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Introduction

Applications such as UV-mapping, shape analysis, and partial scan-completion all rely on the availability of a surface representation that is coherent across different in-stances. Namely, the different surfaces should be in correspondence, such that each point on one surface maps to a point with the same semantic meaning on another. In the literature, the most common way to achieve coherence consists of explicitly computing and establishing correspondences between non-coherent input representations, such as 3D meshes [START_REF] Varanasi | Temporally Coherent Segmentation of 3D Reconstructions[END_REF]3,[START_REF] Roufosse | Unsupervised deep learning for structured shape matching[END_REF]22,[START_REF] Donati | Deep geometric functional maps: Robust feature learning for shape correspondence[END_REF][START_REF] Rakotosaona | Intrinsic point cloud interpolation via dual latent space navigation[END_REF] or 3D point clouds [START_REF] Insafutdinov | Unsupervised learning of shape and pose with differentiable point clouds[END_REF][START_REF] Groueix | Unsupervised cycleconsistent deformation for shape matching[END_REF]. This, however, assumes that the input data contains points that can be matched in a semanticallymeaningful manner, and in fact only circumvents the true task of retrieving a coherent surface representation.

In this paper, we tackle this problem more directly by learning to reconstruct temporally-coherent surfaces from a sequence of 3D point clouds representing a shape deforming over time. To this end, we rely on the AtlasNet patchbased representation [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] to model the surface underlying the 3D points. However, whereas in the original AtlasNet, any patch can correspond to any part of the surface, we enforce consistency of the patch locations through the whole sequence effectively creating a time-consistent atlas.

To learn atlases that are semantically and temporally consistent, meaning that each 2D point on each 2D atlas patch models the same semantic surface point over time, we leverage differential geometry to require the correspon-dences model a close-to-isometric deformation, for which the metric tensor computed at any surface point remains constant as the shape changes. We translate this into a metric-consistency loss function, which, when minimized, implicitly establishes meaningful point correspondences.

Our approach does not require any ground-truth correspondences, which are usually difficult to obtain. Hence, it is unsupervised and can operate on any shape category without a known shape template. Yet, as shown in Fig. 1, it provides reliable correspondences even in cases in which the shapes are complex and the deformations are severe, unlike state-of-the-art methods which tend to break down.

Related Work

3D temporal coherence involves both surface reconstruction and correspondence estimation, which are in interplay with one another. Both of these are well-studied, essential tasks in geometry processing, which we review next.

Correspondence estimation commonly assumes that the objects are close to isometric and thus often optimizes for local distance preservation [START_REF] Bronstein | Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching[END_REF][START_REF] Mémoli | A theoretical and computational framework for isometry invariant recognition of point cloud data[END_REF][START_REF] Salzmann | Reconstructing Sharply Folding Surfaces: A Convex Formulation[END_REF]. This can be achieved via local shape descriptors [START_REF] Ovsjanikov | Functional maps: A flexible representation of maps between shapes[END_REF][START_REF] Aubry | The wave kernel signature: A quantum mechanical approach to shape analysis[END_REF][START_REF] Sun | A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion[END_REF][START_REF] Li | A multiresolution descriptor for deformable 3d shape retrieval[END_REF], which are in turn used to obtain surface correspondences. Alternatively, obtaining correspondences can be cast as a template fitting problem [31,[START_REF] Zuffi | The stitched puppet: A graphical model of 3d human shape and pose[END_REF]. This, however is reliant on knowing beforehand what is the class of the shape, and on having a template for this class. Simpler methods [3,[START_REF] Varanasi | Temporally Coherent Segmentation of 3D Reconstructions[END_REF] have been designed for temporal registration assuming piecewise-rigidity of the shapes. However, these methods generate only region-wise correspondences. In case meshes are given, they can be parameterized into the same 2D common base-domain where correspondences can be optimized [27,[START_REF] Aigerman | Lifted bijections for low distortion surface mappings[END_REF][START_REF] Weber | Locally injective parametrization with arbitrary fixed boundaries[END_REF]. This approach relies on 3D surface (triangulations) given as input, and hence cannot be applied to point-clouds and does not reconstruct surfaces. Taking a cue from this approach, we also use a 2D domain to define the correspondences, but keep the correspondence fixed in 2D, and instead optimize the 3D surface while performing surface reconstruction.

Recently, correspondence estimation has been addressed as a learning problem. Many works use representations such as [START_REF] Ovsjanikov | Functional maps: A flexible representation of maps between shapes[END_REF] to retrieve local descriptors and incorporate them in the learning process [22,[START_REF] Donati | Deep geometric functional maps: Robust feature learning for shape correspondence[END_REF][START_REF] Roufosse | Unsupervised deep learning for structured shape matching[END_REF]. Other supervised methods have been proposed, using ground-truth correspondences as training data [START_REF] Rodola | Dense non-rigid shape correspondence using random forests[END_REF][START_REF] Masci | Geodesic convolutional neural networks on riemannian manifolds[END_REF][START_REF] Boscaini | Learning shape correspondence with anisotropic convolutional neural networks[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF].

Motivated by the fact that obtaining correspondence supervision is expensive, [12,[START_REF] Baden | Möbius Registration[END_REF] introduced an unsupervised learning framework using triangulated meshes. To avoid meshing, [START_REF] Insafutdinov | Unsupervised learning of shape and pose with differentiable point clouds[END_REF][START_REF] Groueix | 3d-coded : 3d correspondences by deep deformation[END_REF] proposed unsupervised learning techniques to extract correspondences directly from point clouds. However, [START_REF] Insafutdinov | Unsupervised learning of shape and pose with differentiable point clouds[END_REF] only yields a set of semantically close points without a mechanism to find a unique correspondence, and [START_REF] Groueix | 3d-coded : 3d correspondences by deep deformation[END_REF] uses a 3D template.

In contrast to existing methods, our approach yields temporally-coherent surface reconstructions from point clouds and generates meaningful point-wise correspondences. To this end, it learns a unique atlas representation similar to [START_REF] Groueix | 3d-coded : 3d correspondences by deep deformation[END_REF] but enforces local metric consistency, which aims to preserve isometry at corresponding points on the output surfaces. Our method is unsupervised and does not require a shape template. Thus, the closest approach to our method is [START_REF] Groueix | Unsupervised cycleconsistent deformation for shape matching[END_REF], which learns correspondences by enforcing cyclic consistency across multiple shape-triplets. Our extensive comparisons with [START_REF] Groueix | Unsupervised cycleconsistent deformation for shape matching[END_REF][START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF][START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF] show that our method consistently outperforms these state-of-the-art techniques.

Surface reconstruction from point clouds has been thoroughly studied in geometry processing. Many non-learning techniques use mathematical tools to reconstruct the surface, e.g., solving the Poisson PDE [START_REF] Kazhdan | Screened poisson surface reconstruction[END_REF], or using Moving Least Squares [30] to fit points to the surface; see [START_REF] Berger | State of the art in surface reconstruction from point clouds[END_REF] for a survey. Deep learning techniques were first successfully applied to point-cloud reconstruction [39,[START_REF] Qi | Point-Net++: Deep hierarchical feature learning on point sets in a metric space[END_REF][START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF][START_REF] Insafutdinov | Unsupervised learning of shape and pose with differentiable point clouds[END_REF], and afterwards to surfaces, starting with the seminal At-lasNet [START_REF] Groueix | 3d-coded : 3d correspondences by deep deformation[END_REF], FoldingNet [START_REF] Yang | Foldingnet: Point cloud auto-encoder via deep grid deformation[END_REF] and their followups [14,[START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF]. Surfaces can also be reconstructed from learned elementary structures [START_REF] Deprelle | Learning Elementary Structures for 3D Shape Generation and Matching[END_REF]. In [52], an MLP was shown to be effective in reconstruction when optimized to fit a point cloud.

