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Abstract—

3D reconstruction of deformable objects using inter-image visual motion from monocular images has been studied under Shape-from-
Template (SfT) and Non-Rigid Structure-from-Motion (NRSfM). Most methods have been developed for simple deformation models,
primarily isometry. They may treat a surface as a discrete set of points and draw constraints from the points only or they may use a non-
parametric representation and use both points and differentials to express constraints. We propose a differential framework based on
Cartan’s theory of connections and moving frames. It is applicable to SfT and NRSfM, and to deformation models other than isometry. It
utilises infinitesimal-level assumptions on the surface’s geometry and mappings. It has the following properties. 1) It allows one to derive
existing solutions in a simpler way. 2) It models SfT and NRSfM in a unified way. 3) It allows us to introduce a new skewless deformation
model and solve SfT and NRSfM for it. 4) It facilitates a generic solution to SfT which does not require deformation modeling. Our
framework is complete: it solves deformable 3D reconstruction for a whole class of algebraic deformation models including isometry.
We compared our solutions with the state-of-the-art methods and show that ours outperform in terms of both accuracy and computation
time.

F

1 INTRODUCTION

Reconstructing the 3D shape of objects from multiple im-
ages is an important goal in computer vision. It has been
extensively studied for both rigid and deformable objects.
While there are accurate and stable solutions such as
Structure-from-Motion (SfM) for reconstructing the rigid
objects (Hartley and Zisserman, 2000), the deformable case
remains an open research problem. SfM relies on various
concepts from projective geometry to draw constraints on
the geometry of rigid objects. It fails on deformable objects
as it cannot model the effect of deformations. Deformable
3D reconstruction refers to the techniques to reconstruct
the deformable objects by taking into account the effect of
deformation on the geometry of the object. It has been pro-
posed with Shape-from-Template (SfT) (Bartoli et al., 2015;
Chhatkuli et al., 2017b; Gumerov et al., 2004; Haouchine
et al., 2014; Malti et al., 2013; Ngo et al., 2015; Perriollat et al.,
2011; Salzmann and Fua, 2011) and Non-Rigid Structure-
from-Motion (NRSfM) (Akhter et al., 2009; Bregler et al.,
2000; Dai et al., 2014; Del Bue et al., 2004; Gotardo and Mar-
tinez, 2011; Torresani et al., 2008). SfT uses a single image
along with a 3D template, which is a textured 3D shape of
the object, whereas NRSfM requires multiple images from a
single camera.

Other possible ways to recover the depth of deformable
objects are by using an active sensor such as Kinect (Inn-
mann et al., 2016; Newcombe et al., 2015; Zollhöfer et al.,
2018), a synchronized system of multiple cameras (Cagniart
et al., 2010; De Aguiar et al., 2008; Starck and Hilton, 2003)
or machine learning (Mehta et al., 2018; Pumarola et al.,
2018; Tewari et al., 2018; Zhou et al., 2018). The use of these

approaches is however limited due to the constraints of
accuracy, sensor, size and amount of training data required.
This makes deformable 3D reconstruction from regular im-
ages a relevant research problem.

The deformable 3D reconstruction methods SfT and
NRSfM both require deformation constraints. These are ei-
ther i) statistics-based or ii) physics-based. i) restricts the un-
derlying shape or trajectory of the object to lie in a low-rank
space while ii) models the deformation by constraining the
physical object properties. For i), SfT uses a pre-trained low-
rank shape model as template (Blanz and Vetter, 2003) while
NRSfM recovers the shape (Bregler et al., 2000; Del Bue
et al., 2004; Torresani et al., 2008) or trajectory bases (Akhter
et al., 2009; Dai et al., 2014; Gotardo and Martinez, 2011)
and deformation coefficients. ii) may use either a mesh-
based or a differential framework. The mesh-based framework
represents a surface with a mesh or a discrete neighborhood-
aware point set. The differential framework uses a non-
parametric and continuous surface representation where
the surface differentials at a point are related to its local
neighborhood.

Most methods in ii) use a simple deformation model
called isometry, which preserves the geodesic distance be-
tween points on the object’s surface. A piece of paper
or unstretched cloth are typically isometric. Mesh-based
SfT (Ngo et al., 2015; Perriollat et al., 2011; Salzmann and
Fua, 2011) and NRSfM (Chhatkuli et al., 2017a; Taylor et al.,
2010; Vicente and Agapito, 2012) reconstruct by using a
convex relaxation of isometry, namely inextensibility. For
non-isometric surfaces, mesh-based SfT (Haouchine et al.,
2014; Moreno-Noguer et al., 2009) and NRSfM (Agudo and
Moreno-Noguer, 2015; Agudo et al., 2016) use elasticity.
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The elastic NRSfM methods also use a low-rank force
model, thus combining i) and ii). Under a differential frame-
work, (Bartoli et al., 2015) proposed SfT to reconstruct both
isometric and non-isometric surfaces by modeling isomet-
ric (distance-preserving) and conformal (angle-preserving)
deformations respectively. It modeled both deformations
using a metric tensor (MT), which expresses local metric
quantities such as lengths, angles and areas. It also showed
that isometric SfT is a well-posed problem. Other differential
SfT methods that reconstruct non-isometric surfaces may
use elasticity (Malti and Herzet, 2017; Malti et al., 2013) or
smoothness (Bartoli and Özgür, 2016).

In this paper, we propose a novel and unified differen-
tial framework for SfT and NRSfM which encapsulates all
properties of the surfaces and leads to simple deformation
constraints derived only from the images. Recently, we pre-
sented a solution to isometric NRSfM (Parashar et al., 2017).
Besides MT, it uses Christoffel Symbols (CS), which describe
the local rate of change of MT. We showed that both CS
and MT were transferable across surfaces using the image
warps, the local non-parametric registration of images. Due
to these transfer laws, the number of variables remains
constant for any number of images. However, this solution
cannot be extended to deformations other than isometry.
This is because, unlike MT, CS can only be transferred for
isometric deformations, as explained in appendix A. In this
paper, we first study the extent of deformations modeled by
MT and then propose solutions to SfT and NRSfM for all
these deformation models. More specifically, we bring the
following contributions.
1) Deformation modeling. We define an algebraic defor-
mation model as a deformation model which can be for-
mulated using a polynomial function of the components of
MT. We consider the set of physically feasible deformations
that correspond to low-order polynomials. Isometry and
conformity are trivially in this set. We show that the well-
known equiareal (area-preserving) deformations are also in
this set. We introduce the skewless deformations which are
inclusive of isometry and conformity and have an overlap
with equiareality. Isometry, conformity, equiareality and
skewlessness form the main set of algebraic deformation
models.
2) Solving SfT. We use the theory of connections and
moving frames developed by the French mathematician
Cartan (Cartan, 1923, 1937). A moving frame is a local
frame of reference defined at a point on the manifold.
An MT is expressed uniquely in terms of its underlying
moving frame. Cartan developed the theory of connections
by defining the local transformation of the surface to its
neighborhood whose components are the Cartan’s Connec-
tions (CC). CC are derived using the moving frame and
its derivatives. They are a compact representation of the
first, second and third fundamental forms of surfaces. These
forms describe the measurements, curvatures and orienta-
tion which encapsulate all characteristics of the surfaces in
a compact way. CS form a subset of CC. We use the as-
sumption of infinitesimal linearity (IL) which is widely used
in differential geometry (Kock, 2010). It allows a smooth
mapping between surfaces to be expressed as a set of linear
mappings between infinitesimal portions of the surfaces.
With IL, we show that CC are transferable across surfaces

using the image warps. We also use the assumption of
infinitesimal planarity (IP), proposed in (Chhatkuli et al.,
2014), where surfaces are assumed to be infinitesimally
planar while remaining curved. Using IP, we formulate and
solve SfT for all algebraic deformation models using only
the constraints from MT and its derivatives. With IP and
IL, CC can be linearly transferred across the surfaces. Using
the transfer laws of MT and CC, we formulate a generic
solution to SfT which does not use MT-based deformation
modeling and reconstructs both isometric and non-isometric
surfaces. This leads to differential constraints which relate
corresponding points on the surfaces under consideration.
These constraints are local as they are defined for each point
correspondence independently. We formulate all solutions
in terms of Partial Differential Equations (PDEs). We convert
the PDEs to algebraic equations and solve them locally.
3) Solving NRSfM. Using IP, IL and the transfer laws of
MT and CC, we solve NRSfM for all algebraic deformation
models except equiareality, which we show is unsolvable.

We compare the proposed methods with the state-of-the-
art. Experiments show that our methods are generally more
accurate. Since our solutions are obtained by solving simple
polynomial equations, they are also much faster.

2 PREVIOUS WORK

The 3D reconstruction of rigid objects is widely consid-
ered to be a theoretically solved problem due to the well-
formulated projective framework of SfM. However, the 3D
reconstruction of deformable objects still remains an open
research problem due to the complexity of deformations
and inability of current approaches to extend their proposed
frameworks to a wider range of deformations. Even with
the depth images available using Kinect or any other active
sensor, for example (Innmann et al., 2016; Newcombe et al.,
2015; Zollhöfer et al., 2018), one needs to refine the point
cloud to obtain a geometrically consistent and temporally-
coherent reconstruction of objects under consideration. In
the best case scenario, most of these active sensors are
easily off by centimeters. Some approaches replace them
with a synchronized system of multiple cameras. They may
reconstruct a 3D model, like in (Cagniart et al., 2010; Starck
and Hilton, 2003), and track it through multiple views or
obtain multiple spatial and temporally-coherent 3D surfaces
as in (De Aguiar et al., 2008). These systems are huge and
expensive and therefore, inapplicable in many scenarios
such as medical endoscopy. Recently, learning-based single-
view reconstruction methods (Mehta et al., 2018; Pumarola
et al., 2018; Tewari et al., 2018; Zhou et al., 2018) have been
proposed. They are object-specific and rely on training data
which are very difficult to obtain.

Early approaches to deformable 3D reconstruction as-
sume that the space of shapes under deformation is low
dimensional. This led to the statistical models formulated
using a low-rank constraint. (Bregler et al., 2000) used
the low-rank shape-basis to solve NRSfM, (Del Bue et al.,
2004) proposed a non-linear refinement to improve this
solution by dealing with ambiguities. (Torresani et al., 2001)
and (Olsen and Bartoli, 2008) used additional priors re-
lated to spatial and temporal smoothness. (Akhter et al.,
2009) replaced the shape-basis with the trajectory-basis to
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constrain deformations temporally. (Gotardo and Martinez,
2011) used a combination of shape and trajectory-basis, with
a DCT-basis to model high deformations. Most of these
methods require fixing the dimension of the shape-basis
which may be a problem in case of large deformations. (Dai
et al., 2014) proposed to automatically estimate it using
a convex relaxation of the minimum rank condition and
solved NRSfM using convex optimization. Statistics-based
methods are well adapted to video sequences but they
have difficulties handling complex deformations and miss-
ing data, which are generally overcome by physics-based
methods.

