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Online estimation of the inverse of the Hessian for stochastic optimization

with application to universal stochastic Newton algorithms

Antoine Godichon-Baggioni ∗, Wei Lu†and Bruno Portier†

January 12, 2024

Abstract

This paper addresses second-order stochastic optimization for estimating the minimizer of a convex
function written as an expectation. A direct recursive estimation technique for the inverse Hessian matrix
using a Robbins-Monro procedure is introduced. This approach enables to drastically reduces computa-
tional complexity. Above all, it allows to develop universal stochastic Newton methods and investigate the
asymptotic efficiency of the proposed approach. This work so expands the application scope of second-
order algorithms in stochastic optimization.

Keywords: Stochastic Newton algorithm; Stochastic Optimization; Robbins-Monro algorithm; online
estimation

1 Introduction

In this paper, we consider the usual stochastic optimization problem, which consists of estimating the
parameter θ ∈ Rd defined by

θ = arg min
h∈Rd

G(h)

where the function G is defined for all h ∈ Rd by : G(h) = E [g(X,h)] and X is a random vector of Rp.
The function g : Rp × Rd −→ R is assumed to be twice continuously differentiable. This problem arises in
various contexts such as estimating the parameters of logistic regressions (Bach, 2014; Cohen et al., 2017),
geometric median and quantiles (Cardot et al., 2013, 2017), or superquantiles (Bercu et al., 2020a; Costa
and Gadat, 2020). We denote ∇hg and ∇2

hg as the gradient and Hessian matrix of g with respect to the
second variable h, and ∇G and ∇2G as the gradient and Hessian matrix of G. It is assumed that the matrix
∇2G(θ) is positive definite.

Starting from a sequence of independent random vectors (Xn)n≥1 with the same distribution as X, we
aim to online estimate the parameter θ. One of the most well-known methods in this context is certainly
the stochastic gradient algorithm, recursively defined for all n ≥ 1 by:

θSGn = θSGn−1 − νn∇hg
(
Xn, θ

SG
n−1

)
where θSG0 is an arbitrarily chosen initial value and (νn)n≥1 is a sequence of positive real numbers decreasing
towards 0. These algorithms have been extensively studied, with asymptotic results found by Pelletier
(1998, 2000) and non-asymptotic results, such as uniform bounds of the quadratic mean error, presented
by Moulines and Bach (2011); Gadat and Panloup (2017); Godichon-Baggioni (2021) to name a few. To
ensure asymptotic efficiency, an additional step consists of considering an averaged version of the estimates
(Polyak and Juditsky, 1992).
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Despite their known efficiency, these methods can be very sensitive to ill-conditioned problems, where
the Hessian has eigenvalues at different scales (Leluc and Portier, 2020; Bercu et al., 2020b). To overcome
this problem, second-order stochastic algorithms of the form

θn = θn−1 − νnAn∇hg(Xn, θn−1)

have been proposed and recently studied. Here, (νn)n≥1 is a sequence of positive real numbers decreasing
towards 0 and the matrix An is a recursive estimate of the inverse of the Hessian matrix of G at θ, i.e a
recursive estimate of H−1 with H = ∇2G(θ). The challenge lies in constructing the recursive estimate An.

Several recursive second-order algorithms have been proposed and studied. For example, Bercu et al.
(2020b) propose an efficient stochastic Newton algorithm for estimating the parameters of a logistic regres-
sion model. In a recent work, Bercu et al. (2023) propose a stochastic Gauss-Newton algorithm to estimate
the entropically regularized Optimal Transport cost between two discrete probability measures. Cénac et al.
(2020) study the asymptotic properties of a stochastic Gauss-Newton algorithm for estimating the param-
eters of a non-linear regression model. Godichon-Baggioni et al. (2022) propose second-order algorithms
to solve the Ridge regression problem in the linear and logistic framework, while the case of the geometric
median is introduced and studied by Godichon-Baggioni and Lu (2023). In all these algorithms, the estimate
of the inverse of the Hessian matrix is recursively computed using the Riccati inversion formula (also called
Sherman-Morrison formula, see e.g. Duflo (1990) p. 96). This calculation is made possible thanks to the
particular form of the estimate of the Hessian matrix H, presented as (1/n)