Other representations such as meshes [START_REF] Kanazawa | Learning category-specific mesh reconstruction from image collections[END_REF][START_REF] Pan | Deep mesh reconstruction from single rgb images via topology modification networks[END_REF] are simple to handle, however require a predesignated triangulation, which is not versatile enough to accommodate for arbitrary shapes with different articulations. Likewise, implicit fields such as SDF's [38,[START_REF] Mescheder | Occupancy networks: Learning 3d reconstruction in function space[END_REF] can represent a surface accurately, however the implicit definition does not lend itself to defining correspondences.

In any case, none of these methods target temporallycoherent surface reconstruction.

Metric preservation and shape interpolation are closely related to our approach. Metric preservation is widely used when a low-distortion map between shapes is required, especially in the context of shape interpolation that has long been studied in computer graphics [START_REF] Aaron | Multiresolution mesh morphing[END_REF]2,53]. In recent years several data-driven methods have been proposed for this task [START_REF] Gao | Datadriven shape interpolation and morphing editing[END_REF][START_REF] Cosmo | LIMP: Learning Latent Shape Representations with Metric Preservation Priors[END_REF], but they assume to be given point correspondences and do not infer them. Closer to our work, [START_REF] Rakotosaona | Intrinsic point cloud interpolation via dual latent space navigation[END_REF] discussed how to smoothly interpolate between two point clouds, without given correspondences. However, this work focuses solely on interpolating the point clouds without generating meaningful correspondences nor producing a continuous surface.

Methodology

Problem statement and overview

We assume to be given as input a temporal sequence of 3D point clouds P 1 , ..., P K . Our output is a corresponding sequence of reconstructed surfaces S 1 , ..., S K , one for each point cloud, along with a canonical bijective mapping Ψ i,j between the surfaces S i , S j , defining temporally-consistent point-to-point correspondences, for any point on one of the reconstructed surfaces.

We use an atlas-based representation with multiple patches similarly to [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF], with an atlas φ j representing each surface S j . This immediately defines a canonical bijective map Ψ i,j between any two surfaces S i , S j via the shared 2D domain (see Figure 2). We wish to optimize the atlases so that their surfaces satisfy two properties:

1. Fitting. Each surface S k should model the corresponding point cloud P k as closely as possible.

2. Temporal coherence. Each predefined canonical bijective map Ψ i,j maps semantic parts of the surface correctly between frames (nose is mapped to nose).

Our core observation is that we can achieve this goal in an unsupervised manner, by making the Ψ i,j as isometric as possible, thus encouraging the transition from one frame in the sequence to the next to preserve local shape features, and in turn making the reconstructions consistent. We elaborate on the above next.

Atlas-based surface representation

Atlases and canonical surface correspondences. In its most basic form, an atlas can be defined as a map φ, embedding a 2D domain Ω to a surface in 3D φ : Ω → R 3 , such that the image of φ is S (we use Ω = [0, 1] 2 in all experiments).

Using atlases enables us to define a canonical point correspondence between any two 3D surfaces, S 1 , S 2 , described by two atlases, φ 1 , φ 2 , see Figure 2. Specifically, we can trivially define a bijective (1-to-1 and onto) correspondence between the two 3D surfaces by defining the point φ 1 (p) ∈ S 1 to correspond to φ 2 (p) ∈ S 2 , and vice versa, for any point p ∈ Ω. This correspondence enables us to optimize the atlases to ensure that corresponding points are mapped to the same semantic 3D surface point on S 1 , S 2 .

Isometry through metric consistency. We enforce isometry between different atlases. To achieve that we use the Riemannian metric tensor. For any point p = (u, v) ∈ Ω, the metric tensor is expressed in terms of the Jacobian, the matrix J φ ∈ R 3×2 of partial derivatives of the map φ at p, J φ = ∂φ ∂u , ∂φ ∂v . Specifically, the metric tensor is defined as g (p) = J φ (p) J φ (p). Intuitively, g defines a local inner product between any two vectors q, r ∈ R 2 as q T • g (p)

p Ω φ n φ 1 φ 2 Ψ 1,2 … Ψ 2,n
• r, enabling one to measure local lengths and angles at any point φ (p) on the surface S.

The rest of the paper can be understood from the highlevel definition of the metric tensor as a descriptor of local geometric quantities.

Given two surfaces as above, using the canonical correspondence defined above, we can compare the metrics of the surfaces, g φ1 , g φ2 , at corresponding points φ 1 (p) , φ 2 (p), and measure the difference between the two, g φ1 (p) -g φ2 (p) F , where • F stands for the Frobenius norm. We can now define a metric-consistency energy between the two surfaces as

E cons (φ 1 , φ 2 ) = p∈Ω g φ1 (p) -g φ2 (p) 2 F , (1) 
which measures the deviation from isometry of the map (defined by the canonical correspondence) between the two surfaces the two atlases represent.

Temporally-coherent surface reconstruction

Atlases via a neural network. To define atlases in a deep learning setting, we follow the standard AtlasNet [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] formulation: The network receives a point p ∈ Ω, along with a latent code z ∈ R C (where C is the dimension of the latent space) and outputs a 3D point, essentially defining an atlas conditioned on z. Note that, most importantly, all differential quantities introduced in the previous section can be easily inferred for the network's atlases, since the network is a (piecewise) differentiable mapping. Lastly, we note that instead of relying on a single map φ, any number of charts φ 1 , φ 2 , ..., φ M can be chosen before optimization, enabling mapping several 2D domains into several 3D patches, whose union forms the complete shape. This poses no change to any of the notions discussed herein, and hence we simply consider the domain Ω and φ as aggregating all the patches, domains and maps, except when explicitly referring to these patches specifically. In all experiments, we used M = 10 patches.

Given a dataset with K point clouds P 1 , ..., P K , we encode each point cloud P k into a latent code z k through a PointNet [40] encoder as used by [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF]. We denote by φ k the resulting atlas defined via the code z k , representing the reconstructed surface.

Loss Functions. To enforce isometry across the sequence, we use a loss function measuring metric consistency between pairs of atlases,

L metric = α mc (i,j)∈I E cons (φ i , φ j ) , (2) 
where I holds chosen pairs of surfaces out of all possible pairs, and α mc ∈ R is a hyper-parameter of our approach. Next, to train the network to reconstruct the given dataset, we follow standard practice in shape reconstruction [START_REF] Groueix | 3d-coded : 3d correspondences by deep deformation[END_REF][START_REF] Deprelle | Learning Elementary Structures for 3D Shape Generation and Matching[END_REF][START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF]14] and use chamfer distance (CD) to define the reconstruction loss

L CD = 1 K K k=1   p∈Ω min q∈P k ||φ k (p) -q|| 2 + q∈P k min p∈Ω ||φ k (p) -q|| 2   . (3) 
We then take our final loss to be

L = L CD + L metric . (4) 
Sampling surface pairs. The metric consistency loss 2 operates on pairs of surfaces defined by I, (S i , S j ), (i, j) ∈ I. Our assumption is that the shape gradually deforms over time, and therefore surfaces in subsequent frames should change close-to-isometrically with respect to one another. Hence we define a "time window" δ, which is a hyperparameter of our method, and sample pairs of surfaces only if they fall within that window, (S i , S j ) : |i -j| ≤ δ.

