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Abstract

We propose a new formulation to non-rigid structure-

from-motion that only requires the deforming surface to

preserve its differential structure. This is a much weaker

assumption than the traditional ones of isometry or con-

formality. We show that it is nevertheless sufficient to es-

tablish local correspondences between the surface in two

different images and therefore to perform point-wise recon-

struction using only first-order derivatives. To this end,

we formulate differential constraints and solve them alge-

braically using the theory of resultants. We will demon-

strate that our approach is more widely applicable, more

stable in noisy and sparse imaging conditions and much

faster than earlier ones, while delivering similar accu-

racy. The code is available at https://github.com/

cvlab-epfl/diff-nrsfm/.

1. Introduction

Reconstructing the 3D shape of deformable objects from

monocular images, known as Non-Rigid Structure-from-

Motion (NRSfM), has applications in domains ranging from

entertainment [23] to medicine [20]. It was introduced in [4]

by expressing shapes in terms of a low-rank shape-basis.

Many variants of this idea have since been proposed with

a view to improve reconstruction stability [5, 2, 32, 11, 21,

14]. Over the last decade, physically-inspired NRSfM mod-

els [33, 34, 30, 8, 9, 18, 24, 25] have emerged as an at-

tractive alternative. They exploit local surface properties to

draw constraints, can handle large deformations and outper-

form techniques relying on low-rank priors. Unfortunately,

most methods in both categories become prohibitively slow

as the number of images increases, due of their non-linear

complexity, and cannot handle missing data. This makes

them impractical for real-world scenarios.

[24, 25] buck this trend. By expressing isometry or con-

formality constraints in terms of differential properties, lo-

cal reconstruction constraints can be established between

the deforming surface as seen in two different images. Thus,

the surface 3D shape in any frame can be obtained by pair-

ing that frame with the rest and the complexity only grows

linearly with the number of images. Furthermore, missing

data for example due to occlusions, can be easily handled by

using a parametric image registration warp. While effective

in theory, this approach suffers from two main drawbacks:

i) it requires the second-order derivatives of the image regis-

tration warps, which are usually noisy, and sometimes even

downright wrong when given only semi-dense correspon-

dences to compute them. In the first case, an expensive

warp refinement [26] must be performed and in the second

the approach simply becomes impractical. ii) a deformation

model must be chosen a priori, which precludes using this

method for surfaces of unknown properties. In this paper,

we introduce a framework that overcomes these drawbacks.

To this end, we leverage the assumption that the deform-

ing surface is locally diffeomorphic, that is, that the defor-

mation preserves the local differential structure of the sur-

face, which is a much more generic model than isometry or

conformality and encompasses both as well as equiareality.

We will show that it suffices to establish local reconstruc-

tion constraints between pairs of surfaces without requir-

ing second-order derivatives or a priori knowledge about

the surface properties. This makes our approach immune to

the difficulties described above. Furthermore, if knowledge

about the surface properties is available, the corresponding

metric-preserving constraints can be incorporated.

We will show that, when the deformations are equiareal

instead of conformal and the correspondences semi-dense,

our approach delivers good results whereas [24, 25] can-

not be used. Furthermore, in the conformal case with dense

correspondences, our approach delivers a similar accuracy

to [24, 25] and it is 10× faster. In addition, we require only

first order derivatives, which is at least 20× faster than com-

puting second order derivatives for [24, 25]. We also com-

pare with some of the best performing methods in state of

the art and show that we outperform most of them in terms

of both accuracy and computation time.

2. Related Work

NRSfM methods can be grouped into three broad classes

depending on how deformations are modeled.
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Low-Dimensional Deformations. These methods [4, 6,

1, 14, 10, 21] produce a global 3D shape by jointly recon-

structing the points in all frames. This is an ill-posed prob-

lem that is solved by constraining the deformations to lie

in a low-dimensional space. This makes these methods ill-

suited to model complex deformations and to handle miss-

ing correspondences. Furthermore, it usually requires the

shape-space dimension to be decided a priori.

Global Physical Deformations. These methods [30, 34,

33, 9, 18] aim to preserve physical properties of sur-

faces. Most of them assume deformations to be isometric

(distance-preserving) but they model an approximation of

isometry such as inextensibility [9, 18], piece-wise inexten-

sibility [30, 34] or piece-wise rigidity [33]. They usually

find a globally optimal solution by solving for constraints

over all the points altogether. They usually require a com-

putationally expensive optimization which makes them im-

practical for handling large number of images.

