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Figure 1. Our method predicts a multi-patch representation where the patches are guaranteed not to collapse and to minimally

overlap. Thanks to its explicit access to the surface’s differential properties, our method computes normals and curvature analytically for

any predicted point of the modeled surface.

Abstract

Generative models that produce point clouds have

emerged as a powerful tool to represent 3D surfaces, and

the best current ones rely on learning an ensemble of para-

metric representations. Unfortunately, they offer no control

over the deformations of the surface patches that form the

ensemble and thus fail to prevent them from either overlap-

ping or collapsing into single points or lines. As a conse-

quence, computing shape properties such as surface nor-

mals and curvatures becomes difficult and unreliable.

In this paper, we show that we can exploit the inher-

ent differentiability of deep networks to leverage differential

surface properties during training so as to prevent patch

collapse and strongly reduce patch overlap. Furthermore,

this lets us reliably compute quantities such as surface nor-

mals and curvatures. We will demonstrate on several tasks

that this yields more accurate surface reconstructions than

the state-of-the-art methods in terms of normals estimation

and amount of collapsed and overlapped patches.

1. Introduction

Point clouds are becoming increasingly popular as a

compact and expressive way to represent 3D surfaces be-

This work was supported in part by the Swiss National Science Foun-

dation.

cause they can capture high frequency geometric details

without requiring much memory. State-of-the-art methods

rely on encoder/decoder architectures to create latent repre-

sentations from input data and then decode them using one

or more learned mappings from a 2D parameter space to

the 3D surface. Each one of these mappings can be thought

of as transforming a 2D rectangular patch into a set of 3D

points lying on the surface to be modeled. FoldingNet [33]

and AtlasNet [16] are among the best representatives of this

approach, and the move from one single patch to multiple

ones has proved effective to achieve higher accuracy.

However, this increase in accuracy comes at a price.

Nothing guarantees that each patch will represent a sub-

stantial portion of the target surface and some may in fact

collapse, meaning that they generate a single point or a line

instead of a surface-like cloud. Another potential problem

is that the 3D clouds generated by different patches will

overlap so that the same parts of the underlying surface

are represented by several patches, thus resulting in poten-

tial inconsistencies across the patches and ineffectively us-

ing the decoder’s capacity. While these problems may not

occur when the training data contains many diverse cate-

gories of objects, such as when using the whole of ShapeNet

dataset [10], they become apparent in practical scenarios

where one aims to model the shape of a specific surface,

such as a piece of clothing, as shown in Fig. 1.

In this paper, we address these two issues by leveraging

the observation that first and second derivatives of the de-
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coder output can be used to compute the differential proper-

ties of the reconstructed surface, without having to triangu-

late it. In other words, we can compute exact surface prop-

erties analytically, rather than having to approximate these

quantities using the point cloud or a mesh. This enables

us to incorporate into our training loss function terms that

prevent patch collapse and strongly reduce patch overlap.

In our experiments, we will show that being able to com-

pute differential properties and to exploit them during train-

ing (1) fully prevents any type of patch collapse, (2) sub-

stantially reduces the amount of patch overlap (3) lets us

predict surface normals with higher accuracy than SotA.

Our approach to exploiting differentiability is not tied to

a specific architecture and we will show on several tasks that

it yields not only state-of-the-art accuracy but also a much

better behaved surface representation whose differentiable

properties can be estimated easily.

Our contribution is therefore a generic approach to

leveraging 3D point cloud generating schemes so that the

differential properties of the target surfaces are imme-

diately available without further post-processing, which

makes them usable by subsequent algorithms that perform

tasks such as shape-from-shading, texture mapping, sur-

face normal estimation from range scans [2, 19], and detail-

preserving re-meshing [8].

The code is publicly available on our project page1.

2. Related Work

Deep generative approaches for surface reconstruction.

