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Figure 1. Temporally-coherent reconstruction and correspondences predicted by our approach (OUR), compared with other atlas-
based ones – AtlasNet [19] (AN), and Differential Surface Representation [7] (DSR). Left: The reconstructed surfaces, textured with
a consistent texture to visualize the correspondences between the surfaces. Middle and Right: deviations visualized using a colormap
(middle) and a heatmap (right). The competing methods exhibit artifacts and wrong correspondences, while OUR yields reconstructions
close to the GT. The black arrows point to inconsistencies, which are absent from our results.

Abstract

We propose a method for the unsupervised recon-
struction of a temporally-coherent sequence of surfaces
from a sequence of time-evolving point clouds, yielding
dense, semantically meaningful correspondences between
all keyframes. We represent the reconstructed surface as
an atlas, using a neural network. Using canonical corre-
spondences defined via the atlas, we encourage the recon-
struction to be as isometric as possible across frames, lead-
ing to semantically-meaningful reconstruction. Through ex-
periments and comparisons, we empirically show that our
method achieves results that exceed that state of the art in
the accuracy of unsupervised correspondences and accu-
racy of surface reconstruction.

1. Introduction

Applications such as UV-mapping, shape analysis, and
partial scan-completion all rely on the availability of a
surface representation that is coherent across different in-

This work was partially carried out while the first author was an in-
tern at Adobe Research and was supported in part by the Swiss National
Science Foundation.

stances. Namely, the different surfaces should be in cor-
respondence, such that each point on one surface maps
to a point with the same semantic meaning on another.
In the literature, the most common way to achieve coher-
ence consists of explicitly computing and establishing cor-
respondences between non-coherent input representations,
such as 3D meshes [49, 3, 45, 22, 16, 42] or 3D point
clouds [24, 21]. This, however, assumes that the input
data contains points that can be matched in a semantically-
meaningful manner, and in fact only circumvents the true
task of retrieving a coherent surface representation.

In this paper, we tackle this problem more directly by
learning to reconstruct temporally-coherent surfaces from a
sequence of 3D point clouds representing a shape deform-
ing over time. To this end, we rely on the AtlasNet patch-
based representation [19] to model the surface underlying
the 3D points. However, whereas in the original AtlasNet,
any patch can correspond to any part of the surface, we en-
force consistency of the patch locations through the whole
sequence effectively creating a time-consistent atlas.

To learn atlases that are semantically and temporally
consistent, meaning that each 2D point on each 2D atlas
patch models the same semantic surface point over time,
we leverage differential geometry to require the correspon-
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dences model a close-to-isometric deformation, for which
the metric tensor computed at any surface point remains
constant as the shape changes. We translate this into a
metric-consistency loss function, which, when minimized,
implicitly establishes meaningful point correspondences.

Our approach does not require any ground-truth corre-
spondences, which are usually difficult to obtain. Hence,
it is unsupervised and can operate on any shape category
without a known shape template. Yet, as shown in Fig. 1,
it provides reliable correspondences even in cases in which
the shapes are complex and the deformations are severe, un-
like state-of-the-art methods which tend to break down.

2. Related Work

3D temporal coherence involves both surface reconstruc-
tion and correspondence estimation, which are in interplay
with one another. Both of these are well-studied, essential
tasks in geometry processing, which we review next.

Correspondence estimation commonly assumes that the
objects are close to isometric and thus often optimizes
for local distance preservation [11, 33, 46]. This can be
achieved via local shape descriptors [36, 4, 48, 29], which
are in turn used to obtain surface correspondences. Alter-
natively, obtaining correspondences can be cast as a tem-
plate fitting problem [31, 56]. This, however is reliant
on knowing beforehand what is the class of the shape,
and on having a template for this class. Simpler meth-
ods [3, 49] have been designed for temporal registration as-
suming piecewise-rigidity of the shapes. However, these
methods generate only region-wise correspondences. In
case meshes are given, they can be parameterized into the
same 2D common base-domain where correspondences can
be optimized [27, 1, 51]. This approach relies on 3D surface
(triangulations) given as input, and hence cannot be applied
to point-clouds and does not reconstruct surfaces. Taking a
cue from this approach, we also use a 2D domain to define
the correspondences, but keep the correspondence fixed in
2D, and instead optimize the 3D surface while performing
surface reconstruction.

Recently, correspondence estimation has been addressed
as a learning problem. Many works use representations
such as [36] to retrieve local descriptors and incorporate
them in the learning process [22, 16, 45]. Other supervised
methods have been proposed, using ground-truth correspon-
dences as training data [44, 32, 10, 35].

Motivated by the fact that obtaining correspondence
supervision is expensive, [12, 6] introduced an unsuper-
vised learning framework using triangulated meshes. To
avoid meshing, [24, 20] proposed unsupervised learning
techniques to extract correspondences directly from point
clouds. However, [24] only yields a set of semantically

close points without a mechanism to find a unique corre-
spondence, and [20] uses a 3D template.

In contrast to existing methods, our approach yields
temporally-coherent surface reconstructions from point
clouds and generates meaningful point-wise correspon-
dences. To this end, it learns a unique atlas representation
similar to [20] but enforces local metric consistency, which
aims to preserve isometry at corresponding points on the
output surfaces. Our method is unsupervised and does not
require a shape template. Thus, the closest approach to our
method is [21], which learns correspondences by enforcing
cyclic consistency across multiple shape-triplets. Our ex-
tensive comparisons with [21, 19, 7] show that our method
consistently outperforms these state-of-the-art techniques.

Surface reconstruction from point clouds has been thor-
oughly studied in geometry processing. Many non-learning
techniques use mathematical tools to reconstruct the sur-
face, e.g., solving the Poisson PDE [26], or using Mov-
ing Least Squares [30] to fit points to the surface; see [8]
for a survey. Deep learning techniques were first success-
fully applied to point-cloud reconstruction [39, 41, 17, 24],
and afterwards to surfaces, starting with the seminal At-
lasNet [20], FoldingNet [54] and their followups [14, 7].
Surfaces can also be reconstructed from learned elementary
structures [15]. In [52], an MLP was shown to be effective
in reconstruction when optimized to fit a point cloud.

Other representations such as meshes [25, 37] are simple
to handle, however require a predesignated triangulation,
which is not versatile enough to accommodate for arbitrary
shapes with different articulations. Likewise, implicit fields
such as SDF’s [38, 34] can represent a surface accurately,
however the implicit definition does not lend itself to defin-
ing correspondences.

In any case, none of these methods target temporally-
coherent surface reconstruction.

Metric preservation and shape interpolation are
closely related to our approach. Metric preservation is
widely used when a low-distortion map between shapes is
required, especially in the context of shape interpolation
that has long been studied in computer graphics [28, 2, 53].
In recent years several data-driven methods have been
proposed for this task [18, 13], but they assume to be given
point correspondences and do not infer them. Closer to our
work, [43] discussed how to smoothly interpolate between
two point clouds, without given correspondences. How-
ever, this work focuses solely on interpolating the point
clouds without generating meaningful correspondences nor
producing a continuous surface.