Local Physical Deformations. Fewer methods only char-

acterize local deformations. These methods formulate and

solve isometric constraints locally. [8] formulates isome-

try as local rigidity and [24, 25] formulate the exact con-

straint for isometry using differential properties of sur-

faces. [24, 25] showed that their complexity scales linearly

with the number of images, unlike that of the methods dis-

cussed above, which grows much faster. This is because

they use differential properties that are preserved under

isometry up to a change of variables. Due to this, they

show that adding images does not increase the number of

variables. In practice, [24, 25] yield faster and more accu-

rate reconstructions than existing methods. However, as dis-

cussed in the introduction, they rely on second-order deriva-

tives, which are computationally expensive to compute and

therefore, impractical. [24, 25] assume that the second-

order derivatives are provided with the input. We discuss

the problems with obtaining the second-order derivatives in

our experiments. Furthermore, they still impose strong con-

straints on what the surface deformations may be. In this

paper, we seek the minimalistic deformations constraints.

Given that the surface deformations in nature are at least lo-

cally diffeomorphic, we show that it provides sufficient con-

straints to perform reconstruction. Thus we show that any

deformation stronger than local diffeomorphism, (isometry,

conformality and equareality), is thus solvable. In addition,

we get rid off the second-order derivatives and thus obtain a

highly reliable, fast and practical solution for NRSfM, just

with the assumption of local diffeomorphism.

3. Method Outline

Fig 1 depicts our setup when using only two images I
and I acquired by a calibrated camera. In each one, we

denote the deforming surface as S and S , respectively, and

Figure 1: A 2-view model for Diff-NRSfM. Assuming ψ to

be locally diffeomorphic, our goal is to find φ, φ given that

η is known.

model it in terms of functions φ, φ : R2 → R
3 that associate

a surface point to an image point. Let us assume that we are

given an image registration function η : R2 → R
2 that as-

sociates points in the first image to points in the second. In

practice, it can be computed using standard image matching

techniques such as optical flow [29, 28] or SIFT [22].

These functions can be composed to create a mapping

ψ : R3 → R
3, which we assume to be locally diffeomor-

phic, from 3D surface points seen in the two images. We

use a parametric representation of η and φ using a spline [3],

which allows us to accurately obtain first-order derivatives

of these functions. Any other approach such as finite differ-

ence methods, can be used alternatively.

At the heart of our approach is the fact that, under the as-

sumption that the two surfaces are locally diffeomorphic,

some differential properties of corresponding 3D points

should match. These properties can be expressed in terms

of connections. They are generic properties of a differen-

tiable surface that express intrinsic relationship between a

point on the surface and its local neighborhood [7, 16].

In particular, the well known first and second fundamen-

tal forms on surfaces can be derived from them. Crucially,

they are preserved under diffeomorphism [25], which we

prove formally. Furthermore, assuming the surfaces to be

locally planar, we show that we can use connections com-

puted using only first derivatives. Thus, we can express

depth and its derivatives at S in terms of the same quan-

tities at S . As a consequence, the 3D coordinates of cor-

responding points on the surface are strongly constrained,

thanks to multi-view constraints and the 3D reconstruction

problem becomes sufficiently constrained. This approach

has several strengths:

• Because all the constraints can be expressed in terms of

first derivatives of φ, φ and η, which, unlike the second

derivatives that are required by the formulation of [25],
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can be estimated even if the points for which we have

correspondences are relatively sparse.

• If we happen to know that the deformation is isomet-

ric, conformal, or equiareal, we can easily incorporate

these additional constraints into our framework.

• If we take S to be the reference image in which we

wish to recover the shape, we can write the constraints

for as many surfaces S as we want to increase robust-

ness and the cost only grows linearly with the number

of such images. The shape at S can then be expressed

in terms of the recovered shape at S .

We now define connections and then show their usage.

4. Connections and Local Diffeomorphisms

In this section, we formalize connections and show their

invariance under diffeomorphic deformations. We will use

these concepts in Section 5 to implement our Diff-NRSfM

framework. We use the notation introduced at the beginning

of Section 3 and depicted by Fig. 1.

