. Our solution uses a differential frame-
work in order to deal with deformations but estimates the focal length globally,
by combining local constraints from all point correspondences and all images.
More precisely, we make the following main contributions. 1) We show how to
form algebraic constraints for each point correspondence and image pair. These
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constraints depend on three variables related to the focal length and the local 3D
shape and are not directly solvable. We show how to convert these constraints
into easily solvable univariate polynomials. 2) We show how to form a numeri-
cally stable global solution to the focal length by integrating the local constraints
over all points and images, and minimizing their sum-of-squares optimally. 3)
We show how, given the estimated focal length, the local 3D shape may be re-
covered by minimizing the sum-of-squares of univariate polynomials. 4) We give
an algorithm based solely on standard numerical tools.

3 Mathematical Background

Notation. Latin letters denote scalars and Greek letters denote functions. Bold
Latin letters denote vectors and matrices. There are a few exceptions however,
and Γ, which denotes the CS matrix, is one of them. We use superscripts to index
the N ≥ 3 images. The reference image has index 1, without loss of generality.
The other images have indexes (j, r) ∈ {2, . . . , N}. We often drop the reference
image index from the equations for the sake of clarity. For instance, the inverse
depth function for image 1 will be defined as β1 but often referred to as β. We
use the subscript i ∈ {1, . . . n} to refer to a particular point correspondence,
with n the total number of correspondences.

Surface and camera models. We model 3D surfaces as Riemannian manifolds.
Fig. 1 shows a surface M viewed in image I. We use the perspective camera

modelΠ. It takes as input the 3D pointQ =
(

x y z
)⊤

and outputs its normalized

retinal coordinates r = Π(Q) =
(

x
z

y
z

)⊤
. We translate the image coordinates so

that the principal point aligns with the origin. This allows the intrinsic parameter
matrix K to be expressed in terms of the focal length f only, where f > 0 is

expressed in px, meaning in number of pixels. The pixel coordinates p =
(

u v
)⊤

are then related to the retinal coordinates as r =
(u

f

v

f

)⊤

=
p

f
.

Fig. 1: Principal notations.
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The image embedding φ is the ‘inverse’ of the projection Π for the points on
M. It maps the retinal coordinates r to the 3D point Q as:

φ(r) =
1

β(r)

(

r⊤ 1
)⊤
, (1)

where β(r) is the inverse-depth function. We omit the argument r in the sub-
sequent use of φ(r), β(r) and most other functions. We use φ to express the
differential properties of the surface derived from the two concepts of Rieman-
nian geometry, MT and CS, which we describe shortly.

Modeling NRSfM. We use a very similar model to [18], shown in Fig. 1. The goal
of [18] was to solve for NRSfM with a calibrated camera but we also solve for the
focal length. The model has N isometrically deforming surfaces M1, . . . ,MN

projected in the input images I1, . . . , IN . The image warp ηj1 represents the

optic flow between Ij and I1. We have η1j =
(

ηj1
)−1

. We compute the warps
from keypoint correspondences using [19]. The surfaces M1 and Mj are related
by an isometric deformation function ψ1j . Isometricity is the main constraint we
use in SCIso-NRSfM.

Metric Tensor. Denoted g[φ], the MT is a first-order differential quantity that
describes physical surface properties such as lengths, angles and areas [16]. It
can be derived from Jφ, the Jacobian of φ. Using φ from equation (1), g[φ] is
shown to be a 2× 2 matrix given by:

g[φ] = J⊤
φ Jφ with Jφ =

1

fβ

(

1− uζ −vζ −fζ
−uκ 1− vκ −fκ

)⊤

, (2)

where we define the inverse-depth derivatives as βu = ∂β
∂u

, βv = ∂β
∂v

, and their

ratio with the inverse-depth as ζ = βu

β
, κ = βv

β
. For isometric surfaces, the MT

is transferable across images using the first-order derivatives of the warps [18]:

g[φj ] = J⊤
ηj1g[φ1]Jηj1 . (3)

Christoffel Symbols. Denoted Γu[φ] and Γv[φ], the CS are second-order differ-
ential quantities that describe the curvature of a surface [16]. They are defined
as the rate of change of the MT. They usually have a very long and complex ex-
pression. This is however reduced using the infinitesimally planarity assumption,
which allows one to neglect the second-order derivatives of the image embedding.
This means that β in equation (1) is infinitesimally linear. Using φ from equa-
tion (1), Γu[φ] and Γv[φ] are shown to be 2× 2 matrices given by:

Γu[φ] = −

(

2ζ κ
κ 0

)

Γv[φ] = −

(

0 ζ

ζ 2κ

)

. (4)

For isometric surfaces, the CS are transferable across images using the first- and
second-order derivatives of the warps [18]:

ζj =
∂u1

∂u2
ζ1 +

∂v1

∂u2
κ1 −

(

∂2u1

∂u2∂v2
∂v2

∂u1
+

∂2v1

∂u2∂v2
∂v2

∂v1

)
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κj =
∂u1

∂v2
ζ1 +

∂v1

∂v2
κ1 −

(

∂2u1

∂u2∂v2
∂u2

∂u1
+

∂2v1

∂u2∂v2
∂u2

∂v1

)

. (5)

Resultants. The resultant of two polynomials is a polynomial expression of their
coefficients, which is equal to zero if and only if the polynomials have a common
root [35]. This allows one to find the common roots of a system of polynomials.
Consider as an example two bivariate polynomials α(t, u) and γ(t, u) of degree l
and m respectively and in variables t, u. Their resultant Rest(α, γ) with respect
to t is a univariate polynomial in u. It is given as the determinant of the so-called
Sylvester matrix St ∈ R

(l+m)×(l+m) as Rest(α, γ) = det(St). The elements of the
Sylvester matrix depend on the coefficients of α, γ.

4 Self-calibrating Isometric NRSfM

We first derive the reconstruction equations. These are constraints depending
on two local shape variables and the focal length. We then show how these
constraints can be optimized globally for just the focal length, and then locally
for the shape.

4.1 The Reconstruction Equations

The reconstruction equations are built starting from the MT transfer equa-
tion (3). This equation involves the MT g[φj ], which is expressed in terms of the
embedding’s Jacobian Jφj given by equation (2). The latter involves (ζj , κj), the
ratios of inverse depth derivatives to inverse depth in image j. Because these are
elements of the CS, we can express them in terms of the same ratios (ζ, κ) taken
in image 1 using the CS transfer equation (5). We thus obtain a new expression
of the MT g[φj ] depending on (f, β1, βj , ζ, κ). By substituting this expression in
the MT transfer equation (3), we obtain a 2× 2 matrix equation. Taking ratios,
(β1, βj) vanish and we arrive at two independent algebraic PDEs E1,2 in (f, ζ, κ).

These PDEs have coefficients (ajt , b
j
t ) and are given by:

Ej
1(f, ζ, κ) = σ

j
7ζ

3 + σ
j
5ζ

2 + σ
j
3ζ + σ

j
1 (6)

Ej
2(f, ζ, κ) = σ

j
8ζ

3 + σ
j
6ζ

2 + σ
j
4ζ + σ

j
2, (7)

with:

σ
j

1
= a

j

27
+ a

j

26
κ+ a

j

24
κ
2 + a

j

21
κ
3 + s(aj

11
κ
3 + a

j

14
κ
2 + a

j

16
κ+ a

j

17
) + s

2(aj

4
κ
3 + a

j

7
κ
2)

σ
j

2
= b

j

27
+ b

j

26
κ+ b

j

24
κ
2 + b

j

21
κ
3 + s(bj

11
κ
3 + b

j

14
κ
2 + b

j

16
κ+ b

j

17
) + s

2(bj
4
κ
3 + b

j

7
κ
2)

σ
j

3
= a

j

25
+ a

j

23
κ+ a

j

20
κ
2 + s(aj

10
κ
2 + a

j

13
κ+ a15) + s

2(aj

6
κ+ a

j

3
κ
2)

σ
j

4
= b

j

25
+ b

j

23
κ+ b

j

20
κ
2 + s(bj

10
κ
2 + b

j

13
κ+ b15) + s

2(bj
6
κ+ b

j

3
κ
2)

σ
j

5
= a

j

22
+ a

j

19
κ+ s(aj

12
+ a

j

9
κ) + s

2(aj

5
+ a

j

2
κ) σ

j

7
= a

j

18
+ sa

j

8
+ s

2
a
j

1

σ
j

6
= b

j

22
+ b

j

19
κ+ s(bj

12
+ b

j

9
κ) + s

2(bj
5
+ b

j

2
κ) σ

j

8
= b

j

18
+ sb

j

8
+ s

2
b
j

1
s = f

2
.
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The coefficients (ajt , b
j
t ) directly depend on the derivatives of the warp η1j .