Implementation details

Our method uses the AtlasNet [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] architecture with the same adjustments of [START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF] for computing the metric (ReLU replaced with Softplus in the decoder; batch normalization layers removed). We use P = 10 patches in all experiments.

We use the Adam optimizer with a learning rate l = 0.001 and a batch size of 4 for 200000 iterations. We employ a learning rate scheduler which divides the current l by a factor of 10 at 80% and 90% of the training iterations. Following [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF][START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF], 2500 points are sampled from the UV domain Ω. We set the weight of the loss term L metric of Eq. 2 to α mc = 0.1, and choose the value of δ using one sequence as a validation subset and then measuring the correspondence metrics m sL2 , m r and m AUC .

At evaluation time, we follow [START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF] and remove any patch with area smaller than 1/1000 of the average area of a patch. We sample a given number of available points in each patch as evenly as possible using a simulated annealing based algorithm. Please refer to the supplementary material for all other details.

Evaluation

We tested our method by reconstructing surfaces from various raw point-cloud sequences of human and animal motions, showing our method naturally adapts to different kinds of data, without any known correspondences between the frames or a reference template shape, and without requiring prior training on any specific category. Please refer to the supplementary material for a video showing the reconstructed sequences of all figures in the paper, as well as others, to get a full sense of the accuracy of our method.

Visualization of the correspondences between surfaces. Before continuing, let us explain the technique used to visualize the correspondences between the surfaces. In all figures, to illustrate the temporal consistency of our reconstructions, we use the same texture in the UV space in all frames of the sequence. Hence, corresponding regions are textured with the same checkerboard cells, revealing the accuracy of the correspondences.

Figure 3 shows our temporally-coherent reconstructions for six sequences. Note how our method manages to reconstruct high-curvature regions such as the elephant's tusks and the cat's tail and paws, yielding both accurate geometry and high correspondence accuracy, e.g., tracking the paws as they move. The human models exhibit much more articulated deformations, nonetheless our method tracks the limbs and maintains consistent, meaningful correspondences throughout the sequence. Please refer to the supplementary video to view the animations of the entire sequences.

Inferring point cloud correspondences

A direct application of our method is inferring point-topoint correspondences on the input point clouds. Namely, for two point clouds we map points from P i to P j via euclidean projections between the point clouds and the reconstructed surfaces, using the map

f i→j = π Pj •φ j •φ -1 i •π φi
, where π X projects a 3D point to its nearest neighbor on the surface X and φ -1 is the inverse mapping which is known implicitly. Specifically, we densely sample N points in the 2D domain Ω and get their 3D counterparts via the learned φ. Since φ is a bijection, we know φ -1 for these N points.

We also evaluate the accuracy of our method w.r.t the ground truth correspondences of the dataset's point clouds.

In Figure 4 we visualize the correspondences predicted on the input point clouds using an error colormap. We visualize of the error on the models (Note that the ground-truth triangulation of the point clouds is only used for visualization), with red indicating the magnitude of the error -most of the error is significantly below the maximal values chosen. Evidently, the correspondences we compute are highly accurate and exhibit small-to-no error. Some drifting can occur in relatively flat regions, such as the woman's thigh, and around very extruded regions like the elephant's feet which are harder to model exactly.

We report quantitative evaluation of the correspondence and reconstruction in Table 1. To evaluate the quality of correspondences, we randomly draw M = 500 shape pairs (P i , P j ) with known ground truth correspondences (p k , q k ) where p k ∈ P i and q k ∈ P j . Each shape has N = 3125 points. We report the average error over M pairs, with respect to the metrics described below.

Squared correspondence distance (m sL2 ). This metric evaluates the error in the predicted inter-surface map f i→j as

m sL2 = 1 N N k=1 f (p k ) -q k 2 .
Normalized correspondence rank (m r ). m r expresses the rank of a predicted point with respect to all the other points on the target object. Formally m r =

1 N 2 N k=1 N l=1 1 q l -q k 2 < f (p k )-q k 2 .
Area under the percentage of correct keypoints (PCK) curve (m AUC ). Following the literature on keypoint classification and correspondences [23,[START_REF] You | Keypointnet: A large-scale 3d keypoint dataset aggregated from numerous human annotations[END_REF], we compute a mean PCK curve in a given range [d min , d max ] and report the area under that curve (AUC). We set d min = 0, d max = 0.02 in all our experiments.

Chamfer Distance (CD). This metric is equal to the loss term L CD of Eq. 3. Note that this is the only metric that does not evaluate the quality of correspondences but rather of the reconstruction. 

Datasets

We evaluate our method on 3 datasets of point cloud sequences. Animals in motion [START_REF] Sumner | Deformation transfer for triangle meshes[END_REF][START_REF] Aujay | Harmonic Skeleton for Realistic Character Animation[END_REF] (ANIM) consists of 4 synthetic mesh sequences of 4-legged animals in stride. We uniformly scale each sequence s.t. the first point cloud fits in a unit cube. Dynamic FAUST [START_REF] Bogo | Dynamic FAUST: Registering human bodies in motion[END_REF] (DFAUST) is a real-world dataset which contains 14 sequences of 10 unclothed human subjects performing various actions. Articulated mesh animation [START_REF] Vlasic | Articulated mesh animation from multi-view silhouettes[END_REF] (AMA) is a real-world dataset containing 10 sequences depicting 3 different human subjects performing various actions, however in contrast to DFAUST, they are wearing loose-fitting clothes making the surface more intricate and time-varying, hence more challenging for correspondence methods. We pre-processed the sequences to align them, by choosing the rotation along the vertical axis which minimizes the chamfer distance w.r.t. the previous frame.

For each dataset, we use one sequence of the entire data set for validation (cat for ANIM, jumping jacks for DFAUST, crane for AMA). We use this validation sequence to choose the hyper-parameter δ by training our model using δ ∈ [START_REF] Aigerman | Lifted bijections for low distortion surface mappings[END_REF][START_REF] Baden | Möbius Registration[END_REF] and then choosing the optimal one w.r.t the metrics m sL2 , m r and m AUC . We report the metrics only on the rest of the sequences.

To generate point clouds from these meshes, we perform uniform random sampling to draw 2500 points. We train and evaluate all methods on every sequence (e.g., walking cat or jumping human) individually.For DFAUST, we simultaneously train on all subjects performing the sequence, but still draw pairs of the same subject.

Results and Comparisons

We compare our approach (OUR) to both traditional and deep learning based methods.

Non-rigid ICP is a popular classic technique for shape registration. We use the recent implementation of [23], which we denote as nrICP. We experimented with several ways to use it to match shape pairs and chose the optimal one. Please refer to the supplementary material for details.