Modern generative Deep Nets are very good at reconstruct-

ing 3D surfaces for tasks such as shape completion from

incomplete data [11, 26, 30, 28], single-view shape recon-

struction [16, 25, 6, 14], and auto-encoding point-clouds

[16, 13]. They represent the surfaces in terms of vox-

els [32, 30, 15], triangular meshes [25, 6, 12], or point

clouds [16, 13, 14]. The common denominator of all these

methods is that they deliver precise shapes in terms of 3D

locations but not necessarily in terms of differential surface

properties, such as normals and curvature. The latter may

be inaccurate and even nonsensical as will be shown in the

experiment section.

Patch-based representations. Among all these methods,

FoldingNet [33] was the first to introduce the idea of learn-

ing a parametric mapping from a 2D patch to a 3D sur-

face. It relies on a discrete sampling and follow-up meth-

ods introduced continuous multi-patch representations that

are trained by minimizing the Chamfer distance [16, 13],

a shape aware variant of the L2 distance [29], or are op-

timized to predict a single sample using Earth mover’s

1https://github.com/bednarikjan/differential_

surface_representation

distance[31]. One of the biggest advantage of these ap-

proaches is that the learned mapping, being a continuous

function, allows for arbitrary sampling resolution at test

time. However, still none of these methods gives access

to the differential surface properties. An exception is the

approach of [21] that learns a parameterization for B-spline

approximation but only works with 2D curves.

Using differential surface properties for training.

There are a few deep learning techniques that use dif-

ferential surface properties in the form of either normal

maps [6, 3] or their approximations computed on triangu-

lar meshes [17] but none that rely on 3D point clouds. Us-

ing differential surface properties still mostly belongs to the

realm of non-deep learning methods, for example for shape

from template [22, 5] or non-rigid structure-from-motion

[1, 24], which are beyond the scope of this paper.

3. Multi Patch Representations

As discussed above, multi-patch representations [16, 31]

are powerful tools for generating surfaces from latent rep-

resentations. However, they suffer from a number of limita-

tions that we discuss below and will address in Section 4.

3.1. Formalization

Let us consider a mapping F from a given low-

dimensional latent vector d ∈ R
D to a surface S in 3D

space represented by a cloud of 3D points. In the multi-

patch approach, the point cloud is taken to be the union of

points generated by K independent mappings fwk
: R

D ×
Df → R

3 for 1 ≤ j ≤ K, where each fwk
is a trainable

network with parameters wk and Df = [cmin, cmax]
2 repre-

sents a square in R
2. In other words, the fwk

network takes

as input a latent vector d and a 2D point in Df and returns

a 3D point.
Given a training set containing many 3D shapes, the

network weights wk are learned by minimizing a sum of
Chamfer distance losses, one for each 3D shape in a train-
ing batch, of the form

LCHD =
1

KM

K
∑

k=1

M
∑

i=1

min
j

∥

∥

∥
p
(k)
i − qj

∥

∥

∥

2

+

1

N

N
∑

j=1

min
i,k

∥

∥

∥
p
(k)
i − qj

∥

∥

∥

2

,

(1)

where M is the number of points predicted by each patch,

N is the number of GT points, pk
i is the i-th 3D point pre-

dicted by fwk
, and qj is the j-th GT point. The whole

pipeline is depicted in Figure 4.

3.2. Limitations

Minimizing the loss function of Eq. 1 yields patches that

jointly cover the whole surface but does not constrain how
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much deformation individual patches undergo or how they

are positioned with respect to each other. In practice, this

leads to two potential failure modes.

u

v(a)

u

v(b)

u

v

(d)

u

v

uv space deformation collapse

(c)

uv space deformation collapse

Figure 2. 2D representation of typical patch collapses. (a) 0D

collapse, (b) 1D stretch collapse, (c) 1D skew collapse and (d)

partial collapse.

Patch Collapse. Some of the patches might collapse to

undesirable configurations, such as those shown in Figure 2.

This may not increase the total LCHD value much when

training is complete because the remaining, non-collapsed

patches can compensate for the collapsed ones. However,

collapsed patches still cause two main problems. First, their

normals and curvature do not make sense anymore. Sec-

ond, the fwj
corresponding to a collapsed patch becomes

useless, thus wasting the representational power of F .