Choosing an image j, fixing a single point r and defining k1 = ζ(r), k2 =
κ(r), we obtain two algebraic equations Ej

1,2(f, k1, k2). For N images and a
single point, we thus have a set of 2(N − 1) polynomials E12(f, k1, k2) =
{Ej

1(f, k1, k2), E
j
2(f, k1, k2)}

N
j=2. Similar but simpler equations were obtained

in [18] for a known focal length. These were then solved locally by minimizing
their sum-of-squares using a computationally expensive polynomial optimiza-
tion engine. This strategy cannot be used to estimate the focal length however,
for two reasons. First, estimating the focal length locally would be extremely
unstable. Second, the degree of the equations become prohibitive for the exist-
ing optimization engines. We next discuss our approach to obtain a global and
tractable solution to f and a local solution to (k1, k2).

4.2 Solving for the Focal Length Globally

We show how to use the reconstruction equations E12(f, k1, k2) to find f globally.
We use resultants to eliminate the dependency on (k1, k2), starting with k1.

Eliminating k1. The resultant of Ej
1 , E

j
2 with respect to k1 gives a new poly-

nomial Ej
3 depending on (f, k2). Defining the Sylvester matrix Sk1

∈ R
6×6 as

shown in Fig. 2 (left), we have:

Ej
3(f, k2) = Resk1

(E1(f, k1, k2), E2(f, k1, k2), k1) = det(Sk1
)

= c
j
9k

9
2 + c

j
8k

8
2 + c

j
7k

7
2 + c

j
6k

6
2 + c

j
5k

5
2 + c

j
4k

4
2 + c

j
3k

3
2 + c

j
2k

2
2 + c

j
1k2 + c

j
0, (8)

where cjt are polynomials of degree 12 in s = f2. Numerically, they are often
of degree 3 or 4. For N images, we thus obtain N − 1 polynomial equations
E3(f, k2) = {Ej

3(f, k2)}
N
j=2.

Eliminating k2. We eliminate k2 by evaluating the resultant of the equation
for two image pairs, (1, j) and (1, r), in E3. This gives a new polynomial equation
Ejr
4 depending on f only. Defining the Sylvester matrix Sk2

∈ R
18×18 as shown

in Fig. 2 (right), we have:

Ejr
4 (f) = Resk2

(Ej
3 , E

r
3 ) = det(Sk2

). (9)

For N images, we obtain (N−1)(N−2)
2 univariate polynomial equations E4(f) =

{Ejr
4 (f)}j,r∈[2,N ],j 6=r of degree 216. Since cjt in equation (8) are numerically of

degree 3 or 4, the degree of these polynomials lies between 54-72 instead of 216.

Solving for f . A globally optimal solution can be found by minimizing the
sum-of-squares of the equation set E4. For n points tracked over N images, we
define the sum-of-squares cost as:

C(f) =

n
∑

i=1

N
∑

j=2

N
∑

r=2
r 6=j

(

Ejr
4 (f)

)2

. (10)



8 S. Parashar and A. Bartoli and D. Pizarro

















σ
j

7
σ
j

5
σ
j

3
σ
j

1
0 0

0 σ
j

7
σ
j

5
σ
j

3
σ
j

1
0

0 0 σ
j

7
σ
j

5
σ
j

3
σ
j

1

σ
j

8
σ
j

6
σ
j

4
σ
j

2
0 0

0 σ
j

8
σ
j

6
σ
j

4
σ
j

2
0

0 0 σ
j

8
σ
j

6
σ
j

4
σ
j

2



















































































c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0 0 0 0 0 0 0 0

0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0 0 0 0 0 0 0

0 0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0 0 0 0 0 0

0 0 0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0 0 0 0 0

0 0 0 0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0 0 0 0

0 0 0 0 0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0 0 0

0 0 0 0 0 0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0 0

0 0 0 0 0 0 0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0
0

0 0 0 0 0 0 0 0 c
j

9
c
j

8
c
j

7
c
j

6
c
j

5
c
j

4
c
j

3
c
j

2
c
j

1
c
j

0

cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0 0 0 0 0 0 0 0
0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0 0 0 0 0 0 0
0 0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0 0 0 0 0 0
0 0 0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0 0 0 0 0
0 0 0 0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0 0 0 0
0 0 0 0 0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0 0 0
0 0 0 0 0 0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0 0
0 0 0 0 0 0 0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0 0
0 0 0 0 0 0 0 0 cr9 cr8 cr7 cr6 cr5 cr4 cr3 cr2 cr1 cr0



































