Atlas-based methods. As OUR builds on an atlas-based representation, we compare it to the original AtlasNet [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] (AN). We also compare to a more recent method [START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF] (DSR), which aims to reduce patch distortion, but is unaware of the temporal distortion. As the base architecture of both methods is nearly identical to that of OUR, for fair comparison we train both methods in the same way as summarized in Section 3.4.

Cycle consistent point cloud deformation. The recent method of [START_REF] Groueix | Unsupervised cycleconsistent deformation for shape matching[END_REF] (CC) learns to align one point cloud to another in order to find correspondences. As the training of CC relies on sampling triplets, we experimented to find the optimal sampling technique for CC from the given sequence. Please refer to the supplementary for details.

All the deep learning based methods (AN, DSR, CC, OUR) are trained on the given sequence and then evaluated on it to retrieve the correspondences.

Figure 5 shows a qualitative comparison between OUR and other atlas-based methods on reconstructing surfaces from point clouds, AN and DSR. As expected, in both sequences our method is more temporally-coherent and the correspondences are more accurate. Note how in the leftmost frame of the human sequence, the bending at the knee causes AN to introduce a significant amount of unnecessary distortion, while DSR maps the left leg to the right leg and vice versa. The camel sequence reveals an even more interesting observation: the temporal coherence also acts as a regularizer and makes the reconstruction itself more tight and accurate to the point cloud's geometry, as our method's reconstruction is more true to the input than the competing methods. Please refer to the supplementary video to view the animations of the entire sequences.

In Figure 6, we show a representative qualitative comparison of the correspondences computed by OUR with ones inferred by the other techniques. We visualize the correspondences via matching colors, along with the measured correspondence error as a heat map. DSR and CC swap the legs of the camel and the human. AN achieves comparable results to OUR on the camel, but exhibits a non-smooth jump in correspondences across the human's torso.

We report quantitative comparisons w.r.t. all metrics in Table 1, which demonstrates that our method achieves the best correspondence; we also achieve the best reconstruction quality (in terms of CD) over all other methods except for AtlasNet on AMA. Since CC and nrICP do not reconstruct surfaces, we do not report CD for them. Stress test. In Figure 7, we test the limits of our method on an extreme deformation, of a rubber horse deflating.

Even under the many foldovers of the model, our method reconstructs the legs as a separate part of the surface, while the other baselines clamp different regions together, as can be seen from the bottom view. 2. We evaluated both strategies on the crane, with δ = 1. The results show that neighbors clearly yields higher correspondence accuracy. Interestingly, the deterioration in correspondence accuracy lets random produce slightly better reconstruction in terms of CD.

Effect of the Metric Consistency Term L metric . We evaluate the effect of the hyper-parameter α mc , which balances metric consistency and chamfer distance. Results in terms of the correspondence metric m sL2 are shown in Table 3, using the validation sequences of all three datasets. Setting α mc too low turns off L mc while setting it too high overpowers L CD , which imposes strict isometry and makes the position of the patches ambiguous. Hence, different values may be less or more optimal, depending on the severity of the underlying deformation. α mc ∈ [0.1, 1] yields the best results and the variations within that range are small. In all other experiments, we used α mc = 0.1, and we note that a better, automated method to choose α mc may improve our performance further. 

Conclusion

We have introduced an atlas-based method that yields temporally-coherent surface reconstructions in an unsupervised manner, by enforcing a point on the canonical shape representation to map to metrically-consistent 3D points on the reconstructed surfaces.

While our method yields better surface correspondences than state-of-the-art surface reconstruction techniques, it shares one shortcoming with these atlas-based methods. The reconstructed patches may overlap, causing imperfections in the reconstructions. Another limitation is that we use heuristics for the hyper-parameters balancing metricconsistency and reconstruction; employing an annealinglike technique which gradually permits more non-isometric deformations may be the next logical step.

We see many future applications to our approach. By replacing Chamfer distance with, e.g., some visual loss, we can apply our method to 2D sequences of images, which we believe could instigate progress in video-based 3D reconstruction. In the context of 3D geometry, our metric-consistency loss targets nearly-isometric deformations, however our framework could easily extend to other distortion measures, such as the conformal one. Studying this for non-isometric reconstruction and matching will be the focus of our future work.

Supplementary Material

Training and Evaluation Details

We provide details of the triplet sampling strategy used to train the cycle consistent point cloud deformation method [START_REF] Groueix | Unsupervised cycleconsistent deformation for shape matching[END_REF] (CC) in Section 6.1.1, an analysis of the strategy used to evaluate the non-rigid ICP method [23] (nrICP) in Section 6.1.2, more information on the points sampling strategy used to evaluate all the atlas-based methods, i.e. AtlasNet [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] (AN), Differential Surface Representation [START_REF] Bednarik | Shape reconstruction by learning differentiable surface representations[END_REF] (DSR) and our method (OUR), in Section 6.1.3 and a time complexity analysis in Section 6.1.4.

Details of Training CC

The training of CC relies on sampling triplets of shapes from the given dataset. The authors argue that the best results were achieved when sampling triplets of shapes that are close to each other in the Chamfer distance (CD) sense. Specifically, given a randomly sampled shape A, two other shapes B, C are randomly sampled from the 20 nearest neighbors of A to complete the triplet. Let us refer to this sampling strategy as knn.

OUR itself relies on sampling shape pairs, and as shown in Section 4.3 of the main paper, better results are achieved when sampling the shape pairs from a time window δ of a given sequence (neighbors) rather sampling pairs randomly within a sequence (random).

For fair comparison, we experimented with training CC using all three strategies, knn, neighbors and random. Table 4 reports the results on the DFAUST dataset using the validation sequence jumping jacks and one more randomly chosen sequence jiggle on toes. Since CC performs best by a large margin when trained using random, we use this strategy for all the experiments. The nrICP method deforms a point cloud to best match another point cloud and thus can be used to find point-wise correspondences in an unsupervised way. Formally, let ν Pj be the non-rigid ICP function which deforms an input point cloud P i to best match P j . Following the notation introduced in Section 4.1 of the main paper, let π X be a mapping that projects the points from an input point cloud to their respective nearest neighbors in the target point cloud X . The simplest way to use nrICP to find correspondences between a pair of point clouds (P i , P j ) randomly drawn from the given sequence is to compute π Pj • ν Pj (P i ). Let us call this strategy random.

Non-rigid ICP tends to break when the deformation between the two point clouds is severe. However, as we are dealing with sequences depicting a deforming shape, one can compute the correspondences between a pair of point clouds (P i , P j ) by first predicting the correspondences for consecutive pairs of point clouds where the deformation is minimal, i.e., (P i , P i+1 ), (P i+1 , P i+1 ), . . . , (P j-1 , P j ), and finally propagating the correspondences from P i to P j . Formally, we compute

π Pj •ν Pj •• • ••π Pi+2 •ν Pi+2 •π Pi+1 • ν Pi+1 (P i
) and refer to this strategy as propagate simple.

The drawback of propagate simple is that every mapping π P k is onto and thus throughout the propagation, progressively more source points get mapped to the same target point, which causes a loss of spatial information and ultimately yields less precise correspondences. To overcome this problem, one can replace π P k with ρ P k , which performs a Hungarian matching of the input point cloud and the target point cloud P k with the objective of minimizing the overall per-point-pair distance. Formally, we compute

ρ Pj • ν Pj • • • • • ρ Pi+2 • ν Pi+2 • ρ Pi+1 • ν Pi+1 (P i )
and call this strategy propagate bijective.