(a) (b)

target surface

patch 1

patch 2

patch 3

Figure 3. Patch overlap. (a) Up to 3-fold overlap. (b) Configura-

tion with small overlap.

Patch Overlap. Another drawback of this approach is

that it provides no control over the relative spatial config-

uration of the patches. Thus, it does not prevent them from

overlapping each other, as depicted by Figure 3. This is an

undesirable behavior because the overlapping patches may

yield surfaces that are not well aligned and, again, because

some of the expressive power of F is wasted.

4. Accounting for Differential Properties

We have seen that multi-patch representations are pow-

erful but are subject to patch collapse and overlap, both of

which reduce their expressive power. We now show that by

regularizing the differential properties of the reconstructed

surfaces during training, we can eliminate patch collapse

and mitigate patch overlap. We will demonstrate in Sec-

tion 5 that this boosts the accuracy of normals and curva-

ture.

In the remainder of this section, we first explain how we

can compute online the differential properties of surfaces

represented by a 3D point cloud. We then present our ap-

proach to using them during training.

4.1. Differential Surface Properties

Let r = [u, v] ∈ Df , where Df is the 2D domain over

which fwk
is defined, as explained at the beginning of Sec-

tion 3.1. p = fwk
(r) is a point of surface S . We can com-

pute the differential properties of S , including normals and

curvatures, from the derivatives of fwk
with respect to u and

v as follows, given that fwk
is a continuously differentiable

function. For notational simplicity, we drop the subscript

wk from fwk
in the remainder of this section.

Let J =
[

fu fv
]

be the Jacobian of f at p, where fu =
∂f
∂u

and fv = ∂f
∂v

. The normal vector is

n =
fu × fv

‖fu × fv‖
. (2)

The curvature, area and deformation properties can be com-

puted from the metric tensor

g = J⊤J =

[

f⊤u fu f⊤u fv
f⊤u fv f⊤v fv

]

=

[

E F

F G

]

. (3)

The mean and Gaussian curvature are then

cmean = −
1

2 det g
n⊤

[

∂2f

∂u2
G− 2

∂2f

∂u∂v
F +

∂2f

∂v2
E

]

,

(4)

cgauss =
∂2f
∂u2

⊤

n · ∂2f
∂v2

⊤

n− ( ∂2f
∂u∂v

⊤

n)2

EG− F 2
. (5)

Furthermore, the area of the surface covered by the patch

can be estimated as

A =

∫∫

Df

√

EG− F 2dudv. (6)

Note that all these surface properties are computed analyti-

cally. Thus they are exact, differentiable, and do not require

a triangulation. This is unlike traditional methods that ap-

proximate these quantities on a point cloud or a mesh.

4.2. Learning a Robust Mapping

Recall that our goal is to learn a mapping F from multi-

ple 2D patches to a 3D point cloud. In particular, we seek

to constrain the deformations modeled by F such that patch

collapse is prevented but complex surfaces can still be rep-

resented accurately. We now discuss the deformation model

that we rely on and then introduce the required training loss

functions.
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codeword

concat

uv samples

(1, 0)

(0, 1)

(0, 0) uv-space

(D x 1)

(M x 2)

(M x 3)

(M x 3)

(M x 3)

(M x 3)

(PM x 3)

fw1

fwP

GT shape

(N x 3)

Ldata

area deformation

normals curvature

(P x 1) (PM x 1)

(PM x 3) (PM x 1)

Lol Ldef

point cloud

Figure 4. Schematic view of our approach. The input to the set of K decoders {fwk
} is a latent vector d (dubbed codeword) and a set

of 2D points sampled from the domain Df (dubbed uv-space). The decoders produce point clouds, which together represent the target

surface. The derivatives of fwk
w.r.t. the uv-space allow for the analytical computation of each patch’s area and deformation properties.