While statistics-based methods obtain a global solution
as they constrain all visible points of the object in all images,
physics-based methods obtain a global, piece-wise or local
solution. Mesh-based methods produce either global or
piece-wise solutions. The global approaches using the iso-
metric model include (Chhatkuli et al., 2017a) based on con-
vex optimization and the Maximum Depth Heuristic (MDH)
and (Vicente and Agapito, 2012) which imposes isometry us-
ing iterative optimization. Elastic mesh-based methods are
also global as they require boundary conditions (Haouchine
et al., 2014) or mixing the low-rank model with elastic ma-
terial constraints (Agudo and Moreno-Noguer, 2015; Agudo
et al., 2016). Piece-wise methods impose isometry (Taylor
et al., 2010; Varol et al., 2009) or local rigidity (Russell et al.,
2014). These methods require stitching all pieces together to
recover the surface. Although mesh-based methods obtain
decent results, they suffer from the inability to model the
exact constraints, primarily isometry. Also the global and
piece-wise solutions that these methods obtain are com-
putationally expensive as they rely on a heavy refinement
process. Differential methods formulate constraints locally
at each point on the surface using differential properties
of deformations. Their solutions are local except for elastic
methods which require a global solution. In isometric SfT,
differential methods obtain the surface’s normals and depth
locally (Bartoli et al., 2015; Chhatkuli et al., 2017b). These
local solutions are often analytic, which means that they
are obtained by solving simple algebraic equations, making
them very fast. Local solutions can be further improved
using non-linear refinement methods such as (Brunet et al.,
2014). In isometric SfT, the refinement process is quite fast
and close to the local analytic solution (Chhatkuli et al.,
2017b). Other differential methods explore non-isometric
models such as the conformal model (Bartoli et al., 2015)
or (Bartoli and Özgür, 2016) where normals are locally
recovered by imposing only smoothness and local planarity.
The latter is however not a stable method, requiring signif-
icant perspective in the images to yield a good reconstruc-
tion. Refinement is also used to improve the solution. Global
differential methods, elastic SfT (Malti and Herzet, 2017;
Malti et al., 2013) for example, use differential constraints
but the surface is obtained globally using variational meth-
ods that exploit boundary conditions. The differential mod-
eling is rather new to NRSfM as compared to SfT. (Chhatkuli
et al., 2014) models isometry as local rigidity of infinitesimal
planes and (Parashar et al., 2017) models the exact isometric
constraint using MT and exploits CS constraints to obtain a
local, analytical solution.

We extend the differential modeling of (Bartoli et al.,

2015) and propose deformable 3D reconstruction algo-
rithms. Our main contributions are: 1) We define and de-
rive the complete set of possible algebraic deformation
models related to isotropic (isometric and conformal), or-
thotropic (skewless) and anisotropic (equiareal) deforma-
tions. 2) We propose the MT-CC framework, which replaces
the MT-CS framework of our previously proposed isometric
NRSfM (Parashar et al., 2017) and use it to solve SfT and
NRSfM. 3) Under MT-CC, SfT can be solved for all deforma-
tion models by using MT constraints or a generic solution
can be formed by using CC only. All proposed SfT methods
except skewless SfT are linear. 4) Under MT-CC, NRSfM
can be solved for all but equiareal deformations under the
assumption of IP and IL. We show that due to their isotropic
nature, isometric and conformal NRSfM possess a joint
solution. We show that equiareal NRSfM is not solvable.
5) Not only MT-CC derives existing results (Bartoli et al.,
2015; Parashar et al., 2017) in a much simpler way but
also unifies the formulation of SfT and NRSfM. Both are
represented by the same reconstruction equations but SfT
has fewer variables than NRSfM. 6) Our proposed SfT and
NRSfM methods are local solutions; they are extremely fast
and handle missing data naturally.

3 MATHEMATICAL BACKGROUND

We model the surfaces as smooth manifoldsand the cam-
eras as perspective projection. The image embedding is
expressed as in (Parashar et al., 2017). More details can be
found in appendix B. We now describe CC, moving frames
and their relationships. We then review the deformation
models, IP and IL.
Notation. We use small-case Latin letters to denote scalars
and small-case Greek letters to denote functions. Bold and
small Latin letters denote 2D and 3D vectors. We use a
subscript to index the images and a superscript to index the
coordinates of a point. d represents total differentiation. |.|
represents the determinant. We use J to write the jacobians.
The coordinate basis vectors at a point in n-dimensional
space are given by ei where i ∈ [1, ..., n]. Differential 1-
forms (Cartan, 1970) are denoted as w. The origin is denoted
as O. In order to make the equations compact, we omit the
point x while expressing functions. For example, βi(x) and
φi(x) on the ith image are written as βi and φi. We also

write
∂βi
∂xt

as βit,
∂φi
∂xt

as φit,
∂2φi
∂xt∂xs

as φits and
∂2βi
∂xt∂xs

as
βits.

3.1 Cartan’s Connections
In differential geometry, a connection is defined as a geo-
metric object attached to a point on a smooth manifold.

Definition 1. Cartan’s connection is a set of geometric relations
expressed in terms of the affine moving frame defined locally at a
point in space that relate a point to its infinitesimal neighborhood.

We use the affine connection described by Cartan (Car-
tan, 1923). In order to define such a connection in an n-
dimensional space, we fix an origin O and n linearly in-
dependent basis vectors (e1, e2, . . . , en) originating from O
which describe a frame at point z on the manifold as:

z = O + z1e1 + z2e2 + .......+ znen, (1)
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where zt are the coordinates of z. An affine connection
is described using the 1-forms wt and wst known as dual
and connection forms respectively. We explain them in ap-
pendix C. An affine connection is given by:

dz = w1e1 + w2e2 + . . .+ wnen

det = w1
t e1 + w2

t e2 + . . .+ wnt en,
(2)

A connection 1-form describes the change in the moving
frame as one moves to the infinitesimal neighborhood of
a point on the manifold. An affine connection defines
the local geometric and physical properties (such as unit
lengths and areas) of the affine space around a point in
the manifold. Cartan’s vision behind connections (Cartan,
1923, 1924, 1926) was to define geometric properties on an
object without physically defining the object. He derived
these laws using the theory of moving frames (Cartan, 1937)
which we now describe.

3.2 Moving Frames on Surfaces

A moving frame at a 3D surface M is a set of 3 linearly
independent vectors. It can be defined in several ways. The
connection forms defined in equation (2) are dependent on
the moving frame. In general we assume that any point

Fig. 1: a) A moving frame on a surface M defined using a local
parametrization (x1, x2). b) A moving frame on a surface M defined
using local parametrizations (x1, x2) and (x̄1, x̄2) related by η. c) Two
surfacesM1 andM2 related by ψ are parametrized using (x1, x2).

on the surface manifold admits a local parametrization
described by the function f(x1, x2), see figure 1a. A natural
choice is to use tangent vectors of the surface to define a
moving frame:

e1 =
∂f

∂x1
e2 =

∂f

∂x2
e3 =

∂f

∂x1
× ∂f

∂x2
, (3)

with e>1 e3 = 0 and e>2 e3 = 0. The expression of the total
derivative at z in terms of the moving frame is given by:

dz =
∂f

∂x1
dx1 +

∂f

∂x2
dx2. (4)

By identifying the terms in equation (4) with equation (2),
one obtains the dual forms w1 = dx1, w2 = dx2 and w3 =
0. The connection forms can be found by taking the total
derivative of the basis vectors:

det =
∂et
∂x1

dx1 +
∂et
∂x2

dx2, (5)

and finding the representation of equation (5) in the basis
formed by the moving frame (e1, e2, e3):

det = w1
t e1 + w2

t e2 + w3
t e3, (6)

where wst = Γst1dx1 + Γst2dx2 and Γstk are scalar functions.
Given the frame in equation (3), Γstk for s, t, k ∈ {1, 2} are
its CS and Γstk with s = 3 and t, k ∈ {1, 2} are the second
fundamental form.

Example 1. Given the following surface of a plane:

f(x1, x2) = ux1 + vx2 + o, (7)

where u and v are three-dimensional unit vectors that define the
plane and o is a three-dimensional displacement vector, we have
the moving frame of equation (3) as:

e1 = u e2 = v e3 = u× v. (8)

The total derivative is given by:

dz =
(
dx1 dx2

) (
u v

)>
=
(
ω1 ω2

) (
e1 e2

)>
. (9)

As e1 and e2 are constant vectors then de1 = 0 and de2 = 0.
This makes all connection forms wst = 0 for t ∈ {1, 2} and
s ∈ {1, 2, 3}. This result holds for the particular parametrization
of the plane (7) and the moving frame (8).

Example 2. If the plane (7) is projected into the image with
coordinates (x̄1, x̄2), it can be alternatively parametrized using
the image embedding φ as:

φ =
1

β(x̄1, x̄2)

x̄1x̄2
1

 , (10)

with:

β(x̄1, x̄2) = −
n>
(
x̄1 x̄2 1

)>
n>o

n = u× v. (11)

The moving frame on the surface M described by the image
embedding (11) is given by:

e1 = φ1 =

(
1

β

)2 (
β − x̄1β1,−x̄2β1,−β1

)>
e2 = φ2 =

(
1

β

)2 (
−x̄1β2, β − x̄2β2,−β2

)>
e3 = φ1 × φ2 =

(
1

β

)3 (
β1, β2, β − x̄1β1 − x̄2β2

)>
, (12)

where (β1, β2) =

(
∂β

∂x̄1
,
∂β

∂x̄2

)
. Using the frame and its first-

order derivatives, we obtain the connection forms wst for φ. We
write wst = Γstkdx̄k and obtain:Γ1

11 Γ2
11 Γ3

11

Γ1
21 Γ2

21 Γ3
21

Γ1
31 Γ2

31 Γ3
31

 = − 1

β

2β1 0 0
β2 β1 0
0 0 3β1


Γ1

12 Γ2
12 Γ3

12

Γ1
22 Γ2

22 Γ3
22

Γ1
32 Γ2

32 Γ3
32

 = − 1

β

β2 β1 0
0 2β2 0
0 0 3β2

 .
(13)

As expected, the connections in examples 1 and 2 are
different. Equation (13) plays an important role as it shows
the general structure of the connection’s coefficients derived
using image embeddings for planar surfaces. Using IP, these
coefficients are extended to non-planar surfaces.
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3.3 Moving Frames and Surface Parametrizations

Figure 1b shows a surface M defined using two different
parametrizations f(x) and g(x̄). The domains of f and g
are mutually homeomorphic and η is the diffeomorphic
mapping that expresses the change of coordinates:

x = η(x̄) =

(
η1(x̄)
η2(x̄)

)
. (14)

By differentiation, we obtain the relationship between the
dual forms of the two parametrizations as:

dx1 =
∂x1

∂x̄1
dx̄1 +

∂x1

∂x̄2
dx̄2 dx2 =

∂x2

∂x̄1
dx̄1 +

∂x2

∂x̄2
dx̄2.