Fig. 2: The Sylvester matrices Sk1
(left) and Sk2

(right).

Using Fermat’s interior extremum theorem, a local extrema of C occurs at the
critical points, obtained by solving ∂C

∂f
(f) = 0. The set of critical points is

given by Fc = {fc | ∂C
∂f

(fc) = 0}. In practice, the cost function C is a uni-
variate polynomial of degree 108-144. We simply find the roots of its deriva-
tive polynomial to find Fc. The local minima are the critical points with a

positive value of ∂2C
∂f2 . Therefore the set of local minima Fl ⊂ Fc is given by

Fl = {fl ∈ Fc | ∂2C
∂f2 (fl) > 0}. Finally, the globally optimal focal length is given

by:
f̂ = arg min

f∈Fl

C(f). (11)

4.3 Solving for the Local Shape

We show how the local shape, represented by (k1, k2), can be solved for given an

estimate f̂ of the focal length, starting with k2. Given f̂ , we have that E3(f̂ , k2)
forms a set of univariate polynomials in k2. We find the optimal solution for k2
by minimizing the sum-of-squares of these polynomials. For a point tracked over
N images, the cost is:

C ′(k2) =
N
∑

j=2

(

Ej
3(f̂ , k2)

)2

. (12)

Because C ′ is a univariate polynomial, we find its minimum using the same pro-
cess as described in the previous section for minimizing C. The optimal solution
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k̂2 is thus:

k̂2 = arg min
k2∈K2

C ′(k2) where K2 =

{

k2

∣

∣

∣

∣

∂C ′

∂k2
(k2) = 0,

∂2C ′

∂k2
2 (k2) > 0

}

. (13)

Using (f̂ , k̂2), we have that E12(f̂ , k1, k̂2) forms a set of univariate polynomials
in k1. We find the optimal solution for k1 by minimizing the sum-of-squares of
these polynomials. For a point tracked over N images, the cost is:

C ′′(k1) =

N
∑

j=2

(

E1(f̂ , k1, k̂2)
)2

+
(

E2(f̂ , k1, k̂2)
)2

. (14)

The optimal k̂1 is then:

k̂1 = arg min
k1∈K1

C ′′(k1) where K1 =

{

k1

∣

∣

∣

∣

∂C ′′

∂k1
(k1) = 0,

∂2C ′′

∂k1
2 (k1) > 0

}

. (15)

We arrive at an estimate
(

k̂1, k̂2

)

of the local shape for the reference image. By

substituting this estimate in equation (5), we obtain an estimate
(

k̂
j
1, k̂

j
2

)

of the

local shape for the rest of the images.

5 Algorithm

We give our algorithm to solve SCIso-NRSfM. For numerical stability, as com-
monly done in SfM [12], the points’ pixel coordinates are standardized using an
isotropic scale factor mapping the image boundaries close to [−1, 1]2.

Inputs: Point correspondences {pj
i} with visibility indicators {vji }, i ∈ [1, n],

j ∈ [1, N ] (vji = 1 means that the ith point is visible in the jth image)
1) Compute image warps ηj1, j ∈ [2, N ]. Use the points visible in the reference

and jth images, meaning with indexes {i ∈ [1, n] | v1i = v
j
i = 1}, to estimate

the warp ηj1 using [19].

2) Compute the optimal global solution to f . Find f̂ that minimizes C in equa-
tion (10).

3) Compute the optimal local shape (k1, k2). Using the f̂ obtained in the pre-

vious step, find k̂2 that minimizes C ′ in equation (12). Then, use (f̂ , k̂2) to

find k̂1 that minimizes C ′′ in equation (14).