∑n
k=1 akϕkϕ

T
k , where (an)n≥1 is

a sequence of positive real random variables and (ϕn)n≥1 is a sequence of random vectors in Rd.
However, it is not always possible to obtain such an estimate of the Hessian matrix. In this work, we

propose to construct a direct recursive estimate of H−1 without first attempting to construct an estimate of
H. This approach is based on the fact that we have HH−1 = H−1H = Id and, consequently, the following
relation:

E
[
H−1∇2

hg(X, θ) +∇2
hg(X, θ)H−1 − 2Id

]
= 0 (1)

where Id denotes the identity matrix of order d. Using a Robbins-Monro type algorithm, we propose a
recursive estimate of the matrix H−1 defined for all n ≥ 1 by:

An = An−1 − γn
(
An−1∇2

hg(Xn, θn−1) +∇2
hg(Xn, θn−1)An−1 − 2 Id

)
where (γn)n≥1 is a sequence of positive real numbers, decreasing towards 0 and θn−1 is an estimate of θ.

However, the complexity of computing this estimate is of order O(d3), which is the same as directly
calculating the inverse of an estimate of matrix H. Nevertheless, we can introduce an algorithm with
complexity of order O(d2) based on the following observation: let Z be a centered random vector in Rd with
variance-covariance matrix Id, independent of the vector X. Then,

E
[
H−1 Z ZT∇2

hg(X, θ) +∇2
hg(X, θ)Z ZTH−1 − 2Id

]
= 0. (2)

Therefore, considering a sequence (Zn)n≥1 of random vectors in Rd independent of the sequence (Xn)n≥1

leads to an estimate of the form:

An = An−1 − γn
(
An−1ZnZ

T
n∇2

hg(Xn, θn−1) +∇2
hg(Xn, θn−1)ZnZ

T
nAn−1 − 2 Id

)
.

We thus obtain a universal estimate of the inverse of the Hessian, and thus with reduced calculus
time. To further enhance convergence rate, we also consider its weighted averaged version, as discussed by
Mokkadem and Pelletier (2011); Boyer and Godichon-Baggioni (2022). We establish the almost sure rates
of convergence for the proposed estimates, after making slight modifications. These results remain true for
any consistent estimates θn. Based on this concept, we introduce a universal recursive Newton algorithm
and its weighted averaged version. Additionally, we provide their convergence rates and demonstrate the
asymptotic efficiency of the weighted averaged estimates.

This paper is organized as follows: Section 2 concerns the framework and the main assumptions. Section
3 deals with the estimation of H−1 and the main convergence results while Section 4 concerns the Universal
Weighted Averaged Stochastic Newton algorithm. A simulation study highlights the performance of the
proposed methods in Section 5. The proofs of the different results are postponed in Section 6.
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2 Framework

We consider the problem of minimizing the convex function G : Rd −→ R defined for all h ∈ Rd by:

G(h) := E [g(X,h)] ,

where the loss g(X, ·) is a convex, twice-differentiable function and X is a random vector of Rp. We assume
that there exists a unique value θ ∈ Rd such that

∇G(θ) = 0.

This assumption, couple with strict convexity, ensures the existence of a minimizer for G and provides a well-
defined optimization problem. Now, let’s introduce the assumptions that underlie the parameter estimation
framework for θ:

(A1) There exists C > 0 such that for all h ∈ Rd,

E
[
∥∇hg(X,h)∥2

]
≤ C (1 +G(h)−G(θ)) .

(A2) The functional G is twice continuously differentiable and ∇2G(θ) is positive. In addition, the Hessian
is uniformly bounded, i.e there exists a positive constant L∇G such that for all h ∈ Rd,∥∥∇2G(h)

∥∥
op

≤ L∇G.

(A3) The function ∇2G is Lipschitz on a neighborhood of θ, i.e. there exist positive constants r > 0 and
Lr such that for all h ∈ B(θ, r) ∥∥∇2G(h)−∇2G(θ)

∥∥
op

≤ Lr ∥θ − h∥ ,

where B(θ, r) denotes a ball of radius r centered at θ.
(A4) There exists q > 2 and Cq such that for all h ∈ Rd,

E
[∥∥∇2

hg(X,h)
∥∥q
F

]
≤ Cq.