Moving Frames. Given the projection x = [u, v]T in I
and the corresponding 3D point X on S , we write

X=φ(x), E (φ)=(e1=
∂φ

∂u
, e2=

∂φ

∂v
, e3=e1×e2). (1)

E (φ) is a moving reference frame for S , and we define

E (φ) similarly for S .

Connections. We now define connections that encode dif-

ferential surface properties that are invariant under diffeor-

morphic deformations and are at the heart of our approach.

Assuming S to be locally planar, we can rewrite φ(u, v) as

β(u, v)[u, v, 1]⊤, where β is a linear function representing

depth, within a small neighborhood around the projection of

any surface point x. Injecting this definition in Eq. 1 yields

e1 = β(u, v)[1+ux1, vx1, x1]
⊤,

e2 = β(u, v)[ux2, 1+vx2, x2]
⊤, (2)

e3 = β(u, v)2[−x1,−x2, 1+ux1+vx2]
⊤,

where x1 = 1
β(u,v)

∂β
∂u

and x2 = 1
β(u,v)

∂β
∂v

. The connections

Γi
jk are then taken to be the solutions of the linear system

∂ej

∂u
= Γ1

j1e1+Γ2
j1e2+Γ3

j1e3, j = [1, 2, 3]

∂ej

∂v
= Γ1

j2e1+Γ2
j2e2+Γ3

j2e3. (3)

Because β is assumed to be linear, its partial derivatives that

appear in the definition of x1 and x2 in Eq. 2 are constant

and its second order derivatives are 0. Thus, solving the

linear system of Eq. 3 yields





Γ1

11
Γ2

11
Γ3

11

Γ1

21
Γ2

21
Γ3

21

Γ1

31
Γ2

31
Γ3

31



 =
β3

D





2βT8x1 −2βT3x
2

1
−2x2

1

βT6x2 βT5x1 −2x1x2

2β2T1x1 2β2T2x1 β(2T8+T5)x1



 ,

(4)




Γ1

12
Γ2

12
Γ3

12

Γ1

22
Γ2

22
Γ3

22

Γ1

32
Γ2

32
Γ3

32



 =
β3

D





βT6x2 βT5x1 −2x1x2

−2βT4x
2

2
2βT7x2 −2x2

2

2β2T1x2 2β2T2x2 β(2T6+T7)x2



 ,

where

D = β4(x21+x
2
2+(1+ux1+vx2)

2) ,

T1 = x1+vx1x2−ux
2
2, T2 = x2+ux1x2−vx

2
1 ,

T3 = v+(1+v2)x2+uvx1, T4 = u+(1+u2)x1+uvx2 ,

T5 = 1+(1+u2)x21−(1+v2)x22+2ux1 ,

T6 = 1+(1+v2)x22−(1+u2)x21+2vx2 ,

T7 = 1+(1+u2)x21+2ux1+vx2+uvx1x2 ,

T8 = 1+(1+v2)x22+ux1+2vx2+uvx1x2 .

From the above equation we can verify that Γi
jk = Γi

kj al-

ways holds and that Γ3
3k = Γ1

1k+Γ2
2k. This leaves us with a

set of 13 distinct Γi
jk(φ) expressed in terms of image obser-

vations, depths, and the depth first-order derivatives. Their

formulation may seem complex but this is the price to pay

to achieve invariance to diffeomorphic deformations, which

we prove below.

Invariance under Local Diffeomorphism. In the previ-

ous paragraph, we defined the connections Γi
jk(φ). We can

similarly define the connections Γi
jk(φ), which we will de-

note as Γi
jk, for S . We now discuss their invariance to dif-

feomorphic deformations, that is,

Γi
jk(φ◦η) = Γi

jk(φ) . (5)

As can be seen in Fig. 1, φ = ψ◦φ◦η. We show in the

supplementary material that it follows that

E (φ) = diag(λ1, λ2, λ3)RE (φ)diag(Jη, |Jη|), (6)

where Jη =

(

∂u
∂u

∂u
∂v

∂v
∂u

∂v
∂v

)

is the Jacobian of η, λi are scalars

and R is a rotation matrix. As we also show in the supple-

mentary material, injecting Eq. 6 into the definition of the

Γi
jk yields







Γ
1

11 Γ
2

11 Γ
3

11

Γ
1

21 Γ
2

21 Γ
3

21

Γ
1

31 Γ
2

31 Γ
3

31






=

(

Jη 0
0 |Jη |

)−1
(

∂Jη

∂u
0

0
∂|Jη |

∂u

)