4) Find normals and 3D points. Find the Jacobian Jφ in terms of (k̂1, k̂2) using

equation (2). Compute the surface normals N̂
j
i by normalizing the cross-

product of the Jacobians columns. Find the inverse depth β−1 by integrating
the normals using the method in [18]. Apply the embedding φ from equa-

tion (1) to recover the points Q̂j
i .

Outputs: Points {Q̂j
i}, normals {N̂j

i}, i ∈ [1, n], j ∈ [1, N ], focal length f̂ .
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Fig. 3: Results for the Cylinder dataset. Mean shape and 3D errors are shown
against a varying number of images and noise level. The estimated and true focal
lengths are also shown. Best viewed in color.

6 Experiments

We tested SCIso-NRSfM (SCIso) on a synthetic Cylinder dataset [18] and
two real datasets, namely T-shirt [4] and Paper [32] showing objects deform-
ing isometrically. Since self-calibration has not yet been dealt within NRSfM,
we compare SCIso-NRSfM with NRSfM methods that assume perspective pro-
jection and use calibrated data, Pa17 [18] and Ch17 [5]. Also, we compare
against methods that assume orthographic projection and avoid the calibration,
Go11 [9] and Vi12 [34]. For quantitative comparison, we measured the mean
shape error (RMSE between computed and ground truth normals in degrees)
and the 3D error (RMSE between computed and ground truth 3D points in
mm).

Cylinder dataset. This dataset contains randomly generated views of a cylindri-
cal surface deforming isometrically. The cylindrical surface has a radius varying
between 2 and 10. The image size is 640 × 480 px and the camera focal length
is 540 px. The number of point correspondences is 400. We vary the number
of images and correspondence noise. We compared all methods except Go11

and Ch17. This is because Go11 uses the low-rank model and requires a large
number of images with short baseline and Ch17 simply failed on this dataset.
Figure 3a shows the mean shape and 3D errors for reconstructions performed
with 3-10 images. The correspondence noise is chosen to follow a gaussian dis-
tribution with standard deviation of 1 px. The performance of SCIso is very
similar to Pa17 which solves NRSfM with a calibrated camera, which means
using the true focal length, though Pa17 performs slightly better. On increasing
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Fig. 4: Results for the T-shirt and Paper datasets. Mean shape and 3D errors
are shown. Best viewed in color.

the number of images, all methods tend to obtain better results. The perfor-
mance of SCIso and Pa17 stabilizes with 5 images. However they yield a good
reconstruction with 3 images as well. Therefore, they efficiently solve the mini-
mal case. The estimation of focal length in SCIso improves with the number of
images. For 8-10 images, it is very close to the true focal length. Vi12 uses an
orthographic camera model. Its performance is significantly worse than SCIso

and Pa17.

Figure 3b shows the mean shape and 3D errors for reconstructions performed
with 10 images by varying the noise between 0-3 px. The performance of SCIso

is, again, very similar to Pa17, with Pa17 performing slightly better. On in-
creasing the noise, they both tend to degrade linearly. Interestingly, Vi12 is
barely affected by the noise in the tested range, however, its performance is
consistently significantly worse than the other methods. The estimation of focal
length in SCIso degrades with noise, though remaining reasonable. Interest-
ingly, because the shape and 3D errors of SCIso and Pa17, which uses the true
focal length, are very close, we can conjecture that the focal length estimate
cannot be substantially improved without adding extra priors into the problem
formulation.
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Fig. 5: Error maps and textured rendering of the reconstructed shape for two
images of the T-shirt dataset. E is mean 3D error (in mm). Best viewed in color.

T-shirt dataset. This dataset was introduced in [4]. It consists of 10 wide-baseline
images of an isometrically deforming T-shirt with 85 point correspondences.
Camera calibration was obtained carefully using a calibration checkerboard and
Matlab’s calibration toolbox, yielding a focal length of 3780 px. Figure 4(a)
shows the mean shape and 3D errors for all 10 reconstructed surfaces. Ch17

has the best performance on this dataset, with Pa17 and SCIso being very
close. The focal length estimated by SCIso is 3954 px which is quite close to
the calibrated focal length of 3780 px, with a relative error of 4.6%. Vi12 does
not perform well on this dataset. We did not evaluate Go11 on this dataset, for
the same reason as on the Cylinder dataset. Figure 5 shows the renderings of
the error maps and textured reconstructed shape for two images.