(15)
Given that g = f ◦ η in figure 1b, we obtain Jg =
JfJη . Therefore, the moving frames vectors (ē1, ē2, ē3) and
(e1, e2, e3) defined using (x̄1, x̄2) and (x1, x2) respectively
are related by the following relationship:(

ē1 ē2

)
=
(
e1 e2

)
Jη

ē3 = ē1 × ē2 = |Jη|(e1 × e2) = |Jη|e3(
ē1 ē2 ē3

)
=
((

e1 e2

)
Jη |Jη|e3

)
=
(
e1 e2 e3

)
diag(Jη, |Jη|). (16)

Differentiating the above relation and expressing the deriva-
tives of frame bases according to equation (2), we obtain:ē>1

ē>2
ē>3

>w̄1
1 w̄1

2 w̄1
3

w̄2
1 w̄2

2 w̄2
3

w̄3
1 w̄3

2 w̄3
3

 =

e>1
e>2
e>3

> diag(dJη,d|Jη|)

+

e>1
e>2
e>3

>w1
1 w1

2 w1
3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3

diag(Jη, |Jη|). (17)

Substituing equation (16) in the equation (17), we write the
relation between connection forms as:w̄1

1 w̄1
2 w̄1

3

w̄2
1 w̄2

2 w̄2
3

w̄3
1 w̄3

2 w̄3
3

 = diag(J−1η , |Jη|−1)diag(dJη,d|Jη|)

+diag(J−1η , |Jη|−1)

w1
1 w1

2 w1
3

w2
1 w2

2 w2
3

w3
1 w3

2 w3
3

diag(Jη, |Jη|).

(18)

Equations (16) and (18) show that the moving frame and
connections of the 3D surfaceM (in figure 1b) derived using
the functions f and g are linearly related in terms of the
first and second-order derivatives of η. We refer to these
equations as the change of variable equations of moving
frames and connections. In the next section, we show how
to draw relationships between different surfaces.

Skewless

Conformal

Isometric

Equiareal

Generic

Fig. 2: Classification of algebraic deformation models. Isometry is well-
constrained and widely studied. It is a combination of conformity and
equiareality.

3.4 Mappings between Surfaces
Mappings are defined by functions that connect points
between two surfaces. Figure 1c shows a mapping ψ :
M1 → M2 between surfaces M1 and M2, respectively
parametrized by embeddings f and g. The mapping ψ takes
a point z on M1 and transports it to z̄ on M2. Therefore,
z̄ = ψ(z). We assume that mappings between surfaces are
diffeomorphic, which implies that they are smooth, bijective
and with a smooth inverse.
Algebraic deformation models. Surface mappings are as-
sociated with surface deformations; therefore, they identify
with a deformation model. We study the set of mappings
whose deformation model can be expressed in terms of
the surface metric properties such as lengths, angles and
areas defined using MT. We define an algebraic deformation
model as a set of constraints that preserve some metric
quantities across surfaces formulated using a polynomial
function of the components of MT. Although it is possible
to construct several polynomials using MT, not all of them
may represent a physical deformation. Also the higher order
polynomials, even though they may possibly represent a
physical deformation, dramatically increase the solution
complexity. Therefore, we restrict ourselves to the set of
low-order polynomials that correspond to physically fea-
sible deformation models. Figure 2 categorizes the surface
mappings according to the metric quantities they preserve:
1) isometric (distances-preserving), 2) conformal (angle-
preserving), 3) equiareal (area-preserving) and 4) skewless
(orthogonal frame basis’ angle-preserving). The set of iso-
metric mappings is a subset of 2), 3) and 4) and is also
given by the intersection of 2) and 3). The set of skewless
mappings includes 1), 2) and a subset of 3).
Mathematical formulation. The metric quantities on sur-
faces can be expressed locally in terms of moving frames,
therefore deformation models are expressed in terms of
the first-order differential constraints. (Bartoli et al., 2015;
Parashar et al., 2017) proposed to formulate deformations
using MT, which can then be expressed in terms of moving
frames. Appendix D discusses this relation.

Given the moving frames (e1, e2, e3) at M1 and
(ē1, ē2, ē3) atM2 from equation (3), we discuss the formu-
lation of deformation models for the mappings in figure 2.
1) Isometric mappings. They preserve lengths and angles of
the moving frames at the corresponding points on the two
surfaces. The constraints are:

ē>1 ē1 = e>1 e1 ē>2 ē2 = e>2 e2 ē>1 ē2 = e>1 e2. (19)

2) Conformal mappings. They preserve angles of the moving
frames at the corresponding points on the two surfaces but
the frame vectors are isotropically rescaled. The constraints
are:(

ē>1 ē1 ē>2 ē2 ē>1 ē2

)
∝
(
e>1 e1 e>2 e2 e>1 e2

)
. (20)

3) Equiareal mappings. They preserve area, expressed as the
squared norm of the cross product of the tangent vectors at
the corresponding points on the two surfaces:

‖ē1 × ē2‖2 = ‖e1 × e2‖2. (21)

4) Skewless mappings. They preserve angles along the or-
thogonal frame basis on the surface. A skewless mapping is
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X X
X

Y Y

Y

Conformal
transformation

Anisotropic local 
scaling in 
X and Y-direction

,

Fig. 3: An example of skewless deformation. A surface grid undergoes
anisotropic scaling in two orthogonal directions and then undergoes a
conformal transformation. Therefore, only the angles between the basis
vectors are preserved.

composed of local orthotropic scalings along the frame basis
followed by a conformal mapping, as shown in figure 3.
This decomposition is unique up to a scale factor. Theorem 1
formalises the construction of these mappings and the proof
can be found in appendix E.

Theorem 1 (Skewless mappings). A mapping is skewless iff
it can be decomposed into a conformal mapping and orthotropic
scalings along the orthogonal frame basis.

The constraint for skewless mappings is:(
ē>1 ē2

)2(
ē>1 ē1

) (
ē>2 ē2

) =

(
e>1 e2

)2(
e>1 e1

) (
e>2 e2

) . (22)

In sections 4 and 5, we show how to exploit these properties
expressed in terms of moving frames for 3D reconstruction.

3.5 Infinitesimal Planarity

Under the assumption of IP, a surface is approximated to be
planar in its infinitesimal neighborhood while maintaining
its curvature globally. Therefore at an infinitesimal level, the
surface matches its tangent plane. This allows the surface to
be point-wise planar. As a consequence, β in equation (10)
becomes a linear function. Therefore, the connection’s coef-
ficients on the surface can be expressed using equation (13).

Isometric mappings have a special property which we
present in the following theorem proved in appendix E.

Theorem 2 (Isometric mappings). An isometric map-
ping between two planes preserves the connection forms
(w1

1, w
1
2, w

2
1, w

2
2).

Using IP, we extend theorem 2 to non-planar surfaces in
the next corollary.

Corollary 1 (Isometric mappings under IP). Under IP, an
isometric mapping between two non-planar surfaces preserves the
connection forms (w1

1, w
1
2, w

2
1, w

2
2).

Fig. 4: Illustration of IL. Two smooth curves are related by a mapping
ψ. According to IL, there exists a linear map ψL that relates P and Q
and agrees with ψ at zeroth and first-order.

3.6 Infinitesimal Linearity
IL assumes that a smooth mapping between two surfaces
can be represented by a set of linear mappings which
map the infinitesimal neighborhoods of the corresponding
points on surfaces. Figure 4 shows two curves related by
a smooth mapping ψ. According to the formulation of IL
in synthetic differential geometry (Kock, 2010), given that ψ
maps P to Q, there exists at least one linear function ψL that
maps the infinitesimal neighborhood of P to Q. Thus, ψ is
represented with an infinite set of linear mappings ψL that
map infinitesimal neighborhoods of the curves P and Q. ψL
has the same first-order differentials as ψ. It only assumes
that the second and higher-order differentials are zero as it
is a linearization of ψ. Theorem 3, proved in appendix E,
states an important property of linear mappings.

Theorem 3 (Linear mappings). A linear mapping between two
planes preserves the connection forms (w1

1, w
1
2, w

2
1, w

2
2).

For IL mappings, we extend theorem 3 to non-planar
surfaces in the next corollary.

Corollary 2 (Infinitesimally linear mappings). An IL map-
ping between two surfaces preserves the connection forms
(w1

1, w
1
2, w

2
1, w

2
2).

We always use IP and use IL in specific cases to formu-
late the reconstruction algorithms in sections 4 and 5.

4 TEMPLATE-BASED DEFORMABLE 3D RECON-
STRUCTION

We use our MT-CC framework to model and solve template-
based deformable 3D reconstruction, also known as SfT. We
present two approaches: 1) modeling deformations shown
in figure 2 by using constraints on moving frames under
IP and 2) using geometric properties of connections under
IP and IL, thus avoiding the deformation modeling of sec-
tion 3. Our solutions are obtained by solving a system of
polynomials. We discuss the well-posedness (uniqueness)
of our solutions. (Chhatkuli et al., 2017b) proved that the
isometric SfT solution to depth is non-stable in affine condi-
tions, which means that depth is not constrained when the
projection becomes affine. Hence, it is not always possible
to solve for depth. We solve for depth-derivatives which
lead to surface normals. We discuss the stability of normals
obtained from our methods which are found to be stable for
the isometric SfT in (Chhatkuli et al., 2017b).

4.1 General Model
Figure 5 shows the general model. Given a 3D template
T of the object, our goal is to find the surface M as
observed in image I . η is the image warp from I to the
flattened 3D template P . η is known and can be estimated
in practice with dense image registration methods. ψ is the
deformation mapping between T and M. For rigid objects
ψ is a Euclidean transformation. We model the template T
and the surfaceM using image embeddings φ1 and φ2:

φ1(x1, x2) =
1

β1(x1, x2)

x1x2
1

 φ2(x̄1, x̄2) =
1

β2(x̄1, x̄2)

x̄1x̄2
1

 .

(23)
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Fig. 5: Modeling of template-based 3D reconstruction of deformable
objects from a single view.

The moving frames (et1, e
t
2, e

t
3) and (ē1, ē2, ē3) on T and

M respectively are derived using equation (12). We write
the following expressions from the moving frames on T :(

et1
)>

et1 =
1

k2
(
ε2k21 + 1− 2x1k1

)
=
Et
k2(

et2
)>

et2 =
1

k2
(
ε2k22 + 1− 2x2k2

)
=
Gt
k2(

et1
)>

et2 =
1

k2
(
ε2k1k2 − x1k2 − x2k1

)
=
Ft
k2
, (24)

where ε2 =
(

1 +
(
x1
)2

+
(
x2
)2), k = β1, k1 =

β11
β1

and

k2 =
β12
β1

. Under IP, the first-order derivatives of these

expressions are given by:

∂Et
∂x1

= −2k1Et
∂Ft
∂x1

= −k2Et − k1Ft
∂Gt
∂x1

= −2k2Ft

∂Et
∂x2

= −2k1Ft
∂Ft
∂x2

= −k1Gt − k2Ft
∂Gt
∂x2

= −2k2Gt.