These assumptions are very close to those presented in the literature (Pelletier, 2000; Gadat and Panloup,
2017; Godichon-Baggioni, 2019). Assumption (A1) controls the growth of the gradient and guarantees the
stability of the estimation process. It ensures that the gradient remains bounded as the estimation progresses.
Assumption (A2) ensures that the curvature of G at θ is well-behaved, allowing the estimation algorithm to
reliably exploit the local structure of G. This assumption also guarantees that the gradient of G is Lipschitz
continuous with a constant L∇G. This Lipschitz continuity is crucial as convergence results are obtained
using a Taylor’s expansion of G up to the second order. Assumption (A3) indicates that the Hessian matrix
does not exhibit abrupt changes within a neighborhood around θ. This assumption ensures the stability of
the Hessian estimates during the estimation process. Assumption (A4) guarantees that the second-order
derivative of G does not exhibit excessive fluctuations. It imposes a bound on the variation of the Hessian
matrix, providing further stability to the estimation algorithm. It’s worth noting that Hölder’s inequality
leads to ∥∥∇2G(h)

∥∥
F
≤ E

[∥∥∇2
hg(X,h)

∥∥q
F

]1/q ≤ C1/q
q .

Of course, this inequality intertwines with the bound in Assumption (A2), but we keep the notation L∇G

for the sake of clarity.
These assumptions, along with the differentiability properties of g and G, provide a solid foundation for

developing efficient second order methods to solve the minimization problem and obtain reliable estimates
of θ.
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3 Estimation of the Hessian inverse

In this section, our focus is solely on estimating the inverse Hessian of function G in θ, denoted as H−1

with H = ∇2G(θ). Even if our motivation is to estimate H−1 for proposing a second-order algorithm, the
estimation of H−1 can also be valuable for recursively constructing confidence intervals or significance statis-
tical tests for a component of parameter θ when the parameter θ is estimated using another asymptotically
efficient algorithm like the averaged stochastic gradient algorithm. Indeed, in most cases, the asymptotic
variance involving in the central limit theorem, generally depends on matrix H−1 and its estimation is then
required.

Let (Xn)n≥1 be a sequence of independent random vectors in Rp with the same distribution asX. Assume
first that θ is known. From equality (1), the matrix H−1 satisfies an equation of the form Φ(H−1) = 0.
We can then employ the Robbins-Monro procedure (Robbins and Monro, 1951) to recursively estimate the
parameter H−1. Denoting this estimator as Ân, for any n ≥ 1, we have:

Ân = Ân−1 − γn

(
Ân−1∇2

hg(Xn, θ) +∇2
hg(Xn, θ)Ân−1 − 2 Id

)
,

where Â0 is an arbitrary symmetric positive definite matrix, and γn = cγn
−γ with 1

2 < γ < 1 and cγ > 0.

It is important to note that Ân is symmetric for any n ≥ 1 due to its construction. However, since θ is
unknown, we need to estimate it. Assuming we have an efficient recursive estimator of θ (e.g., a stochastic
gradient estimator), we can easily derive an estimator of H−1 using a plug-in procedure:

Ân = Ân−1 − γn

(
Ân−1∇2

hg(Xn, θ̂n−1) +∇2
hg(Xn, θ̂n−1)Ân−1 − 2 Id

)
.

This estimator is always symmetric but not necessarily positive definite. To ensure positive definiteness, we
introduce a truncation based on the norm of ∇2

hg(Xn, θ̂n−1), leading to the following estimator of H−1:

Ân = Ân−1 − γn

(
Ân−1∇2

hg(Xn, θ̂n−1) +∇2
hg(Xn, θ̂n−1)Ân−1 − 2Id

)
1{∥∇2

hg(Xn,θ̂n−1)∥op
≤βn

}, (3)

where βn = cβn
β with 1−γ

q−1 < β < γ − 1
2 and 0 < cγcβ < 1

2 . Additionally, this truncation enables control

over the smallest eigenvalue of Ân, which is useful for studying an estimator of the parameter θ involving
the matrix Ân. This is particularly important in establishing the consistency of the Stochastic Newton
algorithm presented in Section 4.

However, although this estimator is efficient, each update requires matrix multiplications, resulting in a
computational complexity of order O(d3), which is the same as matrix inversion. Hence, it is necessary to
improve the complexity of each update of Ân.