Finally, an alternative option is not to perform any projection π P k or ρ P k as we propagate the correspondences from P i to P j , but instead to gradually deform the input point cloud P i to best match each point cloud along the sequence between P i and P j . Formally, we compute ν Pj • . . . ν Pi+2 • ν Pi+1 (P i ) and refer to this strategy as propagate deform.

Table 5 reports the results of all four aforementioned correspondence estimation strategies on the crane validation sequence from the AMA dataset. We found that propagate simple suffers from the loss of spatial precision due to the onto mapping. While propagate bijective overcomes this problem, the Hungarian matching introduces a strong drift along the sequence yielding even worse overall correspondences. The strategy propagate deform performs the best out of all three propagation-based strategies, but is still outperformed by the simplest strategy random. Therefore, as random yields the highest correspondence accuracy, we use it to evaluate nrICP on all datasets.

Point Sampling in Atlas Based Methods

The original AtlasNet work [START_REF] Groueix | Atlasnet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] argues that better reconstruction accuracy is achieved if the 2D points sampled from the UV domain Ω are spaced on a regular grid. As explained in Section 4.1 of the main paper, at evaluation time each atlas based method, i.e., AN, DSR and OUR, predicts N = 3125 points. Due to the unknown number of collapsed patches, which are discarded at runtime, it might not be possible to evenly split N points into P non-collapsed patches so that the points would form a regular grid in the UV space Ω.

Therefore, instead of using a regular grid, we distribute the given available number of points as regularly as possible in the 2D domain using a simulated annealing based algorithm. The points are initially distributed uniformly at random, and then their position is iteratively adjusted so that every point maximizes its distance to the nearest points. This procedure is summarized in Algorithm 1. The difference between random and as regular as possible 2D points sampling is demonstrated in Fig. 8. Output: 

p i ∈ R 2 , ∀1 ≤ i ≤ M // 2D points. /* Initialization */ 1 step := 1 4 √ M 2 decay := 0.994 3 p i ∼ U(0, 1), ∀1 ≤ i ≤ M // Random 2D points.
d i := min j =i ||p i -p j || 8 α i ∼ U(0, 2π) 9 p new i := p i + step • R(α i ) 1 0 // R: rot. matrix

Time Complexity

The optimization of all the learning based methods was performed using an Nvidia Tesla V100 GPU, and processing a sequence of average length takes 16.1 hours for OUR, while AN, DSR and CC take 4.1, 16.4 and 9.7 hours, respectively. nrICP does not involve the optimization stage and can process ∼ 1 sample per second.

Complete Results

We provide details of the search for the best value of the hyper-parameter δ in Section 6.2.1 and we list the complete per-sequence results of all the evaluated methods on all the datasets in Section 6.2.3. Furthermore, we refer the reader to the supplementary video 1 which contains the comparison of all methods on multiple sequences from all the datasets.

Tuning the Time-Window δ

As described in Section 3.3 of the main paper, OUR relies on sampling pairs of shapes from a time window denoted as δ. We tuned this hyper-paramater individually for every dataset using a respective validation sequence, and set it to the values yielding the best correspondence accuracy as measured by the metrics m sL2 , m r and m AUC . Table 6 lists the results of training OUR for δ ∈ [START_REF] Aigerman | Lifted bijections for low distortion surface mappings[END_REF][START_REF] Baden | Möbius Registration[END_REF] and justifies the selection of δ = 1 for ANIM, δ = 1 for AMA and δ = 5 for DFAUST.

Note that, as the ANIM and AMA datasets appear to have lower frame-rates than the DFAUST dataset, i.e., the surface undergoes larger motion from frame to frame, the correspondence error clearly decreases with the decreasing size of the time window δ, indicating that our method benefits from observing pairs of shapes which are similar enough to each other. On the other hand, as the DFAUST dataset in general exhibits small frame to frame changes, the search reveals that our method can benefit from observing pairs from larger time windows, since in this case the consecutive frames are nearly identical and decreasing δ makes L mc less useful. Note, however, that using the value δ = 1 for all the sequences shown in this paper still consistently outperforms all the competing methods. As shown in Table 3 of the main paper, every dataset benefits from a different value of the hyper-parameter α mc which balances metric consistency and Chamfer distance, while α mc ∈ [0.1, 1.0] yields the best quantitative results. Here we show that this fact manifests in the qualitative results as well. The sequence crane from AMA is one case where setting α mc = 1 instead of 0.1 yields better quantitative results. However, both reconstructions are visually comparable, as shown in Fig. 9. 

Evaluation on all Datasets and Stress Test

For brevity, Section 4.3 of the main paper only reports the mean results computed over all the sequences contained in the individual datasets. Here we report detailed results for each sequence separately. The results of all methods evaluated on the ANIM, AMA and DFAUST datasets are summarized in Tables 7, 8 and9, respectively. Note that the average values reported in the last cell in each table are computed on all the test sequences, i.e., excluding the validation sequence cat in ANIM, crane in AMA and jumping jacks in DFAUST. Finally, Table 10 shows the results on the horse collapse sequence used for the stress test of our method, as reported in Section 4.3 of the main paper, and an additional similar sequence camel collapse. Both sequences come from the same work of [START_REF] Sumner | Deformation transfer for triangle meshes[END_REF] as the sequences horse, camel and elephant from the ANIM dataset, and thus we preprocess them in the same way, i.e., by scaling each sample so that the first frame of each sequence fits in a unit cube. 

Figure 2 .

 2 Figure 2. Correspondences defined between three surfaces by the mapping of one point p ∈ Ω through three different atlases.

Figure 3 .

 3 Figure 3. Our temporally-coherent surface reconstructions, for 6 sequences. (top to bottom) elephant and cat from ANIM, jumping and swing from AMA, running on spot and knees from DFAUST. Note how the reconstructed surfaces have consistent correspondences, as well as accurate geometry.

Figure 4 .Figure 5 .

 45 Figure 4. Our correspondences retrieved on elephant and cat from ANIM, jumping from AMA, running on spot from DFAUST. We visualize the correspondences via matching colors and show the error colorcoded as a heat map on the right.

Figure 6 .

 6 Figure 6. Comparison of inferred point-cloud correspondences within 2 sequences. The black arrows point to errors and artifacts in the correspondences, such as swapped legs of the camel as predicted by DSR and CC, and minor problems, such as small but severe local mismatches, such as the knee area of the camel as predicted by AN.

Figure 7 .

 7 Figure 7. Stress test on the sequence horse collapse from ANIM, of a horse deflating. Despite the many self-foldovers, our method still finds accurate correspondences. The other methods fail. For each method we show side and bottom views of 3 frames from the sequence, with correspondence visualized via matching colors, and a heatmap showing correspondence error.

Algorithm 1 :

 1 As regular as possible 2D points. Input: M ∈ N // Number of 2D points.

iter < 250 do 6 for i := 1 to M do 7

 67 

Figure 8 .

 8 Figure 8. Comparison of (a) uniform and (b) as regular as possible 2D points sampling.

Figure 9 .