(25)

Similarly, we can write (Ē, F̄ , Ḡ) and their first-order
derivatives for (ē1, ē2, ē3) at M in terms of (k̄1, k̄2, k̄). In
order to compare the moving frames at surfaces T andM,
we need to define them in the same parametrization space.
Therefore, we derive (E,F,G) at M in terms of (x̄1, x̄2)
using the change of variable of equation (16):

E =

(
∂x1

∂x̄1

)2

Et + 2
∂x1

∂x̄1
∂x2

∂x̄1
Ft +

(
∂x2

∂x̄1

)2

Gt

F =
∂x1

∂x̄1
∂x1

∂x̄2
Et +

(
∂x1

∂x̄1
∂x2

∂x̄2
+
∂x2

∂x̄1
∂x1

∂x̄2

)
Ft +

(
∂x2

∂x̄1

)2

Gt

G =

(
∂x1

∂x̄2

)2

Et + 2
∂x1

∂x̄2
∂x2

∂x̄2
Ft +

(
∂x2

∂x̄2

)2

Gt. (26)

The derivatives of (E,F,G) according to equation (25) are:

∂E

∂x̄1
= −2

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
E + 2

∂2x1

∂ (x̄1)2
A+ 2

∂x2

∂ (x̄1)2
B

∂E

∂x̄2
= −2

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
F + 2

∂2x1

∂x̄1∂x̄2
A+ 2

∂x2

∂x̄1∂x̄2
B

∂G

∂x̄1
= −2

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
F + 2

∂2x1

∂x̄1∂x̄2
C + 2

∂x2

∂x̄1∂x̄2
D

∂G

∂x̄2
= −2

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
G+ 2

∂2x1

∂ (x̄2)2
C + 2

∂x2

∂ (x̄2)2
D

∂F

∂x̄1
= −

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
F −

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
E

+
∂2x1

∂x̄1∂x̄2
A+

∂x2

∂x̄1∂x̄2
B +

∂2x1

∂ (x̄1)2
C +

∂x2

∂ (x̄1)2
D

∂F

∂x̄2
= −

(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

)
G−

(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2

)
F

+
∂2x1

∂x̄1∂x̄2
C +

∂x2

∂x̄1∂x̄2
D +

∂2x1

∂ (x̄2)2
A+

∂x2

∂ (x̄2)2
B (27)

where:

A =
∂x1

∂x̄1
Et +

∂x2

∂x̄1
Ft, B =

∂x1

∂x̄1
Ft +

∂x2

∂x̄1
Gt

C =
∂x1

∂x̄2
Et +

∂x2

∂x̄2
Ft, D =

∂x1

∂x̄2
Ft +

∂x2

∂x̄2
Gt. (28)

Now we have both (E,F,G) and (Ē, F̄ , Ḡ) with respect to
the same parametrization space (x̄1, x̄2). We discuss next
the solutions based on moving frames and connections.

4.2 Solutions using Deformation Modeling

We derive constraints for the deformation models of equa-
tions (19)-(22), which are formulated using moving frames
only. We use IP to derive these constraints. Since (k1, k2, k)
are known, our goal is to find (k̄1, k̄2, k̄) in order to obtain
the normal and depth ofM.
Isometric mappings. Equation (19) gives three constraints:

E

k2
=
Ē

k̄2
F

k2
=
F̄

k̄2
G

k2
=
Ḡ

k̄2
. (29)

We differentiate these constraints under IP, using the ex-
pressions in equations (25) and (27), and obtain (k̄1, k̄2) by
solving the following equations:

k̄1 =
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2

− 1

2(E − F )

(
∂2x1

∂ (x̄1)
2 (A− C) +

∂2x2

∂ (x̄1)
2 (B −D)

)

k̄2 =
∂x2

∂x̄1
k1 +

∂x2

∂x̄2
k2

− 1

2(F −G)

(
∂2x1

∂ (x̄2)
2 (A− C) +

∂2x2

∂ (x̄2)
2 (B −D)

)
,

(30)

where A, B, C , D are given by equation (28).
Well-posedness: These expressions are linear and therefore
(k̄1, k̄2) can be uniquely determined, which leads to a
unique solution of normals. k̄ can also be uniquely deter-
mined by using the solution of (k̄1, k̄2) in equation (29).
Thus, isometric SfT possesses a unique solution under IP.
Stability of normals: In affine conditions, all second-order

derivatives of the warp,
∂x1

∂x̄2
,
∂x2

∂x̄1
, F and F̄ tend to vanish.

In that case, the equations (30) are reduced to:

k̄1 =
∂x1

∂x̄1
k1 k̄2 =

∂x2

∂x̄2
k2. (31)

This system is well-constrained and therefore, our solution
to isometric SfT in equation (30) under IP is non-degenerate
and stable in affine conditions.
Conformal mappings. Equation (20) gives three constraints:

1

k̄2
(
Ē Ḡ F̄

)
= λ2

1

k2
(
E G F

)
, (32)
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where λ is the local scaling. On differentiating these ex-
pressions, we obtain (k̄1, k̄2) as λ times the solution in
equation (30). On canceling (k, k̄) and λ in equation (32),
we obtain:

EḠ = ĒG FḠ = F̄G. (33)

Using (k̄1, k̄2) from the solution of equations (30) and the
expressions of (Ē, F̄ , Ḡ) according to equation (24) in these
equations, we obtain a unique solution for λ2 given by:

λ2 =
FR− (G− E)S

(2x1k1F − x1k2E − x2k1E)R− 2(x1k1G− x2k2E)S
,

(34)

where R = (Gk21 − Ek22) and S = k1(Fk1 − Ek2).
Well-posedness: The solution to (k̄1, k̄2) and λ obtained
from equations (30) and (34) respectively is unique. Using
(k̄1, k̄2, λ) in equation (32), k̄ can also be uniquely deter-
mined. In order to avoid sign flipping, we assume that
λ > 0, and therefore it is uniquely determined.
Stability of normals: The solution to (k̄1, k̄2) obtained from
equations (30) does not suffer from degeneracies. However
λ cannot be estimated in affine conditions. As can be seen
from equation (34) with some minor algebraic manipula-
tions, its value will tend to 0 in these conditions. Impor-
tantly, this is a generic degeneracy of the problem and not a
specific degeneracy of our method. It can be understood
intuitively from the fact that the conformal scale will be
coupled with the affine scale and the two will become
indistinguishable.
Equiareal mappings. Equation (21) is the constraint for an
equiareal mapping. By differentiating it, we obtain two first-
order constraints:

EG

k4
− F

k4

2

=
ĒḠ

k̄4
− F̄ 2

k̄4

∂

∂x̄i

(
Ē

k2

)
Ḡ

k̄2
+
Ē

k̄2
∂

∂x̄i

(
Ḡ

k2

)
− 2

F̄

k̄2
∂

∂x̄i

(
F̄

k2

)
=(

∂

∂x1

(
E

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
E

k2

)
∂x2

∂x̄i

)
G

k2

+

(
∂

∂x1

(
G

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
G

k2

)
∂x2

∂x̄i

)
E

k2

− 2
F

k2

(
∂

∂x1

(
F

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
F

k2

)
∂x2

∂x̄i

)
, i ∈ {1, 2}

(35)

Using the expressions of differentials from equations (25)
and (27), the above-mentioned constraints are written as:

|Jη|
(
k̄1 −

(
k1
∂x1

∂x̄1
+ k2

∂x2

∂x̄1

))
=

− ∂x2

∂x̄2
∂2x1

∂ (x̄1)2
+
∂x2

∂x̄1
∂2x2

∂ (x̄1)2
+
∂x2

∂x̄1
∂2x1

∂x̄1∂x̄2
− ∂x1

∂x̄1
∂2x2

∂x̄1∂x̄2

|Jη|
(
k̄2 −

(
k1
∂x1

∂x̄2
+ k2

∂x2

∂x̄2

))
=

− ∂x2

∂x̄2
∂2x1

∂x̄1∂x̄2
+
∂x2

∂x̄1
∂2x2

∂x̄1∂x̄2
+
∂x2

∂x̄1
∂2x1

(∂x̄2)
− ∂x1

∂x̄1
∂2x2

(∂x̄2)
.

(36)

Well-posedness: The above expressions are linear in (k̄1, k̄2)
and thus normals can be uniquely determined. k̄ can also be
uniquely obtained by using this solution in equation (35).
Stability of normals: In affine conditions, equations (36)

reduce to equations (31) which are well-constrained and
therefore, the solution to equiareal SfT under IP is non-
degenerate and stable in affine conditions.
Skewless mappings. Equation (22) gives the constraint as:

F 2ĒḠ = F̄ 2EG. (37)

This expression is independent of (k, k̄). By differentiating
it, we obtain:

2F

(
∂F

∂x1
∂x1

∂x̄i
+
∂F

∂x2
∂x2

∂x̄i

)
ĒḠ+ F 2

(
∂Ē

∂x̄i
Ḡ+ Ē

∂Ḡ

∂x̄i

)
=

2F̄
∂F̄

∂x̄i
EG+ F̄ 2

(
∂E

∂x1
∂x1

∂x̄i
+
∂E

∂x2
∂x2

∂x̄i

)
G

+ F̄ 2E

(
∂G

∂x1
∂x1

∂x̄i
+
∂G

∂x2
∂x2

∂x̄i

)
, i ∈ {1, 2}

(38)

We expand these expressions using equations (25) and (27)
and obtain:

EF
(
ĒḠ− F̄ 2

)
(
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
)− F̄ Ē(EG− F 2)k̄2 =

FĒḠ

(
∂2x1

∂x̄1∂x̄2
A+

∂x2

∂x̄1∂x̄2
B +

∂2x1

∂ (x̄1)2
C +

∂x2

∂ (x̄1)2
D

)

F̄ 2

(
E

(
∂2x1

∂x̄1∂x̄2
C +

∂x2

∂x̄1∂x̄2
D

)
+G

(
∂2x1

∂ (x̄1)2
A+

∂x2

∂ (x̄1)2
B

))

GF
(
ĒḠ− F̄ 2

)
(
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
)− F̄ Ḡ(EG− F 2)k̄1 =

FĒḠ

(
∂2x1

∂x̄1∂x̄2
C +

∂x2

∂x̄1∂x̄2
D +

∂2x1

∂ (x̄2)2
A+

∂x2

∂ (x̄2)2
B

)

F̄ 2

(
G

(
∂2x1

∂x̄1∂x̄2
A+

∂x2

∂x̄1∂x̄2
B

)
+ E

(
∂2x1

∂ (x̄2)2
C +

∂x2

∂ (x̄2)2
D

))
,

(39)

where A, B, C and D are given by equation (28). Using
equation (37) in the above expressions, we obtain the fol-
lowing two constraints for skewless deformation:

FĒk̄2 − EF̄
(
k1
∂x1

∂x̄2
+ k2

∂x2

∂x̄2

)
+ F̄ (K + |Jη |−1MF ) = 0

FḠk̄1 −GF̄
(
k1
∂x1

∂x̄1
+ k2

∂x2

∂x̄1

)
+ F̄ (L+ |Jη |−1NF ) = 0. (40)

where:

K = C
∂2x1

(∂x1)2
+D

∂2x2

(∂x1)2
+A

∂2x1

∂x1∂x2
+B

∂2x2

∂x1∂x2
,

L = C
∂2x1

∂x1∂x2
+D

∂2x2

∂x1∂x2
+A

∂2x1

(∂x2)2
+B

∂2x2

(∂x2)2
,

M = −
∂x2

∂x̄2
∂2x1

(∂x1)2
+
∂x1

∂x̄2
∂2x2

(∂x1)2
+
∂x2

∂x̄1
∂2x1

∂x1∂x2
−
∂x1

∂x̄1
∂2x2

∂x1∂x2
,

N = −
∂x2

∂x̄2
∂2x1

∂x1∂x2
+
∂x1

∂x̄2
∂2x2

∂x1∂x2
+
∂x2

∂x̄1
∂2x1

(∂x2)2
−
∂x1

∂x̄1
∂2x2

(∂x2)2
,

(41)

and A, B, C and D are given by equation (28).
Well-posedness: The above expressions are cubic in (k̄1, k̄2)
and therefore normals cannot be uniquely determined. We
pick the solution that minimizes the expression (37). k̄
cannot be found in this case as the constraint (37) is inde-
pendent of (k, k̄).
Stability of normals: In affine conditions, the equations (40)
vanish as both F and F̄ tend to be zero. Thus skewless SfT
under IP suffers from degeneracies and becomes non-stable.
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4.3 Solutions using Connections

We use the geometric properties of connections to obtain
a solution to SfT which does not use the MT-based for-
mulation of deformation models. We use both IP and IL.
For an IL mapping ψ : T → M, according to corollary 2
the connection forms are preserved. Therefore, in figure 5
the connections at T (parametrized with x1 and x2) are
related to the connections at M (parametrized with x̄1

and x̄2) by a change of variable given by equation (18)
for any diffeomorphic IL mapping ψ between them. The
components of these connection forms under a change of
variable are:(
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(42)

where k ∈ {1, 2}. Under IP, the components of the connec-
tion forms are evaluated using equation (13). For T andM,
these expressions are written only in terms of (k1, k2) and
(k̄1, k̄2) respectively. This gives the following constraints:
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(43)

Well-posedness: The above expressions are linear in (k̄1, k̄2)
and therefore normals can be uniquely determined. How-
ever, depth cannot be obtained as the above constraints are
independent of (k, k̄). Therefore, there exists a unique SfT
solution for any deformation due to an IL mapping.

Stability of normals: In affine conditions, the equations (43)
are reduced to (31) which is well-constrained and therefore,
this solution is non-degenerate and stable.

Discussion: (Bartoli and Özgür, 2016) solves non-isometric
SfT by minimizing the second-order derivatives of the sur-
face. For a function z described in equation (1), it tries to
minimize d2z. Using equations (3), (4) and (5), we write:

d2z = d
(
e1dx1 + e2dx2

)
= de1dx1 + de2dx2. (44)

Therefore, this solution tries to minimize (de1,de2) whereas
our solution in equation (43) is obtained by imposing a
structure to (de1,de2) using connection forms’ components
in equation (6). This is the underlying difference between
the two methods. This structure of (de1,de2) cannot be
studied without the theory of connections which makes our
framework complete.

Combining deformation modeling with connections. All
SfT solutions that we proposed have a unique and a stable
solution except for skewless SfT which is non-stable and
non-unique. If we combine the SfT solution for IL mappings
with the skewless SfT solution in equation (40), we obtain:
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(45)

These equations are also cubic in (k̄1, k̄2) and yield a non-
unique and non-stable solution to normals. Skewless defor-
mations are more inclusive than the rest of the deforma-
tions shown in figure 2 but they are loosely-constrained.
Therefore, a connection-based SfT solution for IL mappings
is interesting as it maintains the uniqueness and stability
of the more constrained deformation modeling based SfT
solutions: isometric, conformal, equiareal. It is also inclusive
of all the mappings discussed in this paper and more.

Our findings on template-based 3D reconstruction of
deformable objects are summarized in table 1.

4.4 Reconstruction Algorithm
We expressed the reconstruction equations for all deforma-
tion models in equations (30), (36), (40) and (43). All of these
equations are expressed in terms of the unknowns (k̄1, k̄2).
We present the following algorithm to solve these equations.

Inputs: The warp η and (k, k1, k2) on the corresponding
points of T andM.

1) Densify corresponding points. Select a grid of points on
the template and using the warps η, find the corresponding
grid in the image. We used a 20× 20 grid.

2) Find (k̄1, k̄2). For isometric and conformal deforma-
tions, the solution to equation (30) gives (k̄1, k̄2) linearly.
For skewless deformations, equations (40) are cubic in
(k̄1, k̄2). We solve them by minimizing their sum-of-squares
using (Henrion and Lasserre, 2003). For equiareal and IL
deformations, equations (36) and (43) are also linear in
(k̄1, k̄2).

3) Find normals at M. Compute the unit normal at each
point onM according to equation (12) in terms of (k̄1, k̄2).

4) Find depth at M. Compute the up-to-scale depth
by integrating the normals using the method proposed
in (Chhatkuli et al., 2017b). For isometric, conformal and
equiareal deformations, the scale can be evaluated by using
(k̄1, k̄2) in equations (29), (32) and (35) respectively.

Outputs: Reconstructed points and normals.

5 TEMPLATE-FREE DEFORMABLE 3D RECON-
STRUCTION

We used our MT-CC framework to model and solve
template-free deformable 3D reconstruction, commonly
known as NRSfM. We present solutions for the deforma-
tion models discussed in section 3 under IP for isometric
deformations. Other deformation models use both IL and IP
to obtain a solution. While template-based reconstruction
methods used either MT-based deformation modeling or
connection-based modeling, template-free reconstruction is
solved using both as there are more variables in this scenario
than the former case.

5.1 General Model
Figure 6 shows the model. We have N input images
I1, . . . , IN representing different deformations of the same
object M1, . . . ,MN viewed in a perspective camera. Our
goal is to reconstruct the surfaces viewed in the N images.
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Fig. 6: Modeling N views of a deforming 3D surface.

ηij represents the image warp between the pair of images
(Ii, Ij). ψij is the deformation mapping between Mi and
Mj modeled using the image embedding φ. We write the
constraints for a pair of views i and j. This modeling can
be extended to any number of image pairs. The moving
frames (ei1, e

i
2, e

i
3) and (ē1, ē2, ē3) onMi andMj are writ-

ten according to equation (12). The expressions (Ei, Fi, Gi),
(Ē, F̄ , Ḡ) and their first-order derivatives are expressed
according to equations (24) and (25). Using equation (26), we
can write (e1, e2) atMi which allows us to write (E,G, F )
and its derivatives with respect to (x̄1, x̄2). In this case, we
can write the reconstruction equations in a similar fashion as
the previous section but the unknowns are both (k1, k2, k)
and (k̄1, k̄2, k̄). The connections at Mi and Mj are pre-
served for isometric deformations using corollary 1 under
IP. For the other deformations, they are preserved using
corollary 2. Using the change of variable of equation (42),
the connections at Mi and Mj can be defined in the same
parametrization space. Therefore, we can express (k̄1, k̄2, k̄)
in terms of (k1, k2, k) using equation (43) which allows us
to restrict the unknowns to (k1, k2, k) only.

5.2 Reconstruction Equations
Isometric/conformal mappings. Given that ψ is an isometric
or a conformal mapping, from equations (29) and (32) the
reconstruction equations for a pair of views Ii and Ij are
given in equation (33) as a set of two cubic expressions in
terms of (k1, k2) and (k̄1, k̄2). Therefore isometry and con-
formity share the same constraints in the context of NRSfM.
Substituting equation (43) in equation (33), we obtain two
cubic equations in terms of (k1, k2) only. We proposed
a solution to these equations for isometric deformations
in (Parashar et al., 2017). It is important to note that this
solution uses CS and therefore it could not be extended to
conformal deformations.
Well-posedness: The above expressions are cubic in (k̄1, k̄2),
normals can be uniquely determined if more than 3 views
are used. k̄ cannot be found in this case as the constraint (33)
is independent of (k, k̄).
Stability of normals: Under affine conditions, the second
constraint in (33) vanishes as both F and F̄ tend to be zero
which makes the system less-constrained. Therefore, it may
need more than 3 views to recover a unique, stable solution.
Equiareal mappings. The reconstruction equations (36) are
in terms of (k1, k2) and (k̄1, k̄2). Using equation (43) in
equation (36) leads to a system of equations independent
of (k̄1, k̄2) and (k1, k2). Therefore, these expressions cannot

TABLE 1: Summary of template-based and template-free deformable
3D reconstruction for non-degenerate inputs. For each deformation
model, we obtain constraints in two variables. The degree of these
constraints, recoverability of depth and normals and the stability of
normals is shown.

be used to solve for (k1, k2). We formalize this fact in the
following theorem, proved in appendix E.

Theorem 4 (Non-solvability of Equiareal NRSfM). Equiareal
NRSfM is not locally solvable.

Skewless mappings. The reconstruction equations (40) are
in terms of (k1, k2) and (k̄1, k̄2). Using equation (43) in
equation (40), we obtain two pentic equations in terms of
(k1, k2) only. These equations can be solved by minimizing
their sum-of-squares.
Well-posedness: The above expressions are pentic in (k̄1, k̄2)
and therefore normals can be uniquely determined if more
than 4 views are used. k̄ cannot be found in this case as the
constraint (37) is independent of (k, k̄).
Stability of normals: Under affine conditions both F and
F̄ tend to be zero and therefore constraints (40) tend to
vanish. Therefore this solution suffers from degeneracies
which makes it non-stable in affine conditions.
Infinitesimally linear mappings. If ψ is an IL mapping,
there can only be two constraints obtained from equa-
tion (43) in terms of (k1, k2) and (k̄1, k̄2) respectively. Thus,
a solution for (k1, k2) cannot be obtained even under IL.

Our findings in template-free 3D reconstruction of de-
formable objects are summarized in table 1.

5.3 Reconstruction Algorithm
We expressed the reconstruction equations for all deforma-
tion models in equations (33), (36), (40) and (43). All of these
equations are expressed in terms of the unknowns (k1, k2).
We present the following algorithm to solve these equations:

Inputs: Warps ηj1, j ∈ [2, N ]. The index 1 corresponds to
the first image in the sequence. It can be chosen arbitrarily.

1) Densify corresponding points. Select a grid of points on
the template and using the warps η1j , find the correspond-
ing grid in the image. We used a 20× 20 grid.

2) Find (k1, k2). For isometric, conformal and skewless
deformations, the solution to equations (33) and (40) gives
(k1, k2). We solve these equations by minimizing their sum-
of-squares using (Henrion and Lasserre, 2003).

3) Find (k̄1, k̄2). (k̄1, k̄2) can be expressed in terms of
(k1, k2) and the first and second-order derivatives of ηji
using equation (43).

4) Find normals at M. Compute the unit normal at each
point on M using equation (12) in terms of (k̄1, k̄2) and
(k1, k2).
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5) Find depth atM. Use (Chhatkuli et al., 2017b).
Outputs: Reconstructed points and normals.