The loss function used to train our model consists of a data term Ldata using GT annotations and of terms Lol and Ldef which prevent patch

overlap and patch collapse, respectively.

4.2.1 Deformation Model

Conformal mappings yield low distortions while retaining

the capacity to model complex shapes. They are therefore

widely used in computer graphics and computer vision, for

example for texture mapping [9] and surface reconstruc-

tion [24]. For a surface to undergo conformal deformation,

the metric tensor must be of the form

gconf = s(r)

[

1 0
0 1

]

, (7)

where s : Df → R returns a scale value for each position

in the parameter space. Unfortunately, making the defor-

mation conformal does not prevent patch collapse, even in

a single-patch scenario, since partial collapse can still occur

wherever s(ri) ∼ 0.

To address this, we propose to use scaled isometric map-

pings whose metric tensors can be written as

gsciso = s

[

1 0
0 1

]

, (8)

where s is an unknown global scale shared by all parame-

ter space locations. Constraining F to be a scaled isomet-

ric mapping amounts to assuming that the target surface is

patch-wise developable, which has proved to be a reason-

able assumption in the domain of deformable surface re-

construction [5, 4, 23].

In a single patch scenario, s ∼ 0 is not an option any-

more when minimizing the loss of Eq. 1 because the re-

sulting surface would be point-collapsed and thus could not

cover the full target surface. However, collapses can still oc-

cur in the multi-patch case, and have to be prevented using

appropriate loss terms, as discussed below.

4.2.2 Loss Functions

Here, we formulate the loss terms that should be added to

the data loss LCHD of Eq. 1 during training to ensure that the

resulting fwk
represent scaled isometry, as described above,

without patch collapse, and with as little overlap as possible.

Enforcing Conformality. We define

LE =
1

KM

K
∑

k=1

M
∑

i=1

(

E
(k)
i − µE

A(k)

)2

, (9)

LG =
1

KM

K
∑

k=1

M
∑

i=1

(

G
(k)
i − µG

A(k)

)2

, (10)

Lsk =
1

KM

K
∑

k=1

M
∑

i=1

(

F
(k)
i

A(k)

)2

, (11)

Lstr =
1

KM

K
∑

k=1

M
∑

i=1

(

E
(k)
i −G

(k)
i

A(k)

)2

, (12)

where M is the number of points sampled on each

surface patch; E, F , and G are defined in Eq. 3;

µE = 1
KM

∑

k

∑

i E
(k)
i and µG =

∑

k

∑

i G
(k)
i ;

and A(k) is the area of a surface patch computed using

Eq. 6. Note that we normalize these terms by A(k) to make

them independent of the current surface patch area, which

changes over the course of training.

Each one of these four losses controls the components

of the metric tensor of Eq. 3, so that its off-diagonal terms

are close to 0 and its diagonal terms are equal as in Eq 8.

Concretely, Lstr prevents a vertical or a horizontal stretch

and thus, effectively, the 0D and 1D collapses shown in
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Fig. 2(a,b). Lsk prevents 1D skew collapse as depicted by

Fig. 2(c) while LE and LG prevent partial ones depicted

by Fig. 2(d). Finally, we express our complete deformation

loss as

Ldef = αELE + αGLG + αskLsk + αstrLstr , (13)

where αE , αG, αsk, αstr ∈ R are hyperparameters.

Minimizing Overlaps. Recall from Section 4.1, that we

can compute the area A(k) covered by a patch k using Eq. 6.

We therefore introduce

Lol = max

(

0,

K
∑

k=1

(

A(k)
)

− Â

)2

(14)

to encourage the patches to jointly cover at most the area

of the entire surface, where Â is computed as the area of

the GT mesh or of a triangulated GT depth map, depend-

ing on the task of interest. We estimate the patch area as

A(k) = 1
M(k)

∑M(k)

i=1 A
(k)
i , where M (k) is the number of

points sampled from the patch k and A
(k)
i is Eq. 6 computed

for a single point.