3. Methodology
3.1. Problem statement and overview

We assume to be given as input a temporal sequence of
3D point clouds P1, ..., PK . Our output is a corresponding
sequence of reconstructed surfaces S1, ...,SK , one for each
point cloud, along with a canonical bijective mapping Ψi,j

between the surfaces Si, Sj , defining temporally-consistent
point-to-point correspondences, for any point on one of the
reconstructed surfaces.

We use an atlas-based representation with multiple
patches similarly to [19], with an atlas φj representing each
surface Sj . This immediately defines a canonical bijective
map Ψi,j between any two surfaces Si,Sj via the shared 2D
domain (see Figure 2). We wish to optimize the atlases so
that their surfaces satisfy two properties:

1. Fitting. Each surface Sk should model the correspond-
ing point cloud Pk as closely as possible.

2. Temporal coherence. Each predefined canonical bi-
jective map Ψi,j maps semantic parts of the surface
correctly between frames (nose is mapped to nose).

Our core observation is that we can achieve this goal in
an unsupervised manner, by making the Ψi,j as isometric
as possible, thus encouraging the transition from one frame
in the sequence to the next to preserve local shape features,
and in turn making the reconstructions consistent. We elab-
orate on the above next.

3.2. Atlas-based surface representation

Atlases and canonical surface correspondences. In its
most basic form, an atlas can be defined as a map φ, em-
bedding a 2D domain Ω to a surface in 3D φ : Ω → R3,
such that the image of φ is S (we use Ω = [0, 1]2 in all
experiments).

Using atlases enables us to define a canonical point
correspondence between any two 3D surfaces, S1,S2, de-
scribed by two atlases, φ1, φ2, see Figure 2. Specifically, we
can trivially define a bijective (1-to-1 and onto) correspon-
dence between the two 3D surfaces by defining the point
φ1 (p) ∈ S1 to correspond to φ2 (p) ∈ S2, and vice versa,
for any point p ∈ Ω. This correspondence enables us to
optimize the atlases to ensure that corresponding points are
mapped to the same semantic 3D surface point on S1,S2.

Isometry through metric consistency. We enforce isom-
etry between different atlases. To achieve that we use the
Riemannian metric tensor. For any point p = (u, v) ∈ Ω,
the metric tensor is expressed in terms of the Jacobian, the
matrix Jφ ∈ R3×2 of partial derivatives of the map φ at

p, Jφ =
[
∂φ
∂u ,

∂φ
∂v

]
. Specifically, the metric tensor is de-

fined as g (p) = Jφ (p)
>
Jφ (p). Intuitively, g defines a

p

Ω

φnφ1
φ2

Ψ1,2

…

Ψ2,n

Figure 2. Correspondences defined between three surfaces by the
mapping of one point p ∈ Ω through three different atlases.

local inner product between any two vectors q, r ∈ R2 as
qT · g (p) · r, enabling one to measure local lengths and an-
gles at any point φ (p) on the surface S.

The rest of the paper can be understood from the high-
level definition of the metric tensor as a descriptor of local
geometric quantities.

Given two surfaces as above, using the canonical cor-
respondence defined above, we can compare the met-
rics of the surfaces, gφ1 , gφ2 , at corresponding points
φ1 (p) , φ2 (p), and measure the difference between the two,
‖gφ1

(p)− gφ2
(p)‖F , where ‖·‖F stands for the Frobenius

norm. We can now define a metric-consistency energy be-
tween the two surfaces as

Econs (φ1, φ2) =

∫
p∈Ω

‖gφ1
(p)− gφ2

(p)‖2F , (1)

which measures the deviation from isometry of the map
(defined by the canonical correspondence) between the two
surfaces the two atlases represent.

3.3. Temporally-coherent surface reconstruction

Atlases via a neural network. To define atlases in a deep
learning setting, we follow the standard AtlasNet [19] for-
mulation: The network receives a point p ∈ Ω, along with a
latent code z ∈ RC (where C is the dimension of the latent
space) and outputs a 3D point, essentially defining an atlas
conditioned on z. Note that, most importantly, all differ-
ential quantities introduced in the previous section can be
easily inferred for the network’s atlases, since the network
is a (piecewise) differentiable mapping.

Lastly, we note that instead of relying on a single map
φ, any number of charts φ1, φ2, ..., φM can be chosen be-
fore optimization, enabling mapping several 2D domains
into several 3D patches, whose union forms the complete
shape. This poses no change to any of the notions discussed
herein, and hence we simply consider the domain Ω and φ
as aggregating all the patches, domains and maps, except
when explicitly referring to these patches specifically. In all
experiments, we used M = 10 patches.

Given a dataset with K point clouds P1, ..., PK , we en-
code each point cloud Pk into a latent code zk through a
PointNet [40] encoder as used by [19]. We denote by φk



the resulting atlas defined via the code zk, representing the
reconstructed surface.

Loss Functions. To enforce isometry across the se-
quence, we use a loss function measuring metric consis-
tency between pairs of atlases,

Lmetric = αmc

∑
(i,j)∈I

Econs (φi, φj) , (2)

where I holds chosen pairs of surfaces out of all possible
pairs, and αmc ∈ R is a hyper-parameter of our approach.

Next, to train the network to reconstruct the given
dataset, we follow standard practice in shape reconstruction
[20, 15, 7, 14] and use chamfer distance (CD) to define the
reconstruction loss

LCD =
1

K

K∑
k=1

∫
p∈Ω

min
q∈Pk

||φk(p)− q||2 +

∑
q∈Pk

min
p∈Ω
||φk(p)− q||2

 .

(3)

We then take our final loss to be

L = LCD + Lmetric . (4)

Sampling surface pairs. The metric consistency loss 2
operates on pairs of surfaces defined by I, (Si,Sj), (i, j) ∈
I. Our assumption is that the shape gradually deforms over
time, and therefore surfaces in subsequent frames should
change close-to-isometrically with respect to one another.
Hence we define a “time window” δ, which is a hyper-
parameter of our method, and sample pairs of surfaces only
if they fall within that window, (Si, Sj) : |i− j| ≤ δ.

3.4. Implementation details

Our method uses the AtlasNet [19] architecture with the
same adjustments of [7] for computing the metric (ReLU
replaced with Softplus in the decoder; batch normalization
layers removed). We use P = 10 patches in all experi-
ments.

We use the Adam optimizer with a learning rate
l = 0.001 and a batch size of 4 for 200000 iterations. We
employ a learning rate scheduler which divides the current l
by a factor of 10 at 80% and 90% of the training iterations.
Following [19, 7], 2500 points are sampled from the UV do-
main Ω. We set the weight of the loss termLmetric of Eq. 2 to
αmc = 0.1, and choose the value of δ using one sequence as
a validation subset and then measuring the correspondence
metrics msL2,mr and mAUC.

At evaluation time, we follow [7] and remove any patch
with area smaller than 1/1000 of the average area of a patch.
We sample a given number of available points in each patch

as evenly as possible using a simulated annealing based al-
gorithm. Please refer to the supplementary material for all
other details.