6 EXPERIMENTS AND DISCUSSION

We tested our proposed SfT and NRSfM methods on two
synthetic datasets, Cylinder and Rubber (Özgür and Bartoli,
2016); and four real datasets, Paper (Varol et al., 2012),
Balloon, Sock and Tissue (Bartoli and Özgür, 2016). These
datasets show objects undergoing different types of defor-
mation. The Balloon and Sock datasets were recorded using
Kinect2.0 and the point tracks were obtained using (Sun-
daram et al., 2010). A few images are shown in figure 7.
We assume that the images are well-textured and register
them using warps (Pizarro et al., 2016). However, any other
technique, such as optical flow, that provides the first and
second order derivatives of the image registration can be
used instead. We also assume that the surfaces which are to
be reconstructed are smooth.

For quantitative comparison, we measure the normal
error (mean difference between computed and ground-truth
normals in degrees) and the depth error (mean difference
between computed and ground-truth 3D points in mm).

The proposed SfT solutions for isometric, conformal,
equiareal and skewless deformation models are denoted by
IsoS, ConS, EqArS and SkewS respectively. The proposed
connection-based generic SfT solution is denoted by GenS.
We compare our results with IsoFS (Bartoli et al., 2015),
ConFS (Bartoli et al., 2015), LinModS (Salzmann and Fua,
2011) and NoIsoS (Bartoli and Özgür, 2016). (Bartoli and
Özgür, 2016) proposed five solutions, we use the best one.

The proposed NRSfM solutions for isometric/conformal
and skewless deformation models are denoted by Iso-
ConN and SkewN. We compare our results with
MDHN (Chhatkuli et al., 2017a) and KerN (Gotardo and
Martinez, 2011).

Synthetic Datasets

Cylinder dataset. The cylinder dataset consists of images of
a cylindrical surface deforming isometrically. These images
are of size 640p× 480p with a focal length of 400p with 400
point tracks. We added a random noise with a Gaussian
distribution of 1 pixel standard deviation to the images.
The mean normal and depth errors were evaluated from
20 trials. The results are shown in figure 7. The first four
methods (IsoConN, SkewN, MDHN and KerN) are NRSfM
methods. IsoConN shows the best performance amongst the
NRSfM methods in this dataset. The images of this dataset
do not come from a video sequence, therefore KerN did
not do well for this dataset. In this dataset, the object and
the camera do not move while deforming. (Chhatkuli et al.,
2017a) reported this as a failure scenario for MDHN and
therefore, it did not perform well for this dataset.

The SfT methods IsoS, ConS, EqArS, GenS, IsoFS and
ConFS are all analytical solutions. Our SfT methods, IsoS,
ConS, EqArS and GenS are all linear solutions that incor-
porate local smoothness. Therefore, they show better perfor-
mance than IsoFS and ConFS. SkewS does not show good
results on this dataset. This is because it is non-stable and
not well-constrained. IsoFS, ConFS and LinModS show a

similar good performance on this dataset. NoIsoS needs
high perspective in images and therefore it performed very
well in this dataset. The performance of this method is quite
close to best performing SfT methods.
Performance of methods in noisy conditions. We evaluated the
performance of the methods in noisy conditions. We added
1-5 pixels noise to the images of the dataset and obtain
the results for each method. We report the normal and
depth errors for each experiment averaged over 20 trials.
Figure 8 shows our results. Our SfT (IsoS, ConS, SkewS,
EqArS, GenS) and NRSfM (IsoConN, SkewN) methods
show a very stable performance in noisy conditions. The
performance of other methods is quite stable as well. Our
methods exploit the first and second-order derivatives of the
warps. These derivatives, especially the second-order ones,
may be largely affected by the noise. Therefore, the methods
EqArS, GenS, IsoConN which solve SfT/NRSfM in terms
of the first and second-order derivatives of the warp show a
larger increase in the errors compared to other methods such
as IsoFS and ConFS that use the first-order derivatives of
the warps only. LinModS, NoIsoS, ConS and IsoS are also
quite stable in the presence of noise. The skewless methods
SkewN and SkewS also show a good tolerance to noise
even though their performance on this dataset is not so
good. MDHN and KerN do not perform well and they are
largely affected by noise as well.
Curvature test of our methods. The best performing meth-
ods on this dataset are EqArS and GenS, GenS being
slightly better. These solutions are dependent on the first
and second-order derivatives of the warps. The second-
order derivatives may be non-stable. We corrected them by
using the refinement method (Pizarro et al., 2016). However
it may be difficult to find them in some cases, therefore it is
interesting to see the performance of these methods without
second-order derivatives. We make an approximation to the
solution of GenS by disregarding the second-order deriva-
tives. The new solution is called GenS0. Figure 9 shows the
results of all methods with respect to the varying curvature
of the surface. The curvature is the inverse of the radius. In
this experiment we show reconstruction for 10 surfaces of
the cylinder with the radius varying from 2 to 10. In general
the reconstruction errors increase with bending. However,
IsoConN, SkewN and GenS do not show a sharp increase
in errors due to bending. GenS0 is affected by bending,
especially when it is strong, but it still shows decent results
for highly bent surfaces.

The interesting thing about GenS is the simplicity of
the solution. The reconstruction algorithm is only two lines
of code given that (k1, k2) in equation (43) are obtained
from the template. This means that the computational cost
of this method is very low as it involves simple additions
and multiplications only. Even by ignoring second-order
derivatives, GenS0 gives decent results.
Computation time comparison. Our SfT methods, except
SkewS, are linear and therefore they are computationally
very cheap. In general, for 20 images and 400 points on the
cylinder dataset, it takes ≈ 5 seconds for these methods
to evaluate the results. The computation time of other SfT
methods is much higher: 20-50 seconds for ConFS and IsoFS
and 150-190 seconds for LinModS and NoIsoS. The compu-
tation time for our NRSfM methods is about 20 seconds on
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Fig. 7: (left) Normal and depth errors on all datasets. The errors shown are evaluated by averaging the errors on the entire image-set. The first four
methods shown are NRSfM methods and the rest are SfT methods. In general, the performance of SfT methods is better than NRSfM methods on
these datasets. The methods ending with N and S are NRSfM and SfT methods respectively. (right) Images from the sock and balloon datasets.
Some of the tracked points are shown. Best viewed in colour.

this dataset which is quite faster than MDHN and KerN.
Futhermore our NRSfM methods have a linear complexity
and therefore, they are capable of handling a large number
of images. MDHN and KerN have a non-linear complexity,
therefore, reconstructing a large number of images can be
very slow. Especially MDHN, which cannot reconstruct
more than 50-60 images. Table 2 shows the computation
time for all the compared methods on the cylinder dataset
reported on a PC with an i5 CPU and 8 GB RAM.
Rubber dataset. It consists of 50 partially-stretched surfaces
of a rubber with 400 point tracks. We evaluated all compared
SfT and NRSfM methods on the first 20 images of this
dataset. The rubber is partially stretched from its longest
side in a sequential order. Figure 7 summarizes the perfor-
mance of different methods on this dataset. The reconstruc-
tion of surfaces 10 and 20 by the compared methods are
shown in figure 15 of appendix F. Amongst NRSfM meth-
ods, IsoConN shows the best performance. The rest of the
NRSfM methods do not perform well. Amongst SfT meth-
ods, LinModS shows the best performance with EqArS and
GenS being close in terms of depth. Figure 15 shows that

the curvature of the surface 10 is best captured by EqArS
with GenS whereas surface 20 is decently reconstructed
by LinModS only. For low deformations of this dataset,
EqArS with GenS show better results than LinModS but
they cannot cope up with the higher deformations.

Real Datasets

Paper dataset. It consists of 190 images with 1500 point
tracks of a paper deforming isometrically. We picked 20
images by uniformly sampling the dataset. Figure 7 sum-
marizes the performance of the compared methods on this
dataset. Amongst NRSfM methods, MDHN shows the best
performance, with IsoConN being very close to it. SkewN
also shows good results on this dataset. KerN does not
have good results. Our SfT methods show a very good
performance on this dataset. NoIsoS also leads to decent
reconstruction in this dataset. However, LinModS shows
the best performance. The reconstructions of two surfaces
of this dataset are shown in figure 16 of appendix F. IsoFS
and ConFS do not show a good performance on the selected
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Method IsoConN SkewN MDHN KerN IsoS ConS SkewS EqArS GenS IsoFS ConFS LinModS NoIsoS

Time (in sec) 20.0 42.3 52.7 56.4 4.3 5.4 201.5 4.5 3.3 55.6 23.5 148.7 190.9

TABLE 2: Computation time comparison of all the methods on 20 images of the cylinder dataset with 400 tracked points.

Fig. 8: Normal and depth errors on the cylinder dataset by varying the
noise from 1 to 5 pixels. Best viewed in colour.

images of this dataset. We recall that in order to compare
them with our methods, we do not perform the refinement
step proposed for these methods. This is because our goal
is to compare the analytical solutions of these methods to
ours. MDHN and LinModS both perform a global convex
optimization whereas our methods IsoConN and IsoS yield
a local and analytical solution. Global coherence is thus not
guaranteed but could be added by coupling our methods
with the non-convex optimization proposed in (Chhatkuli
et al., 2017b), which showed a significant performance boost
and achieved better results than LinModS when combined
with IsoFS.
Balloon dataset. It consists of 20 images uniformly sampled
from a video sequence of 80 images with 3000 point tracks.
We find that the mean normal error for all NRSfM methods
on this dataset is around 20 degrees which is very high as
compared to the performance of these methods on other
datasets. However, the mean depth error for these methods

Fig. 9: Normal and depth errors on the cylinder dataset by varying the
radius from 2 to 10. The surface with radius 2 is the most curved. Best
viewed in colour.

is quite comparable to the rest of the datasets. This indi-
cates the flattening of the reconstructed surface. However,
IsoConN shows the best performance amongst compared
NRSfM methods. Our SfT methods except SkewS show a
very good performance on this dataset and their results are
very similar. The reconstruction from SkewS is quite flat.
IsoFS, ConFS and NoIsoS, all of these methods also lead
to flat reconstructions. LinModS performed quite well on
this dataset. Its performance is close to EqArS and GenS
which are the best performing methods on this dataset. This
dataset is near-affine. Thus, most of the methods did not do
well. The reconstruction of two surfaces using the compared
methods is shown in figure 17 of appendix F.
Sock dataset. It consists of 20 images with 3500 point tracks.
The sock undergoes elastic deformations in one direction
only. Analytical methods show a very good performance on
this dataset. Amongst NRSfM methods, SkewN showed the
best performance as the sock is undergoing almost skewless
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Fig. 10: Error maps for two surfaces of the sock dataset. The depth error
maps show the difference in the reconstruction and ground truth. Best
viewed in colour.

deformation. The reconstruction of normals by IsoConN
is quite good but it cannot cope with the stretching of
the surface and therefore, it leads to a higher depth error.
MDHN and KerN did not do well on this dataset. SfT
methods except NoIsoS, which completely broke on this
dataset, showed a very good reconstruction even though
the object was stretched. GenS shows the best performance.
However, the rest of the methods are quite competitive.
An important thing to note is that even though IsoFS and
ConFS show the best performance in computing normals,
their computation of depth is not as good as IsoS and ConS.
This is because IsoS and ConS use the constraints of IsoFS
and ConFS, given in equation (29), along with additional
constraints obtained in equation (30) which gives IsoS and
ConS the liberty to reconstruct stretched surfaces better.
The reconstruction of two surfaces of this dataset using the
compared methods is shown in figure 10.
Tissue dataset. It is a piece of elastic tissue with 100 points
matched to an undeformed template of the tissue. It has only
one image. Therefore only SfT methods could be compared
for this dataset. GenS shows the best performance on this
dataset with the rest of the methods, except SkewS, ConS
and NoIsoS, being close enough to the best solution. The
reconstruction of the tissue using the compared methods is

shown in figure 18 of appendix F.
Discussion on generic solutions. An important point to note
here is that NoIsoS and GenS both reconstruct the sur-
face without modeling deformation explicitly. However,
we found NoIsoS, which uses a differential framework,
to be non-stable. (Bartoli and Özgür, 2016) proposed five
solutions to cope with the stability issue. The main idea
of this method is to use smoothness (expressed in terms
of the second-order differentials of the surface) in order to
reconstruct surfaces. Also, it needs the input image to have
a high amount of perspective in order to give decent results.
Our solution to GenS (along with other solutions) also relies
on the second-order derivatives of the surfaces under the
assumption of IL. Our experiments show that however our
solution to GenS is stable.