+

∂u

∂u

(

Jη 0
0 |Jη |

)−1





Γ1

11
Γ2

11
Γ3

11

Γ1

21
Γ2

21
Γ3

21

Γ1

31
Γ2

31
Γ3

31





(

Jη 0
0 |Jη |

)

+

∂v

∂u

(

Jη 0
0 |Jη |

)−1





Γ1

12
Γ2

12
Γ3

12

Γ1

22
Γ2

22
Γ3

22

Γ1

32
Γ2

32
Γ3

32





(

Jη 0
0 |Jη |

)

,
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





Γ
1

12 Γ
2

12 Γ
3

12

Γ
1

22 Γ
2

22 Γ
3

22

Γ
1

32 Γ
2

32 Γ
3

32






=

(

Jη 0
0 |Jη |

)−1
(

∂Jη

∂v
0

0
∂|Jη |

∂v

)

+

∂u

∂v

(

Jη 0
0 |Jη |

)−1





Γ1

11
Γ2

11
Γ3

11

Γ1

21
Γ2

21
Γ3

21

Γ1

31
Γ2

31
Γ3

31





(

Jη 0
0 |Jη |

)

+

∂v

∂v

(

Jη 0
0 |Jη |

)−1





Γ1

12
Γ2

12
Γ3

12

Γ1

22
Γ2

22
Γ3

22

Γ1

32
Γ2

32
Γ3

32





(

Jη 0
0 |Jη |

)

. (7)

The above relation shows that connections are preserved

up to a change of variable. In other words, we can compute

the connections of S from those of S using η. In the next

section, we exploit this to perform NRSfM.

5. Surface Reconstruction under Local Diffeo-

morphism

In this section, we use connections and their preserva-

tion relations (7) to derive reconstruction equations. We

first express the depth and its derivatives at S in terms of

the ones at S and η. We show that this helps in constraining

the complexity of the problem. Then we derive constraints

to perform reconstruction from a local diffeomorphism and

other metric-preserving mappings.

5.1. Relating Depths

(7) expresses Γi
j(φ) in terms of Γi

j(φ) and the first- and

the second-order derivatives of η. The expanded expres-

sions are shown in the supplementary material. However,

not all of the Γ
i

j depend on the second-order derivatives. In

particular, some of the non-diagonal Γ
i

j are expressed only

in terms of Γi
j and of the first-order derivatives of η. By

considering only these and equating their definition from (4)

with that from (7), we can write

Γ
3

11 ≡
x21β

3

D
=

β3t21
|Jη|D

,

Γ
3

12 = Γ
3

21 ≡
x1x2β

3

D
=
β3t1t2

|Jη|D
,

Γ
3

22 ≡
x22β

3

D
=

β3t22
|Jη|D

, (8)

Γ
1

31 ≡
β
5
(x21+vx

2
1x2−ux1x

2
2)

D
=
β5t1

D
t3,

Γ
2

31 ≡
β
5
(x1x2+ux

2
1x2−vx

3
1)

D
=
β5t1

D
t4,

Γ
1

32 ≡
β
5
(x1x2+vx1x

2
2−ux

3
2)

D
=
β5t2

D
t3,

Γ
2

32 ≡
β
5
(x22+ux1x

2
2−vx

2
1x2)

D
=
β5t2

D
t4, (9)

where t1 =
∂u

∂u
x1+

∂v

∂u
x2, t2 =

∂u

∂v
x1+

∂v

∂v
x2,

t3 =

(

t2(vx1−ux2)+
∂v

∂v
x1−

∂u

∂v
x2

)

,

t4 =

(

t1(ux2−vx1)−
∂v

∂u
x1+

∂u

∂u
x2

)

.

Computing (x21, x1x2, x
2
2) from the first three equations

in (8), and substituting the results in (9) yields

Γ
1

31 ≡β
2
(t1+(vt1−ut2)x2) = β2|Jη|t3,

Γ
2

31 ≡β
2
(t2+(ut2−vt1)x1) = β2|Jη|t4,

Γ
1

32 ≡β
2
(t1+t2(vx1−ux2)) = β2|Jη|t3,

Γ
2

32 ≡β
2
(t2+t1(ux2−vx1)) = β2|Jη|t4. (10)

Multiplying Γ
1

32 and Γ
2

32 with t1 and t2, respectively, and

adding the results yields

β
2
(t21+t

2
2) = β2|Jη|

2(x21+x
2
2) = β2|Jη|(t3t1+t4t2).