Combined Loss Function. We take our complete loss

function to be

L = LCHD + αdefLdef + αolLol , (15)

with hyperparameters αdef, αol ∈ R. In practice, we use the

weights of Eq. 13 to control the relative influence of the four

terms of Ldef, and αdef and αol to control the overall mag-

nitude of the deformation and overlap regularization term

respectively.

4.2.3 Mapping Architecture

(a) (b) (c)

Figure 5. The use of the ReLU results in a piecewise linear map-

ping, which, as shown in red in (a), only poorly approximates the

true surface normals (in black). As can be seen by comparing (b)

and (c), the Softplus function approximates the ReLU behavior,

while having smooth 1st and 2nd order derivatives.

As in [16], we implement each mapping fwk
as a multi-

layer perceptron (MLP), with each MLP having its own set

of weights. As we need fwk
to be at least C2-differentiable,

we cannot use the popular ReLU activation function, which

is C2 only almost everywhere. Note that the ReLU function

would also yield a piecewise linear mapping, which would

be ill-suited to compute surface curvatures. Therefore, we

use the Softplus function, which approximates the ReLU

while having smooth 1st and the 2nd order derivatives, as

shown in Figure 5.

5. Experiments

Our approach is generic and can thus be applied to dif-

ferent tasks relying on different architectures. We discuss

them below, and then introduce the datasets and metrics we

use for testing purposes. Finally, we present our results.

5.1. Tasks

We experimented with three popular surface reconstruc-

tion tasks, which we describe below, together with the ar-

chitectures we used to tackle them.

Point Cloud Autoencoding (PCAE). We rely on an At-

lasNet [16] variant in which we slightly modified the de-

coder: The ReLU activations are replaced with Softplus for

the reasons stated in Section 4.2.3 and the last activation is

linear. We removed the batch normalization layers because

they made our training unstable.

Shape completion (SC). Given a partial 3D point cloud,

such as a depth map, shape completion aims to predict a

complete object shape. To this end, we use a U-Net [27]

encoder that produces a latent representation d of size 2048
and the FoldingNet [33] decoder with all the activations re-

placed with Softplus except the last one which is linear.

Single-View 3D Shape Reconstruction (SVR). The goal

of this task is to predict the shape of a surface observed

in a single RGB image. To this end, we use an encoder

implemented as a ResNet [18] with bottleneck modules and

44 layers and a decoder implemented as a FoldingNet [33]

variant similar to the one used for SC. For the sake of fair

comparison with the SotA, we also experimented with a

variant of AtlasNet [16] with the same modifications as in

PCAE.

In the remainder of this section, regardless of the task

at hand, we will refer to our model which we train using

L of Eq. 15 as OURS. For every experiment we report

what values we used for the hyperparameters αdef and

αol of Eq. 15. Unless stated otherwise, we set all the

hyperparameters of Eq 13 to be equal to 1.

5.2. Datasets

ShapeNet Core v2 [10] (SN). This dataset consists of

synthetic objects of multiple categories and has been widely

used to gauge the performance of 3D shape reconstruction

approaches. We use the same train/test split as in the Atlas-

Net paper [16].
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Textureless deformable surfaces [6] (TDS). This real-

world dataset of deformable surfaces captured in various

lighting conditions consists of sequences of RGB images

and corresponding depth and normal maps of 5 different ob-

jects. We selected the 2 for which the most data samples are

available, a piece of cloth and a T-Shirt imaged with a sin-

gle light setup. We use 85% of the samples for training, 5%
for validation, and 10% for testing. The splits were created

so that the validation and testing samples are as different as

possible from the training ones. More details are provided

in the supplementary material.

Female T-Shirts [17] (FTS). This synthetic dataset com-

prises T-Shirts worn by 600 different women in different

poses. We randomly split the body shapes into training

(87%), validation (8%) and testing (5%) sets. We precom-

puted the mean and Gaussian curvature on the GT meshes

using quadric fitting implemented in the graphics library li-

bigl [20].

5.3. Metrics

We report our results in terms of the following metrics.