Discussion on missing data, occlusions and self-occlusions.
Since our proposed framework is local, it naturally handles
missing data and occlusions. We used CVLAB’s occluded
paper dataset, which adds an occlusion mask to the paper
dataset as shown in figure 11, and evaluated all methods.
All SfT methods could handle the occlusion and their perfor-
mance was similar to the paper dataset without occlusions
which is reported in figure 7. Our proposed NRSfM meth-
ods, IsoConN and SkewN, are also almost unaffected by
the occlusion and they reconstruct the entire paper despite
the occlusion. Figure 11 shows the result. KerN fails to
reconstruct the surfaces with missing data due to occlusion.
Figure 11 also shows that MDHN could not reconstruct the
occluded portion on the paper but it managed to reconstruct
the rest of the paper with almost the same accuracy as the
reported one in figure 7. Strictly speaking, it cannot handle
occlusions but unlike KerN, it manages to reconstruct the
portion of the surfaces unaffected by the occlusion.

Dealing with self-occluded surfaces is rather a practical
problem than a theoretical one. The challenging task is their
registration which is a difficult problem. However, there
exists previous work which propose solutions to register
such surfaces.

Discussion on learning-based reconstruction methods. Re-
cently, (Pumarola et al., 2018) proposed DeformNet, a
learning-based solution to SfT and evaluated its perfor-
mance on the Paper dataset. It reported a reconstruction
error of 2.7mm, whereas our method IsoS yields an er-
ror 6.5mm. A performance similar to DeformNet can be
obtained by coupling IsoS with a refinement method such
as (Chhatkuli et al., 2017b). Unlike IsoS or (Chhatkuli et al.,
2017b), (Pumarola et al., 2018) requires the network to be
trained using the 3D surface ground truth of the dataset to
be tested on. The Paper dataset is recorded using the RGBD
Kinect sensor and therefore, the ground truth is available for
it. This is a strong practical limitation as the ground truth is
non-feasibly computable in most real scenarios like medical
endoscopies where the data is recorded using regular RGB
cameras only.
Summary of experiments. The results of all the compared
methods on each dataset are summarized in figure 7. On
these datasets, the best performing NRSfM methods are
IsoConN and MDHN. While our methods have a linear
computational complexity, MDHN performs a convex opti-
mization with cubic computational complexity which takes
it almost an hour to reconstruct 50-60 images. Therefore,
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Paper dataset

Ground truth

E  = Mean 3D  error (in  mm)

IsoConN SkewN MDHN

Fig. 11: Image renderings and error maps of the reconstruction of
paper dataset under occlusion. Our NRSfM methods manage to re-
construct complete surfaces despite occlusions which MDHN cannot.
Best viewed in colour.

it is highly unscalable. For SfT methods, our methods (ex-
cept SkewS) showed a very good performance on all the
datasets. GenS showed the best performance on most of
the datasets. LinModS showed a very good performance on
these datasets, it showed the best performance in the rubber
and paper datasets. However, GenS and EqArS have been
very competitive with LinModS. SkewN gives very good
results on the sock dataset. LinModS performs a convex
optimization while our methods are purely analytical.

7 CONCLUSIONS

We presented the MT-CC differential framework for de-
formable 3D reconstruction. We used this framework to find
solutions to isometric, conformal, skewless and equiareal
SfT under IP. Using this framework, we also proposed a
generic solution to SfT under IL. We obtained solutions
to isometric, conformal and skewless NRSfM under the
assumption of IP using this framework. Our solution to
conformal NRSfM is the same as isometric NRSfM. We
showed that equiareal NRSfM cannot be solved locally. Our
NRSfM methods solve the minimum data case, have linear
complexity in the number of points, handle missing data
as they reconstruct locally, work for both short and wide-
baseline datasets, work with both large and small number of
images. Our experiments showed that the proposed SfT and
NRSfM methods outperform most of the compared methods
in terms of accuracy and computation time. In future work,
our goal is to study the deformable 3D reconstruction for all
algebraic deformation models without using IP. So far we
have only explored the affine CC. We now aim to study
the nature of projective CC and how can they be used
in deformable 3D reconstruction. Also, we would like to
extend these methods to reconstruct non-smooth objects.
The surface patches that are consistently smooth need to be
identified and reconstructed independently. The complete
reconstruction can then be obtained by sewing the indepen-
dent reconstructions together.
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Daniel Pizarro Pérez has been an Asso-
ciate Professor at the Universidad de Al-
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APPENDIX A
CHRISTOFELL SYMBOLS PRESERVATION LAW

Fig. 12: Two surfacesM1 andM2 related by ψ are parametrized using
(x1, x2).

We discuss how the CS transform across surfaces under
any deformation model. Figure 12 shows two surfaces re-
lated by a mapping ψ. Given that g = ψ ◦ f , the moving
frames (e1, e2, e3) and (ē1, ē2, ē3) on the planes M1 and
M2 are related by:(

ē1 ē2

)
= Jψ◦f

(
e1 e2

)
=
(
Jψ◦fe1 Jψ◦fe2

)
. (46)

The metric tensor ḡ atM2 is given by:

ḡ =

ē>1

ē>2

(ē1 ē2

)
=

e>1

e>2

J>ψ◦fJψ◦f
(
e1 e2

)
where J>ψ◦fJψ◦f

=


I ψ is isometricλ1 λ4 λ5
λ4 λ2 λ6
λ5 λ6 λ3

 otherwise

(47)

Therefore, given the metric tensor g =
(
e1 e2

)> (
e1 e2

)
,

ḡ is given by:

ḡ =


g ψ is isometrice>1

e>2


λ1 λ4 λ5
λ4 λ2 λ6
λ5 λ6 λ3

(e1 e2

)
otherwise

(48)

The CS Γpmn atM1 are given by:

Γpmn =
1

2
gpl (glm,n + gln,m − gmn,l) (49)

where glm,n = ∂nglm and gmn = (gmn)
−1. Using equa-

tion (48) in the expressions of CS given in the equation
above, Γ̄pmn atM2 can be written as:

Γ̄pmn =
1

2
ḡpl (ḡlm,n + ḡln,m − ḡmn,l)

=
1

2
gpl (glm,n + gln,m − gmn,l) = Γpmn

(50)

Therefore, CS at M1 and M2 are preserved under an
isometric deformation. For any other deformation, Γ̄pmn
cannot be expressed in terms of Γpmn without involving λi
which are unknown and do not cancel out. Due to this, the
preservation of CS for the deformation models other than
isometry is not possible.

APPENDIX B
MANIFOLDS AND SURFACES

In general, a manifold is a topological space that resembles
the Euclidean space Rn locally. Therefore, at each point of
the manifold one can find a neighborhood that is homeo-
morphic to the Euclidean space of dimension n. 2D mani-
folds represent surfaces. If embedded in 3D, they represent
3D surfaces.

B.1 Image Projection

A surface is mathematically related to an image with
an image projection function. Figure 13 shows a surface
M ∈ R3 being projected into the image I ∈ R2 with
the function Π : R3 → R2. We model projection with
the perspective camera, where Π takes as input the point
z =

(
z1 z2 z3

)> on the surfaceM and outputs its retinal
coordinates x =

(
x1 x2

)> in the image:

x =
(
x1 x2

)>
= Π(z) =

(
z1

z3
z2

z3

)>
. (51)

Fig. 13: An image embedding φ that relates the 3D surfaceM with its
image I.

B.2 Image Embedding

The image embedding, denoted as φ : I → M in figure 13,
represents the inverse of Π restricted to the surface M ∈
R3, as it maps retinal coordinates to the 3D surface. It must
satisfy the following identity:

x = (Π ◦ φ)(x). (52)

Smooth functions that comply with equation (52) can be
expressed with a depth function ρ ∈ C∞(I,R), where:

φ(x) = ρ(x)
(
x 1

)>
. (53)

Alternatively, let β = ρ−1 be the inverse-depth function.
This allows us to re-define the image embedding in equa-
tion (53) as:

φ(x) =
1

β(x)

(
x 1

)>
. (54)
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where β is a function that represents the inverse of the depth
of the surface at a point x = (x1, x2) in I . A point on the
surfaceM is given by:

z = φ = β−1
(
x1 x2 1

)>
. (55)

For general surfaces, β is a non-linear function but for planar
surfaces it is linear.

APPENDIX C
DIFFERENTIAL K-FORM

A differential k-form represents a smooth section on the
infinitesimal tangent space of the manifold. For example, a
0-form describes a point on the manifold, 1-form describes
a line element, 2-form describes an area element, 3-form
describes a volume element, and so on.

In differential geometry, differential forms (Cartan, 1970;
O’Neill, 2006) are used to perform the multivariate calcu-
lus independently of the coordinates. A scalar function f ,
parametrized with m variables (x1, x2, . . . xm) such that a
point z = f(x1, x2, . . . xm) is a 0-form. In this case, the
exterior derivative of f is the same as the total derivative
of f .

Now, the differential 1-form expressing the exterior
derivative of f is given by:

dz =
m∑
t=1

∂f

∂xt
dxt, (56)

where dxt are the 1-forms and
∂f

∂xt
represents a linear

function on the tangent space of the function f in Rn.
Differential forms are defined locally, in terms of the

local coordinates. Hence they are easily transferable from
one coordinate system to another and therefore, very useful
for defining local properties of the surfaces.