4. Evaluation
We tested our method by reconstructing surfaces from

various raw point-cloud sequences of human and animal
motions, showing our method naturally adapts to different
kinds of data, without any known correspondences between
the frames or a reference template shape, and without re-
quiring prior training on any specific category. Please refer
to the supplementary material for a video showing the re-
constructed sequences of all figures in the paper, as well as
others, to get a full sense of the accuracy of our method.

Visualization of the correspondences between surfaces.
Before continuing, let us explain the technique used to vi-
sualize the correspondences between the surfaces. In all
figures, to illustrate the temporal consistency of our recon-
structions, we use the same texture in the UV space in all
frames of the sequence. Hence, corresponding regions are
textured with the same checkerboard cells, revealing the ac-
curacy of the correspondences.

Figure 3 shows our temporally-coherent reconstructions
for six sequences. Note how our method manages to recon-
struct high-curvature regions such as the elephant’s tusks
and the cat’s tail and paws, yielding both accurate geom-
etry and high correspondence accuracy, e.g., tracking the
paws as they move. The human models exhibit much more
articulated deformations, nonetheless our method tracks
the limbs and maintains consistent, meaningful correspon-
dences throughout the sequence. Please refer to the sup-
plementary video to view the animations of the entire se-
quences.

4.1. Inferring point cloud correspondences

A direct application of our method is inferring point-to-
point correspondences on the input point clouds. Namely,
for two point clouds we map points from Pi to Pj via eu-
clidean projections between the point clouds and the recon-
structed surfaces, using the map fi→j = πPj

◦φj◦φ−1
i ◦πφi

,
where πX projects a 3D point to its nearest neighbor on the
surface X and φ−1 is the inverse mapping which is known
implicitly. Specifically, we densely sample N points in the
2D domain Ω and get their 3D counterparts via the learned
φ. Since φ is a bijection, we know φ−1 for these N points.

We also evaluate the accuracy of our method w.r.t the
ground truth correspondences of the dataset’s point clouds.
In Figure 4 we visualize the correspondences predicted on
the input point clouds using an error colormap. We visual-
ize of the error on the models (Note that the ground-truth
triangulation of the point clouds is only used for visualiza-
tion), with red indicating the magnitude of the error – most



Figure 3. Our temporally-coherent surface reconstructions, for 6 sequences. (top to bottom) elephant and cat from ANIM,
jumping and swing from AMA, running on spot and knees from DFAUST. Note how the reconstructed surfaces have consistent
correspondences, as well as accurate geometry.

of the error is significantly below the maximal values cho-
sen. Evidently, the correspondences we compute are highly
accurate and exhibit small-to-no error. Some drifting can
occur in relatively flat regions, such as the woman’s thigh,
and around very extruded regions like the elephant’s feet
which are harder to model exactly.

We report quantitative evaluation of the correspondence
and reconstruction in Table 1. To evaluate the quality of
correspondences, we randomly draw M = 500 shape pairs
(Pi, Pj) with known ground truth correspondences (pk, qk)
where pk ∈ Pi and qk ∈ Pj . Each shape has N = 3125
points. We report the average error over M pairs, with re-
spect to the metrics described below.

Squared correspondence distance (msL2). This metric
evaluates the error in the predicted inter-surface map fi→j
as msL2 = 1

N

∑N
k=1 ‖f(pk)− qk‖2.

Normalized correspondence rank (mr). mr ex-
presses the rank of a predicted point with respect to all
the other points on the target object. Formally mr =

1
N2

∑N
k=1

∑N
l=1 1‖ql−qk‖2<‖f(pk)−qk‖2 .

Area under the percentage of correct keypoints
(PCK) curve (mAUC). Following the literature on keypoint
classification and correspondences [23, 55], we compute a
mean PCK curve in a given range [dmin, dmax] and report the
area under that curve (AUC). We set dmin = 0, dmax = 0.02
in all our experiments.

Chamfer Distance (CD). This metric is equal to the loss
term LCD of Eq. 3. Note that this is the only metric that does
not evaluate the quality of correspondences but rather of the
reconstruction.

ref. frame distance heat mapcolormap pullback
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Figure 4. Our correspondences retrieved on elephant and
cat from ANIM, jumping from AMA, running on spot
from DFAUST. We visualize the correspondences via matching
colors and show the error colorcoded as a heat map on the right.
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Figure 5. Comparison of reconstructions of sequences march 1 (AMA) and camel (ANIM) as produced by AN, DSR and OUR.
The other methods struggle to reconstruct the camel, and produce bad correspondences for the human (swapped legs on leftmost frame).

4.2. Datasets

We evaluate our method on 3 datasets of point cloud se-
quences. Animals in motion [47, 5] (ANIM) consists of
4 synthetic mesh sequences of 4-legged animals in stride.
We uniformly scale each sequence s.t. the first point cloud
fits in a unit cube. Dynamic FAUST [9] (DFAUST) is a
real-world dataset which contains 14 sequences of 10 un-
clothed human subjects performing various actions. Artic-
ulated mesh animation [50] (AMA) is a real-world dataset
containing 10 sequences depicting 3 different human sub-
jects performing various actions, however in contrast to
DFAUST, they are wearing loose-fitting clothes making the
surface more intricate and time-varying, hence more chal-
lenging for correspondence methods. We pre-processed the
sequences to align them, by choosing the rotation along the
vertical axis which minimizes the chamfer distance w.r.t.
the previous frame.

For each dataset, we use one sequence of the entire data
set for validation (cat for ANIM, jumping jacks for
DFAUST, crane for AMA). We use this validation se-
quence to choose the hyper-parameter δ by training our
model using δ ∈ [1, 6] and then choosing the optimal one
w.r.t the metricsmsL2,mr andmAUC. We report the metrics
only on the rest of the sequences.

To generate point clouds from these meshes, we perform
uniform random sampling to draw 2500 points. We train
and evaluate all methods on every sequence (e.g., walking
cat or jumping human) individually.For DFAUST, we si-
multaneously train on all subjects performing the sequence,
but still draw pairs of the same subject.

4.3. Results and Comparisons

We compare our approach (OUR) to both traditional and
deep learning based methods.

Non-rigid ICP is a popular classic technique for shape
registration. We use the recent implementation of [23],
which we denote as nrICP. We experimented with several
ways to use it to match shape pairs and chose the optimal
one. Please refer to the supplementary material for details.

Atlas-based methods. As OUR builds on an atlas-based
representation, we compare it to the original AtlasNet [19]
(AN). We also compare to a more recent method [7] (DSR),
which aims to reduce patch distortion, but is unaware of the
temporal distortion. As the base architecture of both meth-
ods is nearly identical to that of OUR, for fair comparison
we train both methods in the same way as summarized in
Section 3.4.

Cycle consistent point cloud deformation. The recent
method of [21] (CC) learns to align one point cloud to
another in order to find correspondences. As the training
of CC relies on sampling triplets, we experimented to find
the optimal sampling technique for CC from the given
sequence. Please refer to the supplementary for details.