(11)

Computing β
β

from (11) and substituting the result in the

definitions of Γ
1

31,Γ
2

31 of (10) gives

x̄1 = t1
N1

N2
and x̄2 = t2

N1

N2
, (12)

where N1 = (t1t4−t2t3) and N2 = (t1t3+t2t4)(ut2−

vt1). In (11) and (12), we express the unknowns,(β
β
, x1, x2)

on S , in terms of (x1, x2) on S and a known η. There-

fore, the unknown quantities, depth and its derivatives, for

any additional surface can be expressed in terms of the un-

known quantities of S . Thus adding additional views yields

additional constraints without increasing the number of un-

knowns, which limits the complexity of the system.

5.2. Reconstruction Equations

We first derive the reconstruction equations under the as-

sumption of local diffeomorphism. Then, we show how to

add the explicit metric-preserving constraints of isometry,

conformality and equiareality.

Diffeomorphic NRSfM. In the last section, we used few

of the connections to derive (β
β
, x1, x2) in terms of (x1, x2).

These relations were expressed with only first-order deriva-

tives of η. The remaining connections are sufficient to ob-

tain reconstruction constraints but they all contain second-

order derivatives of η and therefore, we cannot use them

directly. According to [26], the image of two given planes

should satisfy 2D Schwarzian equations given by

∂u

∂u

∂2v

∂u2
−
∂v

∂u

∂2u

∂u2
= 0,

∂v

∂v

∂2u

∂v2
−
∂u

∂v

∂2v

∂v2
= 0 . (13)

The above expressions appear in (Γ
1

22,Γ
2

11) and setting

them to zero cancels out second-order derivatives. Since we

2062



assume surfaces to be locally planar, we use (13) to write

Γ
2

11 ≡
x21β

4
T 3

D
=

β4t21
|Jη|D

(

∂u

∂u
T3−

∂v

∂u
T4

)

,

Γ
1

22 ≡
x22β

4
T 4

D
=

β4t22
|Jη|D

(

−
∂u

∂v
T3+

∂v

∂v
T4

)

. (14)

Computing (x21, x1x2, x
2
2) from (8), as before, and substi-

tuting the resulting expressions in (14) yields

βT 3=β

(

∂u

∂u
T3−

∂v

∂u
T4

)

, βT 4=−β

(

∂u

∂v
T3−

∂v

∂v
T4

)

(15)

Substituting (x1, x2) from (12) to the above equation gives

β(vN2+((1+v
2)t2+uvt1)N1)=βN2

(

∂u

∂u
T3−

∂v

∂u
T4

)

β(uN2+((1+u
2)t1+uvt2)N1)=−βN2

(

∂u

∂v
T3−

∂v

∂v
T4

)

(16)

Squaring (16) and substituting
(

β
β

)2

from (11) gives

|Jη|
2(t21+t

2
2)(vN2+((1+v2)t2+uvt1)N1)

2

= N2
2 (x

2
1+x

2
2)

(

∂u

∂u
T3−

∂v

∂u
T4

)2

,

|Jη|
2(t21+t

2
2)(uN2+((1+u2)t1+uvt2)N1)

2

= N2
2 (x

2
1+x

2
2)

(

−
∂u

∂v
T3+

∂v

∂v
T4

)2

. (17)

Thus we obtain two polynomials in two variables. With

the solution to (x1, x2), we can write the normals at S us-

ing (2). We can then obtain (x1, x2) at S using (x1, x2)
in (12). Thus, we obtain normal on all the surfaces. We can

obtain an up-to-scale depth by integrating the normals.

Solving Polynomial Equations. We solve (17) by using

resultants [12] to convert these equations to univariate poly-

nomials, which can then be easily solved. A resultant is de-

fined as an expression written in terms of the coefficients of

two polynomials. If the polynomials have a common root,

their resultant evaluates to zero. We write the equations (17)

as A(x1, x2) = 0 and B(x1, x2) = 0. Their resultant with

respect to x1 is given by R(x2). Since these equations must

bear a common root, we get R(x2) = 0. R(x2) is a uni-

variate equation of degree 10. We show the structure of

R(x2) in the supplementary equation. We substitute x2 into

A(x1, x2) and B(x1, x2) and solve for x1.