Building on equality (2), considering a sequence (Zn)n≥1 of independent and identically distributed
bounded random vectors of Rd such that E [Zn] = 0 and E

[
ZnZ

T
n

]
= Id, and independent of (Xn)n≥1, we

can propose another estimate of H−1 defined for any n ≥ 1 as follows:

Pn = An−1Zn

Qn = ∇2
hg(Xn, θ̂n−1)Zn

An = An−1 − γn
(
PnQ

T
n +QnP

T
n − 2 Id

)
1{∥Qn∥∥Zn∥≤βn} (4)

where A0 is an arbitrary symmetric and positive definite matrix.
We can observe that in this algorithm the truncation is only based on ∥Qn∥ ∥Zn∥, and not on

∥∥QnZ
T
n

∥∥
op

as expected, because we have
∥∥QnZ

T
n

∥∥
op

≤ ∥Qn∥ ∥Zn∥. Notably, the computational complexity of each

update of An is now reduced to O(d2). Moreover, following Mokkadem and Pelletier (2011); Boyer and
Godichon-Baggioni (2022), we can propose a weighted averaged estimate An,τ , which performs better in
practice when the initialization is poor. It is given by

An,τ =

(
1− ln(n+ 1)τ∑n

k=0 ln(k + 1)τ

)
An−1,τ +

ln(n+ 1)τ∑n
k=0 ln(k + 1)τ

An. (5)
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This estimator can be recursively computed since for any n ≥ 1,
∑n

k=0 ln(k+1)τ = ln(n+1)τ +
∑n−1

k=0 ln(k+
1)τ . The following theorem establishes the consistency of the estimators An and An,τ for the parameter
H−1 in the context of estimating the inverse of the Hessian matrix. It states that the convergence rate
depends on multiple factors, including the step sequence γn, the truncation parameter βn, the regularization
parameter τ , and the convergence rate of the estimate θ̂n.

Theorem 3.1. Assume that Assumptions (A2) to (A4) hold, and that there is an estimate θ̂n satisfying
for all δ > 0 ∥∥∥θ̂n − θ

∥∥∥2 = o

(
lnn1+δ

na

)
a.s.,

with a > 0. Then An and An,τ defined by (4) and (5) satisfy

∥∥An −H−1
∥∥2 = o

(
lnn1+δ

nmin{γ,a,2β(q−1)}

)
a.s. and

∥∥An,τ −H−1
∥∥2 = o

(
lnn1+δ

nmin{1,a,2β(q−1)}

)
a.s.

The proof is given in Section 6. Observe that if a = 1, one can achieve the usual rate of convergence
taking β > 1

2(q−1) , which is only possible if q > 1 + 1
2γ−1 . For instance, taking the usual parametrization

γ = 3/4 or 2/3, q must satisfy q > 3 or q > 4.

4 Universal Weighted Averaged Stochastic Newton Algorithm

In this section, we introduce the Universal Weighted Averaged Stochastic Newton algorithm and discuss
its main properties. As mentioned in Theorem 3.1, using a Weighted Averaged version of the inverse
Hessian estimate can yield improved theoretical results. Therefore, we incorporate this choice into the
Stochastic Newton algorithm. Furthermore, we have observed that the convergence rate of the estimate for
θ significantly influences the theoretical behavior of the estimates of H−1. Consequently, we incorporate the
best possible estimate for parameter θ, namely the Weighted Averaged Stochastic Newton estimates, into
the latter. This reasoning leads to the following Weighted Averaged Stochastic Newton algorithm defined
for all n ≥ 1 by

Pn = An−1Zn

Qn = ∇2
hg(Xn, θn−1,τ ′)Zn

θn = θn−1 − νnAn−1,τ∇hg(Xn, θn−1) (6)

θn,τ ′ =

(
1− ln(n+ 1)τ

′∑n
k=0 ln(k + 1)τ ′

)
θn−1,τ ′ +

ln(n+ 1)τ
′∑n

k=0 ln(k + 1)τ ′
θn (7)

An = An−1 − γn
(
PnQ

T
n +QnP

T
n − 2 Id

)
1{∥Qn∥∥Zn∥≤βn} (8)

An,τ = (1− ln(n+ 1)τ∑n
k=0 ln(k + 1)τ

)An−1,τ +
ln(n+ 1)τ∑n
k=0 ln(k + 1)τ

An (9)

where (νn)n≥1 is a sequence of positive real numbers defined for any n ≥ 1 by νn = cνn
ν with cν > 0 and

ν ∈ (1/2, 1− β) satisfying γ + ν > 3/2. In addition, τ, τ ′ ≥ 0. The following theorem gives the consistency
of the estimates defined by (6) and (7).