All the deep learning based methods (AN, DSR, CC,
OUR) are trained on the given sequence and then evaluated
on it to retrieve the correspondences.

Figure 5 shows a qualitative comparison between OUR
and other atlas-based methods on reconstructing surfaces
from point clouds, AN and DSR. As expected, in both se-
quences our method is more temporally-coherent and the
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Figure 6. Comparison of inferred point-cloud correspondences within 2 sequences. The black arrows point to errors and artifacts in
the correspondences, such as swapped legs of the camel as predicted by DSR and CC, and minor problems, such as small but severe local
mismatches, such as the knee area of the camel as predicted by AN.

correspondences are more accurate. Note how in the left-
most frame of the human sequence, the bending at the knee
causes AN to introduce a significant amount of unnecessary
distortion, while DSR maps the left leg to the right leg and
vice versa. The camel sequence reveals an even more in-
teresting observation: the temporal coherence also acts as
a regularizer and makes the reconstruction itself more tight
and accurate to the point cloud’s geometry, as our method’s
reconstruction is more true to the input than the competing
methods. Please refer to the supplementary video to view
the animations of the entire sequences.

In Figure 6, we show a representative qualitative com-
parison of the correspondences computed by OUR with
ones inferred by the other techniques. We visualize the cor-
respondences via matching colors, along with the measured
correspondence error as a heat map. DSR and CC swap the
legs of the camel and the human. AN achieves compara-
ble results to OUR on the camel, but exhibits a non-smooth
jump in correspondences across the human’s torso.

We report quantitative comparisons w.r.t. all metrics in
Table 1, which demonstrates that our method achieves the
best correspondence; we also achieve the best reconstruc-
tion quality (in terms of CD) over all other methods except
for AtlasNet on AMA. Since CC and nrICP do not recon-
struct surfaces, we do not report CD for them.

Table 1. Comparison of OUR to SotA methods on correspon-
dence accuracy and reconstruction quality. Our method is the
most accurate and also yields reconstruction quality competitive
with AN.

dataset model msL2 ↓ mr ↓ mAUC ↑ CD ↓

ANIM

nrICP 70.32±84.86 5.46±9.52 74.23±13.68 -
AN 18.40±24.82 0.78±2.85 96.28±1.56 0.09±0.00
DSR 46.43±67.42 3.44±6.71 83.96±9.58 0.19±0.01
CC 33.84±54.13 2.21±4.75 87.96±7.76 -
OUR 11.93±11.00 0.30±0.57 98.10±0.61 0.09±0.00

AMA

nrICP 150.94±134.31 6.63±10.26 45.40±22.27 -
AN 86.80±91.28 2.90±6.18 70.07±15.31 0.30±0.01
DSR 123.56±109.92 5.00±7.39 59.69±15.94 62.08±52.50
CC 74.58±97.98 2.47±6.37 77.07±15.00 -
OUR 57.12±65.33 1.55±3.90 82.29±11.16 0.32±0.02

DFAUST

nrICP 79.78±118.46 4.09±10.17 74.79±15.90 -
AN 31.74±43.46 0.90±2.95 91.88±5.84 0.34±0.06
DSR 68.79±61.04 3.76±5.19 78.00±6.25 11.21±2.89
CC 29.57±65.26 1.12±5.26 94.35±9.82 -
OUR 19.81±22.19 0.38±1.17 96.17±2.31 0.34±0.06

Stress test. In Figure 7, we test the limits of our method
on an extreme deformation, of a rubber horse deflating.
Even under the many foldovers of the model, our method
reconstructs the legs as a separate part of the surface, while
the other baselines clamp different regions together, as can
be seen from the bottom view.
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Figure 7. Stress test on the sequence horse collapse from ANIM, of a horse deflating. Despite the many self-foldovers, our
method still finds accurate correspondences. The other methods fail. For each method we show side and bottom views of 3 frames from
the sequence, with correspondence visualized via matching colors, and a heatmap showing correspondence error.

Table 2. Comparison of different pair sampling strategies.
Switching from our default (neighbours) to random leads to de-
terioration in correspondence accuracy and a slight improvement
in CD.

strategy msL2 ↓ mr ↓ mAUC ↑ CD ↓

random 96.82±161.54 3.97±10.27 77.08±16.41 0.30±0.01
neighbors 66.63±103.11 2.11±6.75 80.24±11.42 0.31±0.02

Effect of the Sampling Strategy for Training Pairs. In-
stead of using time-adjacent point-cloud pairs, we can use
random pairs instead (random). The results of this change
are shown in Table 2. We evaluated both strategies on the
crane, with δ = 1. The results show that neighbors clearly
yields higher correspondence accuracy. Interestingly, the
deterioration in correspondence accuracy lets random pro-
duce slightly better reconstruction in terms of CD.

Effect of the Metric Consistency Term Lmetric. We eval-
uate the effect of the hyper-parameter αmc, which balances
metric consistency and chamfer distance. Results in terms
of the correspondence metric msL2 are shown in Table 3,
using the validation sequences of all three datasets. Setting
αmc too low turns off Lmc while setting it too high over-
powers LCD, which imposes strict isometry and makes the
position of the patches ambiguous. Hence, different values
may be less or more optimal, depending on the severity of
the underlying deformation. αmc ∈ [0.1, 1] yields the best
results and the variations within that range are small. In all
other experiments, we used αmc = 0.1, and we note that a
better, automated method to choose αmc may improve our
performance further.

Table 3. The impact of the metric consistency term Lmetric on
the resulting accuracy of correspondences.
αmc 1e−4 1e−3 1e−2 0.1 1 1e1 1e2 1e3

ANIM cat 13.2 11.3 9.8 9.8 12.5 14.0 15.1 62.5
AMA crane 127.2 232.5 111.8 66.6 61.0 102.6 179.3 174.3
DFAUST jacks 35.6 28.0 23.1 28.0 30.7 88.9 106.4 194.2

5. Conclusion
We have introduced an atlas-based method that yields

temporally-coherent surface reconstructions in an unsuper-
vised manner, by enforcing a point on the canonical shape
representation to map to metrically-consistent 3D points on
the reconstructed surfaces.

While our method yields better surface correspondences
than state-of-the-art surface reconstruction techniques, it
shares one shortcoming with these atlas-based methods.
The reconstructed patches may overlap, causing imperfec-
tions in the reconstructions. Another limitation is that we
use heuristics for the hyper-parameters balancing metric-
consistency and reconstruction; employing an annealing-
like technique which gradually permits more non-isometric
deformations may be the next logical step.

We see many future applications to our approach. By
replacing Chamfer distance with, e.g., some visual loss,
we can apply our method to 2D sequences of images,
which we believe could instigate progress in video-based
3D reconstruction. In the context of 3D geometry, our
metric-consistency loss targets nearly-isometric deforma-
tions, however our framework could easily extend to other
distortion measures, such as the conformal one. Studying
this for non-isometric reconstruction and matching will be
the focus of our future work.
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6. Supplementary Material
6.1. Training and Evaluation Details

We provide details of the triplet sampling strategy
used to train the cycle consistent point cloud deformation
method [21] (CC) in Section 6.1.1, an analysis of the strat-
egy used to evaluate the non-rigid ICP method [23] (nrICP)
in Section 6.1.2, more information on the points sampling
strategy used to evaluate all the atlas-based methods, i.e.
AtlasNet [19] (AN), Differential Surface Representation [7]
(DSR) and our method (OUR), in Section 6.1.3 and a time
complexity analysis in Section 6.1.4.