Obtaining a Unique Solution. R(x2) is a degree 10 poly-

nomial. Hence, it is highly likely to have multiple real so-

lutions for (x1, x2) for a pair of images. We then need at

least one more image to disambiguate the existing solutions.

Thus, we obtain a unique solution from ≥ 3 images.

Metric Preservation from Local Diffeomorphism. Un-

der a local diffeomorphism, the moving frames E and E are

related by (6). Since all metric-preserving deformations (in-

cluding isometry, conformity and equiareality), fall under

the category of locally diffeomorphic mappings, we write

E
⊤

E = diag(λ21, λ
2
2, λ

2
3)diag(Jη, |Jη|)

⊤
E

⊤
Ediag(Jη, |Jη|),

where,

Isometry ≡ λ1 = λ2 = λ3 = 1,

Conformity ≡ λ1 = λ2 = λ3 = λ,

Equiareality ≡ λ3 = λ1λ2 = 1. (18)

Using (2) in the above equation lets us write

β
2

diag(G, β
2
|G|) = β2diag(λ2

1, λ
2

2, λ
2

3)diag(P, β2|Jη |
2|G|),with

P = J
⊤
η GJη

G =

(

ǫx2

1
+1+2ux1 ǫx1x2+ux2+vx1

ǫx1x2+ux2+vx1 ǫx2

2
+1+2vx2

)

,

G =

(

ǫx2

1
+1+2ux1 ǫx1x2+ux2+vx1

ǫx1x2+ux2+vx1 ǫx2

2
+1+2vx2

)

,

ǫ = 1+u2+v2, ǫ = 1+u2+v2 . (19)

Substituting (x1, x2) from (12) in the equation above gives

β
2

diag(G, β
2
|G|) = β2diag(λ2

1, λ
2

2, λ
2

3)diag(P, β2|Jη |
2|G|),with

G[1, 1] =

(

1

N2

)

2
(

ǫt21N
2

1 +N2

2 +2ut1N1N2

)

G[1, 2] = G[2, 1] =

(

1

N2

)

2
(

ǫt1t2N
2

1 +ut2N1N2+vt1N1N2

)

G[2, 2] =

(

1

N2

)

2
(

ǫt22N
2

1 +N2

2 +2vt2N1N2

)

(20)

Our Diff-NRSfM solution in (17) was derived using only

the assumption of locally diffeomorphic deformations. In a

scenario where we know a priori the specific surface prop-

erties, we can incorporate the corresponding constraints ex-

plicitly in Diff-NRSfM using (19).

Conformal Constraints. We obtain the constraints by

taking the ratios of the components of P and G in (20) to

remove λ and β
β

. The equations are given by

G[1, 1]

G[2, 2]
=
P [1, 1]

P [2, 2]
,
G[1, 2]

G[2, 2]
=
P [1, 2]

P [2, 2]
(21)

Thus we obtain two relations of degree 9 in two variables.

Equiareal Constraints. We obtain the constraints by

comparing areas, which are given by determinants, in (20).

Substituting
(

β
β

)2

from (11) gives

(t21+t
2
2)

2|G| = (x21+x
2
2)

2|G|. (22)

Thus we obtain a relation of degree 8 in two variables.
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Figure 2: NRSfM challenge dataset.

Isometric Constraints. Isometry is expressed as a combi-

nation of conformity and equiareality. We use (21) and (22)

to define isometric constraints.

5.3. Algorithm

Let {xi
j}, i ∈ [1,M ], j ∈ [1, N ], denote a set of N point

correspondences between M images. Our goal is to find

the 3D point and the normal corresponding to each x
i
j . We

take an arbitrary image I as our reference and use a stan-

dard algorithm such as optical flow [29, 28] or SIFT [22] to

compute an η mapping between each remaining images and

I. Our point-wise Diff-NRSfM has the following steps:

• Solve for x2. For each image paired with the refer-

ence, compute the resultant R(x2) from A(x1, x2) =
0, B(x1, x2) = 0, defined in (17). Find x2 by min-

imizing the sum of squares of R(x2) = 0 computed

over all available image pairs.