Theorem 4.1. Assume that Assumptions (A1) to (A4) hold. Let θn and θn,τ ′ be defined as in (6) and
(7). Then,

θn
a.s.−−−→

n→∞
θ and θn,τ ′

a.s.−−−→
n→∞

θ.

The proof is given in Section 6. Note that the constraint γ+ ν > 3/2 is of a purely technical nature and
is crucial for the application of the Robbins-Siegmund Theorem and so that to get the consistency of the
estimates. However, we believe this condition might not be necessary in practical applications. We can now
give the almost sure rate of convergence of the estimates.
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Theorem 4.2. Assume that Assumptions (A1) to (A4) hold. Then θn and θn,τ ′ defined by (6) and (7)
satisfy for all δ > 0

∥θn − θ∥2 = o

(
lnn1+δ

nν

)
a.s. and

∥∥θn,τ ′ − θ
∥∥2 = o

(
lnn1+δ

n

)
a.s.

In addition, An and An,τ defined by (8) and (9) satisfy

∥∥An −H−1
∥∥2 = o

(
lnn1+δ

nγ

)
a.s. and

∥∥An,τ −H−1
∥∥2 = o

(
lnn1+δ

n

)
a.s.

Moreover, the estimates θn,τ ′ defined by (7) satisfy

√
n(θn,τ ′ − θ)

L−−−→
n→∞

N (0, H−1ΣH−1),

where Σ = E
[
∇hg(X, θ)∇hg(X, θ)T

]
.

The proof is given in Section 6. The Universal Weighted Averaged Stochastic Newton estimates so
achieve the asymptotic efficiency, and so, under very weak assumptions.

Remark 4.1. Mention that for estimating parameter θ, it is also possible to consider the following simpler
algorithm, which we refer to as the Universal Stochastic Newton Algorithm, and only relies on An:

P̂n = Ân−1Zn

Q̂n = ∇2
hg(Xn, θ̂n−1)Zn

Ân = Ân−1 − γn

(
P̂nQ̂

T
n + Q̂nP̂

T
n − 2Id

)
1{∥Q̂n∥∥Zn∥}≤βn

θ̂n = θ̂n−1 − νnÂn−1∇hg(Xn, θ̂n−1).

By following the same scheme of proof as for Theorem 4.2, one could check that:∥∥∥θ̂n − θ
∥∥∥2 = O

(
lnn

nν

)
a.s.

However, it can be observed that the convergence rate of θ̂n is not optimal. Nevertheless, this algorithm has
the merit of being much simpler. In addition, mention that following the reasoning presented by Bercu et al.
(2020b), one could take a step sequence of the form νn = 1

n leading to the Stochastic Newton algorithm.
However, we are unfortunately not able to obtain the consistency of the estimates in this context.

5 Applications

The simulation section of this paper focuses on evaluating the performance of our novel methods, called
Universal Stochastic Newton Algorithm (USNA) and Universal Weighted Averaged Stochastic Newton Al-
gorithms (UWASNA). We begin by analyzing the performance of USNA and UWASNA in the context of
logistic regression and the geometric median estimation. In both contexts, it was already feasible to em-
ploy second-order algorithms such as the Stochastic Newton Algorithms (SNA) and its Weighted Averaged
version (WASNA). These two algorithms use the Riccati formula to recursively compute the inverse of the
Hessian estimator. By demonstrating comparable results to SNA and WASNA, we establish USNA and
UWASNA as viable alternatives with efficient performance. Additionally, we investigate the applicability
of our method in challenging scenarios where using the Riccati formula in SNA is not feasible, particu-
larly in estimating p-means and parameters of a spherical distribution. In these two cases, we compare the
performances of USNA and UWASNA with the one of the Averaged Stochastic Gradient Descent (ASGD)
introduced by Polyak and Juditsky (1992). Through comprehensive simulations, our goal is to verify that
USNA and UWASNA consistently exhibit favourable performances even in these contexts. To close this
section, we extend our evaluation to real-world datasets to showcase the practicality of deploying USNA
and UWASNA algorithm in applications.
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5.1 Choice of the hyperparameters

In our experiments, the choice of hyperparameters involved in the different algorithms, plays a significant
role in achieving desired outcomes. The decision to set these values is based on both theoretical justifications
and empirical observations.