 9 Figure 9. Comparison of the reconstruction and correspondence quality when using αmc = 0.1 and αmc = 1.0. The sample pair comes from the sequence crane of AMA. Note that these are two independent runs, therefore, the spatial distribution of the patches is arbitrary.

Table 1 .

 1 Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality. Our method is the most accurate and also yields reconstruction quality competitive with AN.

	dataset model	m sL2 ↓	m r ↓	m AUC ↑	CD ↓
		nrICP 70.32±84.86	5.46±9.52 74.23±13.68	-
		AN	18.40±24.82	0.78±2.85 96.28±1.56 0.09±0.00
	ANIM	DSR	46.43±67.42	3.44±6.71 83.96±9.58 0.19±0.01
		CC	33.84±54.13	2.21±4.75 87.96±7.76	-
		OUR	11.93±11.00	0.30±0.57 98.10±0.61 0.09±0.00
		nrICP 150.94±134.31 6.63±10.26 45.40±22.27	-
		AN	86.80±91.28	2.90±6.18 70.07±15.31 0.30±0.01
	AMA	DSR 123.56±109.92 5.00±7.39 59.69±15.94 62.08±52.50
		CC	74.58±97.98	2.47±6.37 77.07±15.00	-
		OUR	57.12±65.33	1.55±3.90 82.29±11.16 0.32±0.02
		nrICP 79.78±118.46 4.09±10.17 74.79±15.90	-
		AN	31.74±43.46	0.90±2.95 91.88±5.84 0.34±0.06
	DFAUST	DSR	68.79±61.04	3.76±5.19 78.00±6.25 11.21±2.89
		CC	29.57±65.26	1.12±5.26 94.35±9.82	-
		OUR	19.81±22.19	0.38±1.17 96.17±2.31 0.34±0.06

Table 2 .

 2 Comparison

	strategy	m sL2 ↓	m r ↓	m AUC ↑	CD ↓
	random	96.82±161.54	3.97±10.27 77.08±16.41	0.30±0.01
	neighbors	66.63±103.11	2.11±6.75	80.24±11.42	0.31±0.02

of different pair sampling strategies. Switching from our default (neighbours) to random leads to deterioration in correspondence accuracy and a slight improvement in CD. Effect of the Sampling Strategy for Training Pairs. Instead of using time-adjacent point-cloud pairs, we can use random pairs instead (random). The results of this change are shown in Table

Table 3 .

 3 The impact of the metric consistency term L metric on the resulting accuracy of correspondences.

	αmc	1e -4	1e -3	1e -2	0.1	1	1e 1	1e 2	1e 3
	ANIM cat	13.2	11.3	9.8	9.8 12.5 14.0	15.1	62.5
	AMA crane	127.2	232.5	111.8					

66.6 61.0 102.6 179.3 174.3 DFAUST jacks 35.6 28.0 23.1 28.0 30.7 88.9 106.4 194.2

Table 4 .

 4 Comparison of different triplet sampling strategies to train CC. The experiments were conducted using DFAUST.

	sequence	sampling	m sL2 ↓	m r ↓	m AUC ↑
		knn	105.57±217.32	6.43±18.26 77.06±20.18
	jumping jacks	neighbors	95.13±179.81	6.21±17.42 75.84±20.78
		random	32.74±31.65	0.70±1.68	91.47±6.25
		knn	71.73±203.46	4.36±16.88 87.77±20.92
	jiggle on toes	neighbors	47.69±99.55	2.15±8.48	88.31±12.20
		random	26.26±69.02	0.91±5.71	94.86±10.98
	6.1.2 Analysis of the nrICP [23] Strategy	

Table 5 .

 5 Comparison of strategies used to establish correspondences with nrICP. The experiments were conducted on the crane validation sequence from the AMA dataset.

	strategy	m sL2 ↓	m r ↓	m AUC ↑
	random	172.55±167.76	7.83±12.56 41.61±19.29
	propagate simple	211.11±147.43	9.38±10.32 23.01±18.31
	propagate bijective	213.87±169.00	10.55±13.99 25.31±17.80
	propagate deform	206.64±150.45	10.40±13.35 25.41±16.55

Table 6 .

 6 Search for the best value of the hyper-parameter δ used by OUR on each dataset.

	dataset	neigh.	m sL2 ↓	m r ↓	m AUC ↑	CD ↓
		1	9.80±14.36	0.24±0.60 98.27±0.82 0.39±0.00
		2	10.27±15.03	0.24±0.54 98.09±1.01 0.39±0.00
	ANIM	3	10.07±15.52	0.23±0.56 98.06±0.94 0.38±0.00
	(cat)	4	17.10±37.51	0.78±3.27 94.49±4.60 0.38±0.01
		5	44.58±88.60 3.45±10.04 85.76±11.61 0.41±0.00
		6	11.45±16.33	0.30±0.66 97.78±1.03 0.39±0.00
		1	66.63±103.11 2.11±6.75 80.24±11.42 0.31±0.02
		2	99.86±163.94 4.31±10.82 76.91±17.36 0.31±0.02
	AMA	3	91.09±138.11 3.68±9.22 74.42±16.49 0.32±0.01
	(crane)	4	81.15±130.99 3.02±8.67 77.58±13.50 0.33±0.01
		5	106.34±166.29 4.61±10.85 74.10±17.69 0.34±0.02
		6	113.02±162.47 5.16±11.91 68.48±20.39 0.35±0.09
		1	32.71±46.68	0.92±3.15 91.77±4.53 0.51±0.09
		2	32.01±51.48	0.89±3.50 92.60±3.87 0.48±0.11
	DFAUST	3	29.39±33.80	0.73±2.25 93.30±2.86 0.50±0.09
	(jumping jacks)	4	30.67±45.30	0.92±3.32 92.38±3.77 0.55±0.15
		5	27.98±38.15	0.67±2.55 93.65±3.15 0.41±0.08
		6	29.80±51.77	0.84±3.56 93.06±3.76 0.48±0.09
	6.2.2 Impact of α mc on the Visual Quality	

Table 7 .

 7 Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on the ANIM dataset. Our method is the most accurate and also yields the same reconstruction quality as AN.

	sequence model	m sL2 ↓	m r ↓	m AUC ↑	CD ↓
		nrICP 77.96±94.55	5.72±9.65 70.39±15.02	-
		AN	14.27±18.96	0.41±1.04 97.07±1.18 0.38±0.00
	cat	DSR	48.05±80.24	3.05±7.62 82.53±11.60 0.41±0.01
		CC	53.37±93.99	3.90±8.83 80.54±14.99	-
		OUR	9.80±14.36	0.24±0.60 98.27±0.82 0.39±0.00
		nrICP 69.94±76.34	4.91±7.11 72.62±13.23	-
		AN	17.52±27.33	0.66±3.01 96.60±1.24 0.09±0.00
	horse	DSR	40.21±59.73	2.20±4.74 84.31±11.61 0.22±0.01
		CC	30.24±57.97	1.60±4.30 88.39±7.95	-
		OUR	12.97±12.81	0.31±0.55 97.82±0.85 0.10±0.00
		nrICP 78.48±108.22 7.45±12.29 73.59±14.99	-
		AN	16.29±16.93	0.86±1.65 96.90±1.27 0.10±0.00
	camel	DSR	75.93±116.15 7.43±13.56 73.80±13.47 0.17±0.02
		CC	56.62±93.14	4.75±9.32 77.70±14.57	-
		OUR	11.08±10.72	0.42±0.83 98.19±0.53 0.09±0.00
		nrICP 62.54±70.03	4.01±9.17 76.47±12.82	-
		AN	21.39±30.20	0.82±3.88 95.35±2.17 0.09±0.01
	elephant	DSR	23.16±26.39	0.68±1.82 93.77±3.66 0.19±0.00
		CC	14.65±11.27	0.27±0.63 97.78±0.75	-
		OUR	11.73±9.47	0.16±0.33 98.30±0.45 0.08±0.00
		nrICP 70.32±84.86	5.46±9.52 74.23±13.68	-
		AN	18.40±24.82	0.78±2.85 96.28±1.56 0.09±0.00
	MEAN	DSR	46.43±67.42	3.44±6.71 83.96±9.58 0.19±0.01
		CC	33.84±54.13	2.21±4.75 87.96±7.76	-
		OUR	11.93±11.00	0.30±0.57 98.10±0.61 0.09±0.00

Table 8 .