6.1.1 Details of Training CC

The training of CC relies on sampling triplets of shapes
from the given dataset. The authors argue that the best re-
sults were achieved when sampling triplets of shapes that
are close to each other in the Chamfer distance (CD) sense.
Specifically, given a randomly sampled shape A, two other
shapes B,C are randomly sampled from the 20 nearest
neighbors of A to complete the triplet. Let us refer to this
sampling strategy as knn.

OUR itself relies on sampling shape pairs, and as shown
in Section 4.3 of the main paper, better results are achieved
when sampling the shape pairs from a time window δ of a
given sequence (neighbors) rather sampling pairs randomly
within a sequence (random).

For fair comparison, we experimented with training CC
using all three strategies, knn, neighbors and random. Ta-
ble 4 reports the results on the DFAUST dataset using the
validation sequence jumping jacks and one more ran-
domly chosen sequence jiggle on toes. Since CC per-
forms best by a large margin when trained using random,
we use this strategy for all the experiments.

Table 4. Comparison of different triplet sampling strategies to
train CC. The experiments were conducted using DFAUST.

sequence sampling msL2 ↓ mr ↓ mAUC ↑

jumping jacks

knn 105.57±217.32 6.43±18.26 77.06±20.18
neighbors 95.13±179.81 6.21±17.42 75.84±20.78
random 32.74±31.65 0.70±1.68 91.47±6.25

jiggle on toes

knn 71.73±203.46 4.36±16.88 87.77±20.92
neighbors 47.69±99.55 2.15±8.48 88.31±12.20
random 26.26±69.02 0.91±5.71 94.86±10.98

6.1.2 Analysis of the nrICP [23] Strategy

The nrICP method deforms a point cloud to best match an-
other point cloud and thus can be used to find point-wise
correspondences in an unsupervised way. Formally, let νPj

be the non-rigid ICP function which deforms an input point
cloud Pi to best match Pj . Following the notation intro-
duced in Section 4.1 of the main paper, let πX be a mapping

that projects the points from an input point cloud to their re-
spective nearest neighbors in the target point cloud X . The
simplest way to use nrICP to find correspondences between
a pair of point clouds (Pi, Pj) randomly drawn from the
given sequence is to compute πPj

◦νPj
(Pi). Let us call this

strategy random.
Non-rigid ICP tends to break when the deformation be-

tween the two point clouds is severe. However, as we are
dealing with sequences depicting a deforming shape, one
can compute the correspondences between a pair of point
clouds (Pi, Pj) by first predicting the correspondences for
consecutive pairs of point clouds where the deformation
is minimal, i.e., (Pi, Pi+1), (Pi+1, Pi+1), . . . , (Pj−1, Pj),
and finally propagating the correspondences from Pi to Pj .
Formally, we compute πPj

◦νPj
◦· · ·◦πPi+2

◦νPi+2
◦πPi+1

◦
νPi+1

(Pi) and refer to this strategy as propagate simple.
The drawback of propagate simple is that every mapping

πPk
is onto and thus throughout the propagation, progres-

sively more source points get mapped to the same target
point, which causes a loss of spatial information and ulti-
mately yields less precise correspondences. To overcome
this problem, one can replace πPk

with ρPk
, which per-

forms a Hungarian matching of the input point cloud and
the target point cloud Pk with the objective of minimizing
the overall per-point-pair distance. Formally, we compute
ρPj
◦ νPj

◦ · · · ◦ ρPi+2
◦ νPi+2

◦ ρPi+1
◦ νPi+1

(Pi) and call
this strategy propagate bijective.

Finally, an alternative option is not to perform any pro-
jection πPk

or ρPk
as we propagate the correspondences

from Pi to Pj , but instead to gradually deform the in-
put point cloud Pi to best match each point cloud along
the sequence between Pi and Pj . Formally, we compute
νPj
◦ . . . νPi+2

◦νPi+1
(Pi) and refer to this strategy as prop-

agate deform.
Table 5 reports the results of all four aforementioned cor-

respondence estimation strategies on the crane validation
sequence from the AMA dataset. We found that propa-
gate simple suffers from the loss of spatial precision due
to the onto mapping. While propagate bijective overcomes
this problem, the Hungarian matching introduces a strong
drift along the sequence yielding even worse overall corre-
spondences. The strategy propagate deform performs the
best out of all three propagation-based strategies, but is still
outperformed by the simplest strategy random. Therefore,
as random yields the highest correspondence accuracy, we
use it to evaluate nrICP on all datasets.

6.1.3 Point Sampling in Atlas Based Methods

The original AtlasNet work [19] argues that better recon-
struction accuracy is achieved if the 2D points sampled from
the UV domain Ω are spaced on a regular grid. As ex-
plained in Section 4.1 of the main paper, at evaluation time



Table 5. Comparison of strategies used to establish correspon-
dences with nrICP. The experiments were conducted on the
crane validation sequence from the AMA dataset.

strategy msL2 ↓ mr ↓ mAUC ↑

random 172.55±167.76 7.83±12.56 41.61±19.29
propagate simple 211.11±147.43 9.38±10.32 23.01±18.31

propagate bijective 213.87±169.00 10.55±13.99 25.31±17.80
propagate deform 206.64±150.45 10.40±13.35 25.41±16.55

each atlas based method, i.e., AN, DSR and OUR, predicts
N = 3125 points. Due to the unknown number of collapsed
patches, which are discarded at runtime, it might not be pos-
sible to evenly split N points into P non-collapsed patches
so that the points would form a regular grid in the UV space
Ω.

Therefore, instead of using a regular grid, we distribute
the given available number of points as regularly as pos-
sible in the 2D domain using a simulated annealing based
algorithm. The points are initially distributed uniformly at
random, and then their position is iteratively adjusted so
that every point maximizes its distance to the nearest points.
This procedure is summarized in Algorithm 1. The differ-
ence between random and as regular as possible 2D points
sampling is demonstrated in Fig. 8.

Algorithm 1: As regular as possible 2D points.
Input: M ∈ N // Number of 2D points.

Output: pi ∈ R2,∀1 ≤ i ≤M // 2D points.

/* Initialization */

1 step := 1
4
√
M

2 decay := 0.994
3 pi ∼ U(0,1),∀1 ≤ i ≤M // Random 2D points.

4 iter := 0
/* Main algorithm. */

5 while iter < 250 do
6 for i := 1 to M do
7 di := minj 6=i ||pi − pj ||
8 αi ∼ U(0, 2π)

9 pnew
i := pi + step ·R(αi)

[
1
0

]
// R: rot. matrix

10

11 dnew
i := minj 6=i ||pnew

i − pnew
j ||

12 if dnew
i > di then

13 pi := pnew
i

14 step := step · decay
15 iter := iter +1

(a) (b)

Figure 8. Comparison of (a) uniform and (b) as regular as pos-
sible 2D points sampling.