• Solve for x1. Substitute x2 obtained from the previous

step into (A(x1, x2) = 0, B(x1, x2) = 0) and find x1
by minimizing their sum of squares.

• (optional) Add metric preserving constraints. If the

deformation model is known a priori, minimize the

sum of squares of (21), or (22), or both to add confor-

mal, equiareal, or isometric constraints. Use (x1, x2)
obtained from previous steps to initialize this solution.

• Find local normals. Use (x1, x2) to express local nor-

mals as in (2).

After obtaining a local normal for each x
i
j , we integrate

them to compute depth up to a scale factor.

6. Experiments

We show results on NRSfM challenge dataset [17], one

synthetic and three real datasets. We denote our Diff-

NRSfM as Diff and its variants with isometric, confor-

mal or equiareal constraints as DiffI, DiffC and DiffE.

We compare it to NRSfM methods that assume isome-

try/conformity, Pa17 [24, 25], inextensibility, Ch17 [9],

soft-inextensibility, Vi12 [34], local rigidity Ch14 [8] and

Figure 3: NRSfM challenge results. Best represents the

state of the art. In the perspective case, it is Go11 for bal-

loon, stretch and tearing. For articulated and paper, it is [31]

and [15], respectively. In the orthographic case, it is Ch17

and Go11 for balloon and tearing and [19] for the rest.

low-rank constraints Go11 [13]. We report mean shape Es

and mean depth Ed errors computed as RMSEs between re-

constructed and ground-truth normals and 3D points.

NRSfM Challenge Dataset. It consists of 5 image se-

quences depicted by Fig. 2. They feature 5 kinds of non-

rigid motions: articulated (piecewise-rigid), balloon (con-

fomal), paper bending (isometric), rubber (elastic), and pa-

per being torn. The dataset features images from 6 differ-

ent camera motions and provides image points captured as-

suming both a perspective and an orthographic projection.

It provides only one ground-truth surface for each of the

sequences. The correspondences are sparse and not well-

distributed across the images. Fig. 3 compares the perfor-

mance of Diff with that of other methods in terms of Ed,

measured in mm, with Best being the one that does best

to date and that we beat by a large margin in the perspec-

tive case. Note that Diff still does well in the orthographic

case, even though it is explicitly designed for the perspec-

tive case. Note also that Pa17 does not appear in this table,

presumably because the sparsity of the correspondences are

not ideal to compute the second derivatives that it needs.
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Fig. 4 shows qualitative results on the stretch sequence with

flyby and semicircle motions. Diff reconstructs the surface

well even with orthographic images. The stretching of the

rubber is well-preserved, except in some corners. This is be-

cause Diff does not require strong constraints such as isom-

etry, and thus can reconstruct a wide range of deformations,

including, up to an extent, elasticity.

Cylinder Dataset. It consists of 400 points tracked across

10 images (640× 480p) of a cylindrical surface deforming

isometrically created synthetically. We add a gaussian noise

of 3 pixels to the image points. The results are shown in Fig-

ure 5a. Pa17 shows the best performance, with our method,

Diff, being close to it. The results are slightly improved

with the additional constraints of DiffI, DiffC and DiffE.

The constraints obtained for DiffI, DiffC and DiffE are high

order polynomials which do not lead to strong constraints in

practical terms. Ch14 and Vi12 also show a decent perfor-

mance, but it is not consistent throughout the dataset. Ch17

does not perform well on this dataset, it yields a very high

normal error which indicates flattening. This is because it

requires the constraints to be very distinct especially if the

images are as few as 10. We do not show the results of Go11

as it is a low-rank method and requires a lot more than 10

images to give a stable performance.
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Figure 4: Results on the stretch sequence. Blue is the

ground truth and green is the reconstruction using Diff.

Table 1: RMSE for all methods.

When varying the noise on the Cylinder dataset from

1 to 5 pixels, the mean shape errors obtained by Diff are

9.8−12.3 degrees. For [24], which relies on second order

derivatives, the mean shape errors in the same experiment

lie in the range of 9.5−14.7 degrees. Thus, Diff yields bet-

ter normals in the presence of noise, even if it uses weaker

constraints than isometry or conformality, thanks to its re-

liance on first order warp derivatives only.