 8 Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on the AMA dataset. Our method is the most accurate and also yields reconstruction quality competitive with AN.

	sequence	model	msL2 ↓	mr ↓	mAUC ↑	CD ↓	sequence	model	msL2 ↓	mr ↓	mAUC ↑	CD ↓
		nrICP 130.93±111.27 4.11±7.76 43.64±17.60	-		nrICP 187.52±182.98 9.33±14.65 39.92±23.08	-
		AN	59.86±50.14	0.92±3.19 77.84±7.56 0.37±0.02		AN	120.96±166.77 5.03±11.33 64.99±18.34 0.30±0.02
	bouncing	DSR	51.09±34.89	0.56±0.96 81.57±7.00	0.35±0.01	march 2	DSR 143.05±144.18 5.76±10.75 47.77±20.80 0.96±0.15
		CC	45.21±28.94	0.40±0.60 85.56±6.59	-		CC	118.02±160.88 5.23±11.34 65.18±20.49	-
		OUR	44.31±29.47	0.41±0.71 85.92±6.06 0.40±0.03		OUR 90.62±156.21 3.80±11.09 77.99±18.38 0.36±0.03
		nrICP 172.55±167.76 7.83±12.56 41.61±19.29	-		nrICP 100.50±91.01 3.58±6.17 58.47±23.58	-
		AN	77.64±99.96	2.13±6.27 74.08±12.38 0.30±0.01		AN	75.38±83.78	2.41±5.42 72.22±20.14 0.22±0.01
	crane	DSR 128.18±168.36 5.64±11.18 64.07±23.11 0.29±0.01	samba	DSR 114.61±124.73 5.06±9.48 57.38±26.40 0.25±0.01
		CC	76.80±96.52	2.17±5.85 73.49±18.45	-		CC	72.31±85.51	2.34±5.49 73.72±20.53	-
		OUR 66.63±103.11 2.11±6.75 80.24±11.42 0.31±0.02		OUR	62.84±80.00	1.93±4.64 77.44±21.38 0.27±0.02
		nrICP 256.22±194.98 14.16±17.45 21.87±24.70	-		nrICP 84.88±86.77	2.23±4.93 65.16±26.07	-
		AN	182.36±186.97 8.74±14.38 42.11±26.55 0.35±0.03		AN	46.91±41.54	0.71±1.59 82.91±12.40 0.28±0.01
	handstand	DSR 380.79±226.71 20.52±17.35 4.54±1.59 551.20±471.57	squat 1	DSR	46.91±41.82	0.65±1.52 82.67±13.36 0.28±0.01
		CC	89.79±142.39 3.11±10.10 71.53±16.92	-		CC	26.81±18.42	0.16±0.25 94.32±2.83	-
		OUR 126.52±167.36 5.69±13.80 58.47±23.49 0.38±0.03		OUR	27.81±27.48	0.25±0.78 92.60±4.73 0.27±0.00
		nrICP 206.43±172.56 10.38±14.50 29.02±18.96	-		nrICP 90.50±85.60	2.29±4.77 61.18±25.81	-
		AN	116.86±148.11 4.86±11.78 61.05±18.89 0.32±0.02		AN	47.93±42.15	0.66±1.63 82.61±10.97 0.29±0.01
	jumping	DSR 114.90±151.03 4.92±11.16 64.81±19.44 0.33±0.02	squat 2	DSR 121.50±119.10 3.75±6.51 51.09±27.88 4.77±0.71
		CC	77.53±111.13 2.29±6.71 75.31±17.45	-		CC	37.02±28.14	0.32±0.58 89.14±7.37	-
		OUR	45.10±31.25	0.50±1.01 85.31±6.01 0.37±0.03		OUR	33.72±31.41	0.32±0.81 89.85±7.06 0.28±0.01
		nrICP 174.05±171.86 8.59±14.23 42.75±22.83	-		nrICP 127.41±111.79 4.98±7.89 46.58±17.80	-
		AN	57.66±42.75	0.93±1.99 77.90±9.56 0.29±0.01		AN	73.26±59.32	1.86±4.30 69.01±13.40 0.24±0.02
	march 1	DSR	79.26±97.42	2.52±6.44 72.20±14.13 0.33±0.02	swing	DSR	59.92±49.39	1.25±2.38 75.19±12.90 0.24±0.01
		CC	124.76±157.34 5.26±10.01 64.16±23.63	-		CC	79.78±149.09 3.13±12.27 74.73±19.23	-
		OUR	34.85±24.72	0.29±0.56 90.66±4.66 0.31±0.01		OUR	48.28±40.07	0.80±1.67 82.39±8.68 0.26±0.01
								nrICP 150.94±134.31 6.63±10.26 45.40±22.27	-
								AN	86.80±91.28	2.90±6.18 70.07±15.31 0.30±0.01
							MEAN	DSR 123.56±109.92 5.00±7.39 59.69±15.94 62.08±52.50
								CC	74.58±97.98	2.47±6.37 77.07±15.00	-
								OUR	57.12±65.33	1.55±3.90 82.29±11.16 0.32±0.02

Table 9 .

 9 Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on the DFAUST dataset. Our method is the most accurate and also yields reconstruction quality on par with AN.