Chamfer Distance (CHD). This distance is given in

Eq. 1.

Mean (mH) and Gaussian (mK) Curvature. The cur-

vatures are given in Eq. 4 and 5.

Angular error (mae). To measure the accuracy of the

computed normals, we define the mean angular error as

mae = 1
M

∑M
i=1 arccos |nin̂i|, where ni and n̂i are the

unit length normals of a predicted point and its closest GT

point. The absolute value is taken to make the metric invari-

ant to the patch orientation, which neither our method nor

the SotA approaches controls.

Number of collapsed patches (mcol) We assume a patch

k to be collapsed if A(k) < cAµA, where µA =
∑K

k=1 A
(k)

is the mean patch area and cA is a constant to be cho-

sen. We define the patch collapse metric as mcol =
1
S

∑S
s=1

∑K
k=1 I

[

A
(k)
s <cAµA

], that is, an average number of

collapsed patches over a dataset of size S. In all our exper-

iments, we set cA = 0.001.

Amount of overlap (m
(t)
olap). For each ground-truth 3D

point, we count the number of patches within a predefined

distance t and take the average over all the points.

5.4. Normal and Curvature Estimates

As discussed in 3.2, collapsed patches can strongly af-

fect the quality of the normals and curvatures we can re-

cover from estimated surfaces. OURS for SC on FTS pre-

vents the collapses from happening. To demonstrate this,

we trained the network also without the deformation loss

Ldef term of Eq. 13, to which we refer as BASIC. We used

Table 1. Training with (OURS) and without Ldef (BASIC) for

SC on the FTS dataset. The CHD is multiplied by 10
3 and the

mae is expressed in degrees. Note that computing the curvatures

on the surface obtained with the model trained without Ldef suffers

from numerical instabilities, which prevented us from reporting

mH value when not using Ldef.

Model CHD mae mH mK mcol

BASIC 0.14 24.38 n/a 170e6 9

OURS 0.11 5.94 35.29 53e3 0

(a) (b)

0D
1D

Figure 6. Typical cases of 0D and 1D collapses. (a) Predicted

point cloud with different colors denoting the individual patches.

The red ellipse focuses on a collapsed region. (b) Close up view

of the 0D and 1D collapses and corresponding normals.

the FTS dataset for all our experiments. For training we

randomly sampled 8000 GT points and the same number is

predicted by OURS and BASIC.

We set αdef = 0.001 and αol = 0, thus ignoring overlaps,

in Eq. 15 and the number of patches to 25. We report the

results in Table 1 and Fig. 6 depicts typical collapse cases.

Because there are no collapses for OURS, the resulting ac-

curacy is improved, which validates our hypothesis that al-

lowing patches to collapse wastes some of the networks de-

scriptive power. Furthermore, the quality improvement of

the computed normals is all the more significant. By con-

trast, not using the Ldef makes the normals and curvatures,

computed using Eq. 2, 4 and 5, useless, as illustrated by

Fig. 6.

5.5. Number of Patches and Collapse

It could be argued that the patch collapse problems de-

scribed above when not enforcing the regularization con-

straints are simply a consequence of using too many patches

and that using fewer would cure the problem. We now show

this not to be the case.

We trained OURS for SVR and, as before, we also

trained BASIC, that is, no Ldef term. We used the TDS

dataset for all our experiments. For training, we sampled

3000 points randomly from the GT depth map and the

same number is predicted by our model. As before, we set

αdef = 0.001 and αol = 0. In Table 2 we show that regard-

less of the number of patches, the collapses always occur
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when using BASIC and never when using OURS. While

CHD is comparable for both models, the angular error is

always lower for OURS.

Table 2. Training the model with (OURS) and without Ldef

(BASIC) for SVR on the TDS dataset. Note that the normals are

much more accurate when using Ldef.