6.1.4 Time Complexity

The optimization of all the learning based methods was per-
formed using an Nvidia Tesla V100 GPU, and processing a
sequence of average length takes 16.1 hours for OUR, while
AN, DSR and CC take 4.1, 16.4 and 9.7 hours, respectively.
nrICP does not involve the optimization stage and can pro-
cess ∼ 1 sample per second.

6.2. Complete Results

We provide details of the search for the best value of the
hyper-parameter δ in Section 6.2.1 and we list the complete
per-sequence results of all the evaluated methods on all the
datasets in Section 6.2.3. Furthermore, we refer the reader
to the supplementary video1 which contains the comparison
of all methods on multiple sequences from all the datasets.

6.2.1 Tuning the Time-Window δ

As described in Section 3.3 of the main paper, OUR relies
on sampling pairs of shapes from a time window denoted
as δ. We tuned this hyper-paramater individually for ev-
ery dataset using a respective validation sequence, and set it
to the values yielding the best correspondence accuracy as
measured by the metrics msL2,mr and mAUC. Table 6 lists
the results of training OUR for δ ∈ [1, 6] and justifies the
selection of δ = 1 for ANIM, δ = 1 for AMA and δ = 5
for DFAUST.

Note that, as the ANIM and AMA datasets appear to
have lower frame-rates than the DFAUST dataset, i.e., the
surface undergoes larger motion from frame to frame, the
correspondence error clearly decreases with the decreasing
size of the time window δ, indicating that our method bene-
fits from observing pairs of shapes which are similar enough
to each other. On the other hand, as the DFAUST dataset in
general exhibits small frame to frame changes, the search
reveals that our method can benefit from observing pairs

1https://youtu.be/jfNQPTsbM3g

https://youtu.be/jfNQPTsbM3g


from larger time windows, since in this case the consecu-
tive frames are nearly identical and decreasing δ makes Lmc
less useful. Note, however, that using the value δ = 1 for
all the sequences shown in this paper still consistently out-
performs all the competing methods.

Table 6. Search for the best value of the hyper-parameter δ
used by OUR on each dataset.

dataset neigh. msL2 ↓ mr ↓ mAUC ↑ CD ↓

ANIM
(cat)

1 9.80±14.36 0.24±0.60 98.27±0.82 0.39±0.00
2 10.27±15.03 0.24±0.54 98.09±1.01 0.39±0.00
3 10.07±15.52 0.23±0.56 98.06±0.94 0.38±0.00
4 17.10±37.51 0.78±3.27 94.49±4.60 0.38±0.01
5 44.58±88.60 3.45±10.04 85.76±11.61 0.41±0.00
6 11.45±16.33 0.30±0.66 97.78±1.03 0.39±0.00

AMA
(crane)

1 66.63±103.11 2.11±6.75 80.24±11.42 0.31±0.02
2 99.86±163.94 4.31±10.82 76.91±17.36 0.31±0.02
3 91.09±138.11 3.68±9.22 74.42±16.49 0.32±0.01
4 81.15±130.99 3.02±8.67 77.58±13.50 0.33±0.01
5 106.34±166.29 4.61±10.85 74.10±17.69 0.34±0.02
6 113.02±162.47 5.16±11.91 68.48±20.39 0.35±0.09

DFAUST
(jumping jacks)

1 32.71±46.68 0.92±3.15 91.77±4.53 0.51±0.09
2 32.01±51.48 0.89±3.50 92.60±3.87 0.48±0.11
3 29.39±33.80 0.73±2.25 93.30±2.86 0.50±0.09
4 30.67±45.30 0.92±3.32 92.38±3.77 0.55±0.15
5 27.98±38.15 0.67±2.55 93.65±3.15 0.41±0.08
6 29.80±51.77 0.84±3.56 93.06±3.76 0.48±0.09

6.2.2 Impact of αmc on the Visual Quality

As shown in Table 3 of the main paper, every dataset bene-
fits from a different value of the hyper-parameter αmc which
balances metric consistency and Chamfer distance, while
αmc ∈ [0.1, 1.0] yields the best quantitative results. Here
we show that this fact manifests in the qualitative results as
well. The sequence crane from AMA is one case where
setting αmc = 1 instead of 0.1 yields better quantitative re-
sults. However, both reconstructions are visually compara-
ble, as shown in Fig. 9.

↵mc = 0.1 ↵mc = 1.0

frame 22 frame 105 frame 22 frame 105

Figure 9. Comparison of the reconstruction and correspon-
dence quality when using αmc = 0.1 and αmc = 1.0. The sam-
ple pair comes from the sequence crane of AMA. Note that these
are two independent runs, therefore, the spatial distribution of the
patches is arbitrary.

6.2.3 Evaluation on all Datasets and Stress Test

For brevity, Section 4.3 of the main paper only reports the
mean results computed over all the sequences contained
in the individual datasets. Here we report detailed results
for each sequence separately. The results of all methods
evaluated on the ANIM, AMA and DFAUST datasets are
summarized in Tables 7, 8 and 9, respectively. Note that
the average values reported in the last cell in each table
are computed on all the test sequences, i.e., excluding the
validation sequence cat in ANIM, crane in AMA and
jumping jacks in DFAUST.

Finally, Table 10 shows the results on the
horse collapse sequence used for the stress test
of our method, as reported in Section 4.3 of the main paper,
and an additional similar sequence camel collapse.
Both sequences come from the same work of [47] as
the sequences horse, camel and elephant from the
ANIM dataset, and thus we preprocess them in the same
way, i.e., by scaling each sample so that the first frame of
each sequence fits in a unit cube.

Table 7. Comparison of OUR to SotA methods on corre-
spondence accuracy and reconstruction quality on the ANIM
dataset. Our method is the most accurate and also yields the same
reconstruction quality as AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

cat

nrICP 77.96±94.55 5.72±9.65 70.39±15.02 -
AN 14.27±18.96 0.41±1.04 97.07±1.18 0.38±0.00
DSR 48.05±80.24 3.05±7.62 82.53±11.60 0.41±0.01
CC 53.37±93.99 3.90±8.83 80.54±14.99 -
OUR 9.80±14.36 0.24±0.60 98.27±0.82 0.39±0.00

horse

nrICP 69.94±76.34 4.91±7.11 72.62±13.23 -
AN 17.52±27.33 0.66±3.01 96.60±1.24 0.09±0.00
DSR 40.21±59.73 2.20±4.74 84.31±11.61 0.22±0.01
CC 30.24±57.97 1.60±4.30 88.39±7.95 -
OUR 12.97±12.81 0.31±0.55 97.82±0.85 0.10±0.00

camel

nrICP 78.48±108.22 7.45±12.29 73.59±14.99 -
AN 16.29±16.93 0.86±1.65 96.90±1.27 0.10±0.00
DSR 75.93±116.15 7.43±13.56 73.80±13.47 0.17±0.02
CC 56.62±93.14 4.75±9.32 77.70±14.57 -
OUR 11.08±10.72 0.42±0.83 98.19±0.53 0.09±0.00

elephant

nrICP 62.54±70.03 4.01±9.17 76.47±12.82 -
AN 21.39±30.20 0.82±3.88 95.35±2.17 0.09±0.01
DSR 23.16±26.39 0.68±1.82 93.77±3.66 0.19±0.00
CC 14.65±11.27 0.27±0.63 97.78±0.75 -
OUR 11.73±9.47 0.16±0.33 98.30±0.45 0.08±0.00