Paper dataset. This dataset was introduced in [32]. It consists of 191 images
from a video sequence with 1500 point correspondences of a paper deforming
isometrically. Camera calibration obtained from standard methods is provided,
with a focal length of 528 px. Figure 4b shows the mean shape and 3D errors
for all the 191 reconstructed surfaces. Ch17 has the best performance on this
dataset, with Pa17 and SCIso being very close. The focal length estimated by
SCIso using the first 10 images is 498 px, which is close to the actual focal length
of 528 px, with a relative error of 5.7%.Go11 did not perform as well as the other
methods. This may be explained by the fact that it uses an orthographic camera
or because it is based on the low rank shape model. We could not evaluate Vi12

on this dataset because of its prohibitive computation time. Figure 6 shows the
renderings of the error maps and textured reconstructed shape for three images.
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Fig. 6: Error maps and textured rendering of the reconstructed shape for three
images of the Paper dataset. E is mean 3D error (in mm). Best viewed in color.

Table 1: Summary of results on the T-shirt and Paper datasets. Es and Ep
represent mean shape and 3D error respectively. %f denotes the relative error in
focal length compared to the calibrated focal length serving as ground truth. xx
represents values which could not be computed, as explained in the main text.

Summary of experiments. We compared SCIso on a synthetic and two real
datasets. We found it to be performing very closely to the current state-of-the-
art NRSfM methods, namely Pa17 and Ch17, that use a calibrated perspective
camera. SCIso estimates the focal length to a good relative accuracy. We also
compared with two NRSfM methods that use the orthographic camera, namely
Go11 and Vi12. These methods do not perform as well as Pa17 and Ch17 on
the tested datasets. The performance of all the compared methods on the real
datasets is summarized in table 1.

Computation time. We have implemented our method in MATLAB and the code
was not optimized. We used a standard PC with i5 CPU and 16 GB RAM. We
first solve for f and then for the shape. In order to solve for f , it takes about 76
s to form the polynomial in equation (9) and 90 s to compute its derivatives and
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find its roots. Computing the shape takes about 10 ms. It is much faster than
Pa17 (1.5 s), which is already significantly faster than the rest of the compared
methods, according to [18].

7 Conclusions

We have presented SCIso-NRSfM, a theory and an algorithm to reconstruct an
isometrically deforming object from monocular uncalibrated images with con-
stant but unknown focal length. SCIso-NRSfM represents the first step in joining
self-calibration and NRSfM. We have used a differential approach and derived
a system of polynomial PDEs. Upon eliminating the shape variables from these
using resultants, we have then showed that the focal length could be recovered
optimally by globally minimizing the constraints arising from all correspondences
and all images in a single least-squares cost. Our experimental results have shown
that SCIso-NRSfM compares very favorably to existing calibrated NRSfM algo-
rithms against the number of images and correspondence noise, and recovers the
focal length with a relative error of a few percents. They have also shown that
SCIso-NRSfM works well for the minimal case of three images and improved
with the number of images.

We finally give two possible lines of future research. First, in SfM, for rigid
objects, there exist Critical Motion Sequences (CMS) [27, 15] in which case self-
calibration cannot be resolved. These typically happen when the camera motion
is not general enough, for instance when all optical axes intersect. The possible
existence of CMS in SCIso-NRSfM is then a very natural question. In the de-
formable case however, the question must be addressed by considering the pose
of the local surface with respect to the camera. In other words, there is not a
unique pose for each image, but a continuously varying pose across the surface.
This diversity seems to play in favor of dramatically reducing the chance of en-
countering a degenerate case in SCIso-NRSfM. Nonetheless, this is something we
intend to thoroughly study in the near future. The second possible line of future
research is to exploit SCIso-NRSfM in plane-based self-calibration. Almost all
existing methods, such as [10], take as input a set of homographies relating the
input images. It is well known that, when the observed plane is smaller in an
image, the computed homography may be unstable. Interestingly, SCIso-NRSfM
does not require homographies as inputs but uses the assumption of IP, which
suggests that it forms differential constraints for infinitesimal planes. How these
constraints relate to the absolute conic formalism now widely accepted in self-
calibration and whether these constraints may aid plane-based self-calibration
are profound questions which we indeed to study in the near future.
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