Cloth T-Shirt
Model # patch. CHD mae mcol # patch. CHD mae mcol

BASIC 2 0.36 30.32 1 2 0.48 48.32 1
OURS 2 0.33 20.90 0 2 0.51 20.35 0

BASIC 3 0.35 21.95 1 3 0.46 36.29 1
OURS 3 0.32 20.60 0 3 0.49 20.44 0

BASIC 4 0.37 28.77 2 4 0.41 22.95 1
OURS 4 0.39 21.08 0 4 0.42 20.77 0

BASIC 10 0.33 25.67 2.02 15 0.41 23.51 2
OURS 10 0.41 20.17 0 15 0.41 20.93 0

5.6. Comparison to the SotA on PCAE and SVR

Here we compare the predictions delivered by OURS

against those delivered by AtlasNet [16] (AN) on two tasks,

PCAE on the ShapeNet dataset and SVR on the TDS

dataset. In both cases, our goal is not only to minimize

CHD but also to minimize patch overlap. We again set

αdef = 0.001 but now turn on the Lol loss by setting

αol = 0.1.

PCAE on ShapeNet. We retrained the original AN us-

ing the code provided by the authors and trained OURS on

PCAE using the ShapeNet dataset separately on object cat-

egories airplane, chair, car, couch and cellphone and jointly

on all these categories. We used 25 patches, 2500 points

randomly sampled from the GT point clouds and the same

amount is predicted by OURS and AN. Since the ShapeNet

objects often contain long thin parts (e.g. legs of a chair

or wings of an airplane) we chose to allow patch stretching

and set αstr of Eq. 13 to 0. We trained both OURS and AN

until convergence.

We report our results in Table 3. Note that OURS de-

livers comparable CHD precision while achieving signifi-

cantly less overlap and higher normals accuracy as quan-

tified by metrics molap and mae. Fig. 7 depicts the mean

overlap as a function of the neighborhood size threshold t

used to compute m
(t)
olap. Our approach consistently reduces

the overlap, as illustrated by Fig. 8.

SVR on TDS. We ran two separate experiments on the T-

Shirt and the Cloth. We use 4 patches for the former as the

object represents a simple rectangular shape and 14 for the

latter as the T-Shirt is more complex.We trained AN using

the code provided by the authors. For both OURS and AN,

we used 8000 points randomly sampled from the GT and

the same number is predicted by the networks. We trained

both OURS and AN until convergence.

Table 3. OURS vs AN trained for PCAE. Both models were

trained individually on 5 ShapeNet categories (plane, chair, car,

couch, cellphone) and jointly on all of them (all). While CHD is

comparable for both methods, OURS delivers better normals and

lower patch overlap.

obj. method CHD mae m
(0.01)
olap m

(0.05)
olap m

(0.1)
olap mcol

plane
AN 1.07 21.26 5.90 12.08 15.39 0.006

OURS 1.08 17.90 3.82 7.99 10.88 0.000

chair
AN 2.79 24.49 5.30 9.45 12.12 0.011

OURS 2.82 23.06 2.85 5.78 8.09 0.000

car
AN 4.68 18.08 4.61 9.07 12.50 0.011

OURS 3.34 17.75 2.50 4.85 7.26 0.000

couch
AN 2.10 16.83 3.74 8.07 11.67 0.000

OURS 2.21 14.90 2.54 5.41 8.08 0.000

cellphone
AN 1.80 10.29 6.51 13.65 16.79 0.000

OURS 1.82 9.64 2.75 6.13 8.69 0.000

all
AN 2.51 24.55 7.69 13.28 16.23 0.280

OURS 2.91 23.12 3.37 6.67 9.10 0.000

Figure 7. Patch overlap for OURS and AN trained for PCAE on

the ShapeNet dataset. We plot m
(t)
col as a function of t.

We report the results in Table 4. The results show the

same trends as in the previous example, with a similar ac-

curacy in terms of CHD but a higher normal accuracy and

much less overlap for OURS. The qualitative results are de-

picted in Fig. 10 and the amount of overlap is quantified in

Fig. 9. Note that in this case, AN suffers a number of patch

collapses whereas OURS does not, which means that if the

normals and curvature were needed for future processing

our approach would be the better option. Besides the ob-

vious 0D point collapses, the predictions of AN also suffer

less visible but equally harmful partial collapses as demon-

strated in Fig. 11.