	sequence	model	m sL2 ↓	m r ↓	m AUC ↑	CD ↓	sequence	model	m sL2 ↓	m r ↓	m AUC ↑	CD ↓
		nrICP 72.20±135.09 5.15±15.70 80.89±13.79	-		nrICP 81.13±98.03	2.86±5.19 71.68±14.61	-
		AN	49.75±92.05	2.31±6.96 85.57±16.07 0.37±0.08		AN	30.65±23.71	0.58±0.98 92.47±3.48 0.43±0.08
	chicken wings	DSR 282.61±130.70 21.85±17.43 6.40±2.66 97.10±25.04	one leg jump	DSR	47.59±99.20	1.30±4.72 88.44±8.96 0.36±0.07
		CC	35.57±113.74 2.12±11.40 93.59±16.90	-		CC	36.40±76.87	0.79±3.47 91.23±8.64	-
		OUR	18.51±20.37	0.38±1.34 96.53±1.98 0.43±0.09		OUR	41.44±74.93	1.03±3.56 87.92±11.02 0.36±0.07
		nrICP 59.22±49.65	2.39±3.91 76.95±14.85	-		nrICP 54.98±64.48	1.74±3.31 81.73±11.45	-
		AN	21.16±16.45	0.33±0.60 96.06±1.58 0.27±0.05		AN	31.92±35.99	0.68±1.77 91.35±6.00 0.38±0.07
	hips	DSR	17.33±14.65	0.29±0.62 97.11±1.10 0.28±0.04	one leg loose	DSR	23.53±24.66	0.41±0.80 94.93±3.59 0.43±0.09
		CC	41.57±138.23 2.19±12.00 93.30±16.63	-		CC	23.90±31.93	0.51±1.85 94.61±11.02	-
		OUR	14.76±12.21	0.23±0.51 97.83±0.77 0.25±0.04		OUR	18.40±15.28	0.29±0.53 96.92±1.61 0.41±0.07
		nrICP 128.60±194.22 7.46±16.20 59.47±25.80	-		nrICP 117.92±175.81 8.29±18.23 65.40±19.74	-
		AN	35.43±72.20	1.34±5.59 90.04±9.74 0.31±0.05		AN	43.01±64.98	1.70±6.07 87.19±9.49 0.36±0.06
	jiggle on toes	DSR	29.01±47.00	0.95±3.74 92.70±7.63 0.38±0.05	punching	DSR 204.86±141.43 13.04±15.68 15.99±4.52 39.66±12.26
		CC	26.26±69.02	0.91±5.71 94.86±10.98	-		CC	21.13±17.43	0.41±0.89 95.94±2.14	-
		OUR	16.45±14.24	0.28±0.69 97.38±1.31 0.30±0.05		OUR	21.88±24.82	0.50±1.44 95.51±2.90 0.32±0.06
		nrICP 187.37±240.34 11.78±20.47 46.37±28.06	-		nrICP 103.57±129.95 5.57±12.83 65.36±15.24	-
		AN	51.76±60.73	1.95±4.67 81.68±10.34 0.52±0.08		AN	39.77±46.21	1.18±4.33 88.93±4.76 0.49±0.09
	jumping jacks	DSR	35.25±55.18	1.07±4.01 90.60±5.07 0.43±0.05	running on spot	DSR	43.93±58.32	1.57±4.44 86.86±8.58 0.45±0.05
		CC	32.74±31.65	0.70±1.68 91.47±6.25	-		CC	26.64±20.92	0.52±1.25 94.38±3.04	-
		OUR	27.98±38.15	0.67±2.55 93.65±3.15 0.41±0.08		OUR	21.28±18.99	0.39±1.39 96.07±1.64 0.32±0.05
		nrICP 116.26±157.30 5.22±10.39 61.25±20.85	-		nrICP 88.38±158.81 5.40±14.90 75.74±18.18	-
		AN	43.33±81.94	1.02±3.72 89.00±5.32 0.40±0.09		AN	28.13±31.89	0.81±2.35 92.92±4.44 0.34±0.06
	knees	DSR	24.76±22.94	0.43±0.79 94.25±2.69 0.47±0.11	shake arms	DSR	25.99±27.03	0.77±1.85 93.67±3.30 0.50±0.12
		CC	30.38±86.52	1.14±7.12 94.47±13.35	-		CC	21.82±18.50	0.51±1.02 95.61±2.01	-
		OUR	23.45±19.49	0.40±0.74 95.23±2.37 0.52±0.12		OUR	17.29±19.21	0.41±1.34 96.97±1.31 0.36±0.08
		nrICP 41.15±29.98	1.29±2.24 87.08±6.84	-		nrICP 86.76±156.94 5.00±14.35 76.47±17.42	-
		AN	21.46±21.06	0.39±1.14 95.83±2.04 0.28±0.05		AN	28.27±28.74	0.71±1.77 92.46±5.48 0.29±0.05
	light hopping loose	DSR	21.81±20.35	0.51±1.18 95.48±2.91 0.40±0.05	shake hips	DSR	92.23±158.27 5.22±13.78 75.27±19.64 1.28±0.37
		CC	25.61±53.71	0.82±4.13 94.66±12.36	-		CC	49.93±160.68 3.21±15.05 91.60±19.67	-
		OUR	16.12±12.56	0.27±0.54 97.56±0.96 0.32±0.06		OUR	17.60±16.05	0.29±0.89 96.90±1.73 0.28±0.05
		nrICP 33.16±24.91	0.93±1.80 91.11±3.93	-		nrICP 53.85±42.97	1.90±2.84 79.19±11.83	-
		AN	17.30±15.16	0.25±0.62 97.05±1.25 0.28±0.05		AN	22.48±17.33	0.39±0.68 95.63±1.78 0.29±0.05
	light hopping stiff	DSR	58.32±36.51	2.05±2.81 77.38±14.48 4.11±2.07	shake shoulders	DSR	22.27±18.30	0.43±0.78 95.48±2.30 0.31±0.04
		CC	25.50±79.93	1.14±7.54 95.63±13.47	-		CC	19.67±14.47	0.31±0.51 96.63±1.08	-
		OUR	12.21±9.95	0.16±0.30 98.40±0.39 0.27±0.05		OUR	18.08±14.37	0.32±0.58 96.97±1.19 0.30±0.05
								nrICP 79.78±118.46 4.09±10.17 74.79±15.90	-
								AN	31.74±43.46	0.90±2.95 91.88±5.84 0.34±0.06
							MEAN	DSR	68.79±61.04	3.76±5.19 78.00±6.25 11.21±2.89
								CC	29.57±65.26	1.12±5.26 94.35±9.82	-
								OUR	19.81±22.19	0.38±1.17 96.17±2.31 0.34±0.06

Table 10 .

 10 Comparison of OUR to SotA methods on correspondence accuracy and reconstruction quality on a collapsing rubber horse used to stress test our method and on an additional similar sequence depicting a collapsing camel. Our method is the most accurate and also yields the same reconstruction quality as AN.

	sequence model	m sL2 ↓	m r ↓	m AUC ↑	CD ↓
		nrICP 54.32±46.49	3.88±5.47 78.36±13.66	-
		AN	62.38±79.58	4.91±9.05 74.81±18.23 0.13±0.01
	horse collapse	DSR	49.00±60.40	3.25±6.18 81.73±14.42 0.18±0.02
		CC	56.51±78.80	3.89±7.49 77.97±19.67	-
		OUR	23.82±39.39	1.11±3.48 93.32±6.48 0.13±0.01
		nrICP 40.68±36.05	2.76±3.69 86.60±9.77	-
		AN	43.78±61.53	3.05±6.11 85.05±12.47 0.16±0.01
	camel collapse	DSR	67.16±96.21	5.12±8.99 75.66±19.57 0.25±0.02
		CC	349.08±371.70 33.96±37.24 48.85±48.25	-
		OUR	19.25±28.05	0.81±2.09 95.72±3.89 0.15±0.01
		nrICP 47.50±41.27	3.32±4.58 82.48±11.72	-
		AN	53.08±70.56	3.98±7.58 79.93±15.35 0.14±0.01
	MEAN	DSR	58.08±78.31	4.19±7.59 78.70±17.00 0.21±0.02
		CC	202.80±225.25 18.93±22.37 63.41±33.96	-
		OUR	21.54±33.72	0.96±2.79 94.52±5.19 0.14±0.01
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