MEAN

nrICP 70.32±84.86 5.46±9.52 74.23±13.68 -
AN 18.40±24.82 0.78±2.85 96.28±1.56 0.09±0.00
DSR 46.43±67.42 3.44±6.71 83.96±9.58 0.19±0.01
CC 33.84±54.13 2.21±4.75 87.96±7.76 -
OUR 11.93±11.00 0.30±0.57 98.10±0.61 0.09±0.00



Table 8. Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on the AMA dataset. Our
method is the most accurate and also yields reconstruction quality competitive with AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓ sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

bouncing

nrICP 130.93±111.27 4.11±7.76 43.64±17.60 -

march 2

nrICP 187.52±182.98 9.33±14.65 39.92±23.08 -
AN 59.86±50.14 0.92±3.19 77.84±7.56 0.37±0.02 AN 120.96±166.77 5.03±11.33 64.99±18.34 0.30±0.02
DSR 51.09±34.89 0.56±0.96 81.57±7.00 0.35±0.01 DSR 143.05±144.18 5.76±10.75 47.77±20.80 0.96±0.15
CC 45.21±28.94 0.40±0.60 85.56±6.59 - CC 118.02±160.88 5.23±11.34 65.18±20.49 -
OUR 44.31±29.47 0.41±0.71 85.92±6.06 0.40±0.03 OUR 90.62±156.21 3.80±11.09 77.99±18.38 0.36±0.03

crane

nrICP 172.55±167.76 7.83±12.56 41.61±19.29 -

samba

nrICP 100.50±91.01 3.58±6.17 58.47±23.58 -
AN 77.64±99.96 2.13±6.27 74.08±12.38 0.30±0.01 AN 75.38±83.78 2.41±5.42 72.22±20.14 0.22±0.01
DSR 128.18±168.36 5.64±11.18 64.07±23.11 0.29±0.01 DSR 114.61±124.73 5.06±9.48 57.38±26.40 0.25±0.01
CC 76.80±96.52 2.17±5.85 73.49±18.45 - CC 72.31±85.51 2.34±5.49 73.72±20.53 -
OUR 66.63±103.11 2.11±6.75 80.24±11.42 0.31±0.02 OUR 62.84±80.00 1.93±4.64 77.44±21.38 0.27±0.02

handstand

nrICP 256.22±194.98 14.16±17.45 21.87±24.70 -

squat 1

nrICP 84.88±86.77 2.23±4.93 65.16±26.07 -
AN 182.36±186.97 8.74±14.38 42.11±26.55 0.35±0.03 AN 46.91±41.54 0.71±1.59 82.91±12.40 0.28±0.01
DSR 380.79±226.71 20.52±17.35 4.54±1.59 551.20±471.57 DSR 46.91±41.82 0.65±1.52 82.67±13.36 0.28±0.01
CC 89.79±142.39 3.11±10.10 71.53±16.92 - CC 26.81±18.42 0.16±0.25 94.32±2.83 -
OUR 126.52±167.36 5.69±13.80 58.47±23.49 0.38±0.03 OUR 27.81±27.48 0.25±0.78 92.60±4.73 0.27±0.00

jumping

nrICP 206.43±172.56 10.38±14.50 29.02±18.96 -

squat 2

nrICP 90.50±85.60 2.29±4.77 61.18±25.81 -
AN 116.86±148.11 4.86±11.78 61.05±18.89 0.32±0.02 AN 47.93±42.15 0.66±1.63 82.61±10.97 0.29±0.01
DSR 114.90±151.03 4.92±11.16 64.81±19.44 0.33±0.02 DSR 121.50±119.10 3.75±6.51 51.09±27.88 4.77±0.71
CC 77.53±111.13 2.29±6.71 75.31±17.45 - CC 37.02±28.14 0.32±0.58 89.14±7.37 -
OUR 45.10±31.25 0.50±1.01 85.31±6.01 0.37±0.03 OUR 33.72±31.41 0.32±0.81 89.85±7.06 0.28±0.01

march 1

nrICP 174.05±171.86 8.59±14.23 42.75±22.83 -

swing

nrICP 127.41±111.79 4.98±7.89 46.58±17.80 -
AN 57.66±42.75 0.93±1.99 77.90±9.56 0.29±0.01 AN 73.26±59.32 1.86±4.30 69.01±13.40 0.24±0.02
DSR 79.26±97.42 2.52±6.44 72.20±14.13 0.33±0.02 DSR 59.92±49.39 1.25±2.38 75.19±12.90 0.24±0.01
CC 124.76±157.34 5.26±10.01 64.16±23.63 - CC 79.78±149.09 3.13±12.27 74.73±19.23 -
OUR 34.85±24.72 0.29±0.56 90.66±4.66 0.31±0.01 OUR 48.28±40.07 0.80±1.67 82.39±8.68 0.26±0.01

MEAN

nrICP 150.94±134.31 6.63±10.26 45.40±22.27 -
AN 86.80±91.28 2.90±6.18 70.07±15.31 0.30±0.01
DSR 123.56±109.92 5.00±7.39 59.69±15.94 62.08±52.50
CC 74.58±97.98 2.47±6.37 77.07±15.00 -
OUR 57.12±65.33 1.55±3.90 82.29±11.16 0.32±0.02



Table 9. Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on the DFAUST dataset.
Our method is the most accurate and also yields reconstruction quality on par with AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓ sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

chicken wings

nrICP 72.20±135.09 5.15±15.70 80.89±13.79 -

one leg jump

nrICP 81.13±98.03 2.86±5.19 71.68±14.61 -
AN 49.75±92.05 2.31±6.96 85.57±16.07 0.37±0.08 AN 30.65±23.71 0.58±0.98 92.47±3.48 0.43±0.08
DSR 282.61±130.70 21.85±17.43 6.40±2.66 97.10±25.04 DSR 47.59±99.20 1.30±4.72 88.44±8.96 0.36±0.07
CC 35.57±113.74 2.12±11.40 93.59±16.90 - CC 36.40±76.87 0.79±3.47 91.23±8.64 -
OUR 18.51±20.37 0.38±1.34 96.53±1.98 0.43±0.09 OUR 41.44±74.93 1.03±3.56 87.92±11.02 0.36±0.07