Approximate normal estimation. When the normals

cannot be computed analytically using Eq. 2, one can resort

to an approximate method, such as the covariance-based ap-

proach [7] popular in vision and robotics. However, such

an ad-hoc post-processing step is costly and sensitive to the

value of a hyperparameter. For the sake of completeness, we

computed approximate normals from the AN predictions in
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Figure 8. OURS vs AN trained for PCAE on individual

ShapeNet categories. Each color denotes the points generated by

one patch. Those generated by our approach are much better orga-

nized with far less overlap.

Table 4. OURS vs AN on SVR for 2 objects from the TDS

dataset. As before CHD is comparable for both methods, but

OURS delivers better normals and less patch overlap.

object method CHD mae m
(0.001)
olap m

(0.005)
olap m

(0.05)
olap mcol

cloth
AN 0.26 47.42 3.06 3.19 3.76 2

OURS 0.28 20.06 1.37 1.75 3.53 0

tshirt
AN 0.35 42.12 8.95 10.03 12.64 7

OURS 0.31 20.52 1.80 2.89 8.22 0

both aforementioned experiments and show in the supple-

mentary material that their accuracy is markedly inferior to

our analytically computed ones in all but one experiment.

6. Conclusion

We have presented a novel and generic deep learning

framework for 3D cloud point generation that makes it pos-

sible to compute analytically the differential properties of

the surface the 3D points represent, without any need for
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Figure 9. Patch overlap for OURS and AN trained for SVR on

the TDS dataset. We plot m
(t)
col as a function of t.

GT AN OURS

Figure 10. OURS vs AN trained for SVR on the TDS dataset.

Each color denotes the points generated by one patch. Those gen-

erated by our approach are much better organized with far less

overlap and no collapsed patches.

(a) (b)

Figure 11. Partial collapse. Even though the dark blue patch pre-

dicted by AN seems to be well developed (a), a zoomed in view

reveals a partial collapse (b).

post-processing. Our approach is inspired by the multi-

patch approach of [16] and we have shown that we can use

those differential properties during training to reduce the

amount of patch overlap while delivering usable normals

and curvatures, which the original approach does not do.

In future work, we will incorporate this framework in

end-to-end trainable networks that require the differential

properties to exploit the image information and to perform

tasks such as shape-from-shading or texture mapping.

4723



References

[1] A. Agudo, F. Moreno-Noguer, B. Calvo, and J. M. M. Mon-

tiel. Sequential Non-Rigid Structure from Motion Using

Physical Priors. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(5):979–994, 2016. 2

[2] H. Badino, D. Huber, Y. Park, and T. Kanade. Fast and Ac-

curate Computation of Surface Normals from Range Images.

In 2011 IEEE International Conference on Robotics and Au-

tomation, 2011. 2

[3] A. Bansal, B. Russell, and A. Gupta. Marr Revisited: 2D-3D

Model Alignment via Surface Normal Prediction. In Con-

ference on Computer Vision and Pattern Recognition, 2016.

2

[4] A. Bartoli, Y. Gérard, F. Chadebecq, and T. Collins. On

Template-Based Reconstruction from a Single View: Ana-

lytical Solutions and Proofs of Well-Posedness for Devel-

opable, Isometric and Conformal Surfaces. In Conference

on Computer Vision and Pattern Recognition, 2012. 4

[5] A. Bartoli, Y. Gérard, F. Chadebecq, T. Collins, and D.

Pizarro. Shape-From-Template. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2015. 2, 4

[6] J. Bednarı́k, M. Salzmann, and P. Fua. Learning to Recon-

struct Texture-Less Deformable Surfaces. In International

Conference on 3D Vision, 2018. 2, 6

[7] J. Berkmann and T. Caelli. Computation of surface geometry

and segmentation using covariance techniques. PAMI, 1994.

7
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