Tshirt Dataset. [8] It consists of 85 manually computed

points correspondences across 10 images of a tshirt de-

forming isometrically from very different views. Figure 5b

shows the results. Ch17 shows the best performance. Pa17

also has a very stable performance. The performance of our

methods, Diff, DiffI, DiffC and DiffE, is also very stable.

Ch14 and Vi12 do not show a consistent performance but

they get decent results for most of the images.

Paper Dataset. [27] It consists of 190 images of a paper

deforming isometrically with 1500 point correspondences

on them. For such a high number of images, Ch14 and Vi12

are highly impractical. We used only 150 point correspon-

dences on this dataset. Figure 5c shows the 3D reconstruc-

tion error for all compared methods. Amongst our methods,

we show the results of Diff only as the remaining ones per-

form very close to it, as seen in Table 1. Ch17 shows the

best performance. The performance of our methods is very

close to Pa17. Go11 shows the worst performance.

Rug Dataset. [24] It consists of 160 images of a rug de-

forming isometrically with 1500 point correspondences ob-

tained using optical flow [29]. We consider 350 points for

evaluating all methods. This data contains correspondence

errors arising from the lack of texture on the object. Fig-

ure 5d shows the comparison of the 3D error of Diff with

the rest. We see that Diff performs the best on this dataset.

Pa17’s performance is degraded due to poor computation

of second-order derivatives in noisy conditions. Ch17 de-

grades even more and its performance is worse than Diff

and Pa17. Go11 does not perform well.
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(a) Cylinder dataset

(b) Tshirt dataset

(c) Paper dataset

(d) Rug dataset

Figure 5: Experiments on 1 synthetic and 3 real datasets.

Discussion. In short, when the correspondences are

sparse, as in the NRSfM Challenge dataset, our approach

dominates, as shown in Fig. 2, and when they are dense and

of high quality, Pa17 does best but our approach comes very

close behind in terms of accuracy. However, when met with

noisy data, such as in the Rug dataset, Pa17 degrades due to

high error in the second order derivatives and Diff becomes

noticeably better, as shown in Table 1.

Computation Time. Ch14 and Vi12 usually take 15-20

minutes to reconstruct 10 images. Therefore, we did not

evaluate them on large datasets. Ch17 takes almost 15 min-

utes for 30 images, therefore, we split the large sequences

into sets of 30 images and evaluated this method. Pa17 is

a local method with linear complexity, like ours, but it uses

an expensive polynomial solver which takes 1.5 seconds to

evaluate normals at a point constrained from 10 images. In

similar conditions, Diff takes only 10 ms, thus, it is 10×
faster. In addition, it only requires first order derivatives

which can be computed within 20-30 ms for each image

pair. Refined second-order derivatives that are required by

Pa17 may take anything between 2-5 seconds.

Parameter Setting. We require a minimum of 3 images

for reconstruction. However, the accuracy increases with

the number of images, stabilizing after 5 or 6. In practice,

we typically use more images (between 8-10). This ensures

that sufficient constraints are available even when dealing

with images with small visual motion, which is common in

short-baseline data. The only parameters to be tuned are

the Bicubic B-Spline (BBS) hyper-parameters, which are

related to warp control centers and smoothness. We fixed

them for all our experiments and do not anticipate having to

change them for other data.

Failure Cases. Our methods rely on image correspon-

dences to formulate reconstruction constraints. They will

fail in the absence of image texture as image correspon-

dences cannot be computed anymore with the existing im-

age matching methods. Furthermore, the application of our

methods is limited to smooth objects as we assume the sur-

faces to be smooth manifolds.

7. Conclusions and Future Directions

In this paper, we have explored the limiting case for

NRSfM: What minimum assumptions on surface deforma-

tions are required to solve the problem. We have shown that

the assumption of local diffeomorphism, which is a generic

surface property of surfaces, yields enough constraints to

perform reconstruction. Our experiments have validated our

theoretical formulation and demonstrated that it compares

favorably to methods that rely on much stronger constraints

such as isometry or conformality. Furthermore, it is faster

and applicable in more general settings because it only re-

quires first-order derivatives instead of second-order. In the

future, we intend to exploit the strengths of this method

to develop refinement methods for NRSfM, to which Diff-

NRSfM can serve as an initialization. In addition, we plan

to extend our method to non-smooth objects by decompos-

ing a non-smooth object into smooth parts, which can be

reconstructed independently and stitched together.
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