hips

nrICP 59.22±49.65 2.39±3.91 76.95±14.85 -

one leg loose

nrICP 54.98±64.48 1.74±3.31 81.73±11.45 -
AN 21.16±16.45 0.33±0.60 96.06±1.58 0.27±0.05 AN 31.92±35.99 0.68±1.77 91.35±6.00 0.38±0.07
DSR 17.33±14.65 0.29±0.62 97.11±1.10 0.28±0.04 DSR 23.53±24.66 0.41±0.80 94.93±3.59 0.43±0.09
CC 41.57±138.23 2.19±12.00 93.30±16.63 - CC 23.90±31.93 0.51±1.85 94.61±11.02 -
OUR 14.76±12.21 0.23±0.51 97.83±0.77 0.25±0.04 OUR 18.40±15.28 0.29±0.53 96.92±1.61 0.41±0.07

jiggle on toes

nrICP 128.60±194.22 7.46±16.20 59.47±25.80 -

punching

nrICP 117.92±175.81 8.29±18.23 65.40±19.74 -
AN 35.43±72.20 1.34±5.59 90.04±9.74 0.31±0.05 AN 43.01±64.98 1.70±6.07 87.19±9.49 0.36±0.06
DSR 29.01±47.00 0.95±3.74 92.70±7.63 0.38±0.05 DSR 204.86±141.43 13.04±15.68 15.99±4.52 39.66±12.26
CC 26.26±69.02 0.91±5.71 94.86±10.98 - CC 21.13±17.43 0.41±0.89 95.94±2.14 -
OUR 16.45±14.24 0.28±0.69 97.38±1.31 0.30±0.05 OUR 21.88±24.82 0.50±1.44 95.51±2.90 0.32±0.06

jumping jacks

nrICP 187.37±240.34 11.78±20.47 46.37±28.06 -

running on spot

nrICP 103.57±129.95 5.57±12.83 65.36±15.24 -
AN 51.76±60.73 1.95±4.67 81.68±10.34 0.52±0.08 AN 39.77±46.21 1.18±4.33 88.93±4.76 0.49±0.09
DSR 35.25±55.18 1.07±4.01 90.60±5.07 0.43±0.05 DSR 43.93±58.32 1.57±4.44 86.86±8.58 0.45±0.05
CC 32.74±31.65 0.70±1.68 91.47±6.25 - CC 26.64±20.92 0.52±1.25 94.38±3.04 -
OUR 27.98±38.15 0.67±2.55 93.65±3.15 0.41±0.08 OUR 21.28±18.99 0.39±1.39 96.07±1.64 0.32±0.05

knees

nrICP 116.26±157.30 5.22±10.39 61.25±20.85 -

shake arms

nrICP 88.38±158.81 5.40±14.90 75.74±18.18 -
AN 43.33±81.94 1.02±3.72 89.00±5.32 0.40±0.09 AN 28.13±31.89 0.81±2.35 92.92±4.44 0.34±0.06
DSR 24.76±22.94 0.43±0.79 94.25±2.69 0.47±0.11 DSR 25.99±27.03 0.77±1.85 93.67±3.30 0.50±0.12
CC 30.38±86.52 1.14±7.12 94.47±13.35 - CC 21.82±18.50 0.51±1.02 95.61±2.01 -
OUR 23.45±19.49 0.40±0.74 95.23±2.37 0.52±0.12 OUR 17.29±19.21 0.41±1.34 96.97±1.31 0.36±0.08

light hopping loose

nrICP 41.15±29.98 1.29±2.24 87.08±6.84 -

shake hips

nrICP 86.76±156.94 5.00±14.35 76.47±17.42 -
AN 21.46±21.06 0.39±1.14 95.83±2.04 0.28±0.05 AN 28.27±28.74 0.71±1.77 92.46±5.48 0.29±0.05
DSR 21.81±20.35 0.51±1.18 95.48±2.91 0.40±0.05 DSR 92.23±158.27 5.22±13.78 75.27±19.64 1.28±0.37
CC 25.61±53.71 0.82±4.13 94.66±12.36 - CC 49.93±160.68 3.21±15.05 91.60±19.67 -
OUR 16.12±12.56 0.27±0.54 97.56±0.96 0.32±0.06 OUR 17.60±16.05 0.29±0.89 96.90±1.73 0.28±0.05

light hopping stiff

nrICP 33.16±24.91 0.93±1.80 91.11±3.93 -

shake shoulders

nrICP 53.85±42.97 1.90±2.84 79.19±11.83 -
AN 17.30±15.16 0.25±0.62 97.05±1.25 0.28±0.05 AN 22.48±17.33 0.39±0.68 95.63±1.78 0.29±0.05
DSR 58.32±36.51 2.05±2.81 77.38±14.48 4.11±2.07 DSR 22.27±18.30 0.43±0.78 95.48±2.30 0.31±0.04
CC 25.50±79.93 1.14±7.54 95.63±13.47 - CC 19.67±14.47 0.31±0.51 96.63±1.08 -
OUR 12.21±9.95 0.16±0.30 98.40±0.39 0.27±0.05 OUR 18.08±14.37 0.32±0.58 96.97±1.19 0.30±0.05

MEAN

nrICP 79.78±118.46 4.09±10.17 74.79±15.90 -
AN 31.74±43.46 0.90±2.95 91.88±5.84 0.34±0.06
DSR 68.79±61.04 3.76±5.19 78.00±6.25 11.21±2.89
CC 29.57±65.26 1.12±5.26 94.35±9.82 -
OUR 19.81±22.19 0.38±1.17 96.17±2.31 0.34±0.06



Table 10. Comparison of OUR to SotA methods on correspon-
dence accuracy and reconstruction quality on a collapsing rub-
ber horse used to stress test our method and on an additional
similar sequence depicting a collapsing camel. Our method is
the most accurate and also yields the same reconstruction quality
as AN.

sequence model msL2 ↓ mr ↓ mAUC ↑ CD ↓

horse collapse

nrICP 54.32±46.49 3.88±5.47 78.36±13.66 -
AN 62.38±79.58 4.91±9.05 74.81±18.23 0.13±0.01
DSR 49.00±60.40 3.25±6.18 81.73±14.42 0.18±0.02
CC 56.51±78.80 3.89±7.49 77.97±19.67 -
OUR 23.82±39.39 1.11±3.48 93.32±6.48 0.13±0.01

camel collapse

nrICP 40.68±36.05 2.76±3.69 86.60±9.77 -
AN 43.78±61.53 3.05±6.11 85.05±12.47 0.16±0.01
DSR 67.16±96.21 5.12±8.99 75.66±19.57 0.25±0.02
CC 349.08±371.70 33.96±37.24 48.85±48.25 -
OUR 19.25±28.05 0.81±2.09 95.72±3.89 0.15±0.01

MEAN

nrICP 47.50±41.27 3.32±4.58 82.48±11.72 -
AN 53.08±70.56 3.98±7.58 79.93±15.35 0.14±0.01
DSR 58.08±78.31 4.19±7.59 78.70±17.00 0.21±0.02
CC 202.80±225.25 18.93±22.37 63.41±33.96 -
OUR 21.54±33.72 0.96±2.79 94.52±5.19 0.14±0.01