APPENDIX D
FORMULATION OF DEFORMATION MODELS USING
METRIC TENSORS AND MOVING FRAMES

Given the moving frames (e1, e2, e3) atM1 and (ē1, ē2, ē3)
at M2 in figure 12, the metric tensors g and ḡ at M1 and
M2 are given by:

g = J>f Jf =

(
e>1 e1 e>1 e2
e>2 e1 e>2 e2

)
ḡ = J>g Jg =

(
ē>1 ē1 ē>1 ē2
ē>2 ē1 ē>2 ē2

)
.

(57)
The four categories of deformation models shown in figure 2
are characterized by the following metric tensor and moving
frames invariants:

Deformation Metric tensor Moving frames
Isometric g = ḡ ē>i ēj = e>i ej i, j ∈ {1, 2}

Conformal g ∝ ḡ ē>i ēj ∝ e>i ej i, j ∈ {1, 2}
Equiareal |g| = |ḡ| ||ē1 × ē2||2 = ||e1 × e2||2
Skewless γ(g) = γ(ḡ) α(e1, e2) = α(ē1, ē2)

where γ(g) =
g2
12

g11g22
and α(e1, e2) =

(e>1 e2)2

e>1 e1e>2 e2
.

(58)

X X
X

Y Y

Y

Conformal
transformation

Anisotropic local 
scaling in 
X and Y-direction

,

Fig. 14: An example of skewless deformation. A surface grid undergoes
anisotropic scaling in two orthogonal directions and then undergoes a
conformal transformation. Therefore, only the angles between the basis
are preserved.

APPENDIX E
THEOREMS AND THEIR PROOFS

Theorem 1 (Skewless mappings). A mapping is skewless iff
it can be decomposed into a conformal mapping and orthotropic
scalings along the orthogonal frame basis.

Proof. First we prove the reverse implication of the theorem,
i.e., anisotropic scalings and a conformal mapping lead to a
skewless mapping. In figure 14, we have:

ψxyc = ψc ◦ ψy ◦ ψx. (59)

Since ψx and ψy are anisotropic local scalings along the
orthogonal frame basis, they preserve the angles along
the orthonormal frame basis. Therefore, ψx, ψy and their
composition is a skewless mapping. ψc is a conformal map-
ping and therefore, it is skewless too, which makes ψxyc a
skewless mapping.

Note that ψc ◦ ψy ◦ ψx and ψc ◦ ψx ◦ ψy are both skew-
less mappings as the anisotropic scalings are commutative.
However, ψx ◦ ψc ◦ ψy is not a skewless mapping anymore
due to the non-commutativity of the conformal mapping.

In order to prove the forward implication, we need to
show that a skewless mapping ψxyc can always be decom-
posed into a conformal mapping ψc and anisotropic local
scalings along the orthogonal frame basis.

We can always express ψxyc as:

ψxyc = ψc ◦ ψy ◦ ψx ◦ ψu, (60)

where ψu is an unknown mapping. On decomposing ψxyc
as in equation (60), we have that ψy ◦ ψx ◦ ψu must be a
skewless mapping. ψu cannot be a conformal mapping as
it is non-commutative with anisotropic scalings. ψu can be
expressed as:

ψu = ψx′ ◦ ψy′ ◦ ψx′y′ , (61)

where ψx′ and ψy′ are transformations along the orthogonal
frame basis. ψx′y′ represents a transformation that is not
along the orthogonal frame basis and therefore it does not
preserve the angles along the orthogonal frame basis.

Therefore ψy ◦ψx ◦ψu can only be a skewless mapping if
ψx′y′ is identity. Otherwise, it causes a scaling which is not
along the orthogonal frame basis which makes ψy ◦ ψx ◦ ψu
a non-skewless mapping.

Hence a skewless mapping can only be defined as a
combination of anisotropic scaling followed by a conformal
mapping. Note that the decomposition according to equa-
tion (59) is unique upto a scale factor only.

Theorem 2 (Isometric mappings). An isometric map-
ping between two planes preserves the connection forms
(w1

1, w
1
2, w

2
1, w

2
2).
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Proof. Given that g = ψ ◦ f in figure 12, the moving frames
(e1, e2, e3) and (ē1, ē2, ē3) on the planes M1 and M2 are
related by:(

ē1 ē2

)
= Jψ◦f

(
e1 e2

)
=
(
Jψ◦fe1 Jψ◦fe2

)
. (62)

On differentiating the above equation, we obtain:(
dē1 dē2

)
= Jψ◦f

(
de1 de2

)
+ dJψ◦f

(
e1 e2

)
. (63)

Since ψ is an isometric mapping between two planes,
Jψ◦f = R, where R is a rotation matrix and therefore we
have dJψ◦f = 0 in the previous equation. We multiply the
two expressions obtained in the above equation with ē>1
and expand the expression using the connection relations
det = w1

t e1 + w2
t e2. We obtain:

w̄1
1ē1ē

>
1 + w̄2

1ē2ē
>
1 = Jψ◦f

(
w1

1e1 + w2
1e2

)
ē>1

w̄1
2ē1ē

>
1 + w̄2

2ē2ē
>
1 = Jψ◦f

(
w1

2e1 + w2
2e2

)
ē>1 .

(64)

We employ equation (62) and rewrite the above expression
as:

w̄1
1ē1ē

>
1 + w̄2

1ē2ē
>
1 = w1

1ē1ē
>
1 + w2

1ē2ē
>
1

w̄1
2ē1ē

>
1 + w̄2

2ē2ē
>
1 = w1

2ē1ē
>
1 + w2

2ē2ē
>
1 .

(65)

Since (ē1, ē2) are linearly independent, on expressing wst in
terms of Γstkdxk in the above equation we obtain Γ̄stk = Γstk
and therefore,

(
w̄1

1 w̄1
2 w̄2

1 w̄2
2

)
=
(
w1

1 w1
2 w2

1 w2
2

)
.

Theorem 3 (Linear mappings). A linear mapping between two
planes preserves the connection forms (w1

1, w
1
2, w

2
1, w

2
2).

Proof. Given that g = ψ ◦ f in figure 12, the moving
frames (e1, e2, e3) and (ē1, ē2, ē3) on the planes M1 and
M2 are related by equation (62), which on differentiation
leads to equation (63). Since ψ is a linear mapping, we have
dJψ◦f = 0. Following the same procedure as theorem 2,
one can easily show that the connections forms are also
preserved in this case.

Theorem 4 (Non-solvability of Equiareal NRSfM). Equiareal
NRSfM is not locally solvable.

Proof. The constraint in equiareal mappings is given by:

EG

k4
− F

k4

2

=
ĒḠ

k̄4
− F̄ 2

k̄4

∂

∂x̄i

(
Ē

k2

)
Ḡ

k̄2
+
Ē

k̄2
∂

∂x̄i

(
Ḡ

k2

)
− 2

F̄

k̄2
∂

∂x̄i

(
F̄

k2

)
=(

∂

∂x1

(
E

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
E

k2

)
∂x2

∂x̄i

)
G

k2

+

(
∂

∂x1

(
G

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
G

k2

)
∂x2

∂x̄i

)
E

k2

− 2
F

k2

(
∂

∂x1

(
F

k2

)
∂x1

∂x̄i
+

∂

∂x2

(
F

k2

)
∂x2

∂x̄i

)
, i ∈ {1, 2}

(66)

Without IP, these expressions are in terms of β, β̄ and their
first and second-order derivatives. Using IL, we obtain the

following constraints:

k̄1 =
∂x1

∂x̄1
k1 +

∂x2

∂x̄1
k2 −

∂x̄2

∂x1
∂2x1

∂x̄1x̄2
− ∂x̄2

∂x2
∂2x2

∂x̄1x̄2

k̄2 =
∂x1

∂x̄2
k1 +

∂x2

∂x̄2
k2 −

∂x̄1

∂x1
∂2x1

∂x̄1x̄2
− ∂x̄1

∂x2
∂2x2

∂x̄1x̄2
.

(67)

Using this constrain in equation (66), it results in 7 variables
(β, β̄ and the first and second-order derivatives of β) in 3
equations. This system is not solvable. Even if we differenti-
ate equation (66) further, it always results in higher number
of variables than equations.

Under IP, the simplified constraint is given by:

detJη

(
k̄1 −

(
k1
∂x1

∂x̄1
+ k2

∂x2

∂x̄1

))
=

−
∂x2

∂x̄2
∂2x1

∂ (x̄1)2
+
∂x2

∂x̄1
∂2x2

∂ (x̄1)2
+
∂x2

∂x̄1
∂2x1

∂x̄1∂x̄2
−
∂x1

∂x̄1
∂2x2

∂x̄1∂x̄2

detJη

(
k̄2 −

(
k1
∂x1

∂x̄2
+ k2

∂x2

∂x̄2

))
=

−
∂x2

∂x̄2
∂2x1

∂x̄1∂x̄2
+
∂x2

∂x̄1
∂2x2

∂x̄1∂x̄2
+
∂x2

∂x̄1
∂2x1

(∂x̄2)
−
∂x1

∂x̄1
∂2x2

(∂x̄2)
. (68)

Using equation (67) in this constraint leads to expressions
independent of (k̄1, k̄2) and (k1, k2). Therefore, it is not
solvable. Differentiating equation (68) to find more con-
straints under the assumption of IP does not make sense
as it contradicts the assumption of IP. Hence, we show that
the PDE (66) for equiareal NRSfM does not possess a local
solution.

Corollary 1 (Isometric mappings under IP). Under IP, an
isometric mapping between two non-planar surfaces preserves the
connection forms (w1

1, w
1
2, w

2
1, w

2
2).

Proof. Given that g = ψ ◦ f in figure 12, the moving frames
(e1, e2, e3) and (ē1, ē2, ē3) on the surfacesM1 andM2 are
related by equation (62). On differentiating equation (62),
we obtain equation (63). Since ψ is an isometric mapping,
under IP Jψ◦f = R. Therefore dJψ◦f = 0. Following the
same procedure as theorem 2, one can easily show that the
connections forms are also preserved in this case.

Corollary 2 (Infinitesimally linear mappings). An IL map-
ping between two surfaces preserves the connection forms
(w1

1, w
1
2, w

2
1, w

2
2).

Proof. Given that g = ψ ◦ f in figure 12, the moving frames
(e1, e2, e3) and (ē1, ē2, ē3) on the surfacesM1 andM2 are
related by equation (62). On differentiating equation (62),
we obtain equation (63). Since ψ is an IL mapping, it
is point-wise linear. Therefore dJψ◦f = 0. Following the
same procedure as theorem 3, one can easily show that the
connections forms are also preserved in this case.

APPENDIX F
RESULTS
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Fig. 15: Reconstructions for surfaces 10 and 20 from the rubber dataset.
The second image shows the maximum stretch of the rubber. The depth
error maps show the difference in the reconstruction and ground truth.
Best viewed in colour.
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Fig. 16: Error maps for two surfaces of the paper dataset. The depth
error maps show the difference in the reconstruction and ground truth.
Best viewed in colour.
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Fig. 17: Error maps for two surfaces of the balloon dataset. The depth
error maps show the difference in the reconstruction and ground truth.
Best viewed in colour.
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Fig. 18: Error maps of reconstruction from all SfT methods of the tissue
dataset. Best viewed in colour.