1. Setting of νn for USNA: Despite the lack of a theoretical proof demonstrating the convergence rate
of USNA when νn = 1/n, this setting is adopted in our experiments for a direct comparison with SNA.
Empirical results, as presented later, validate that this choice is effective in practice.

2. Conditions on β and γ: Condition β < γ − 1/2 is only used to apply the Robbins-Siegmund
theorem. It serves a theoretical purpose, and we advocate for its removal. On the contrary, condition
βn+1γn+1 ≤ 1/2 is essential. It ensures the positiveness of the estimate of the inverse of the Hessian.
For this reason, in all simulations, we set βn+1 =

1
2γ

−1
n .

3. Initialization of Estimators: For initializing the estimators of the Hessian inverse, we consistently
use S−1

0 = Id for both SNA and WASNA. Similarly, A0 = Id is chosen for USNA and UWASNA.

5.2 Comparison with Riccati Newton

The objective of this section is to demonstrate the comparable performance of USNA and UWASNA when
contrasted with SNA andWASNA, particularly in scenarios where the use of the Riccati formula is applicable
to recursively compute the inverse of an estimator of the Hessian. Let us begin by revisiting this context.
If we can estimate the Hessian matrix H = ∇2G(θ) by an estimator of the form Sn/n with Sn defined by
Sn =

∑n
j=1 φjφ

T
j where (φn)n≥1 is a sequence of random vectors of Rd, then, thanks to the Riccati formula,

we can recursively calculated matrix S−1
n for any n ≥ 1:

S−1
n = S−1

n−1 −
1

1 + φT
nS

−1
n−1φn

S−1
n−1φnφ

T
nS

−1
n−1, (10)

with S0 = Id to avoid the invertibility problem. This formula finds application in various scenarios, as pre-
viously demonstrated by Bercu et al. (2020b), for instance, to obtain efficient stochastic Newton algorithms.
In light of this, we can define the stochastic Newton algorithm (SN) for estimating parameter θ as followed:

Un = S−1
n−1φn (11)

S−1
n = S−1

n−1 − (1 + φT
nUn)

−1UnU
T
n (12)

θSNn = θSNn−1 − S−1
n ∇hg(Xn, θ

SN
n−1) (13)

where S−1
0 = Id and θSN0 is arbitrarily chosen. Note that the random vector φn is dependent on the current

observation Xn and the previous estimation θSNn−1. The Weighted Averaged Stochastic Newton Algorithm is
defined by:

Un = S
−1
n−1φn

S
−1
n = S

−1
n−1 − (1 + φT

nUn)
−1UnU

T
n

θn = θn−1 − γn+1S
−1
n ∇hg(Xn, θn−1)

θWASN
n =

(
1− ln(n+ 1)τ

′∑n
k=0 ln(k + 1)τ ′

)
θWASN
n−1 +

ln(n+ 1)τ
′∑n

k=0 ln(k + 1)τ ′
θn

where S−1
0 = Id, θ0 and θWASN

0 are arbitrarily chosen, the random vector φn is dependent on the current
observation Xn and the previous estimation θWASN

n−1 .
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5.2.1 Logistic regression

Let (X,Y ) be a random vector taking values in Rp × {0, 1} and let us set ϕ = (1, XT )T . In the binary
logistic regression framework, function G to minimize is defined for any h ∈ Rp+1 by:

G(h) = E
[
log(1 + exp(hTΦ))− hTΦY

]
= E [g(X,Y, h)]

where the conditional distribution of the binary response Y knowing ϕ is a Bernoulli distribution of parameter
π(θTϕ) with for any x ∈ R, π(x) = exp(x)/(1 + exp(x)) and θ ∈ Rp+1 is the unknown parameter to be
estimated. It is easy to show that

θ = arg min
h∈Rp+1

G(h)

and θ is the unique solution of equation ∇G(h) = 0. In addition, we have

H = E
[
a(θTϕ)ϕϕT

]
with a(z) = π(z)(1− π(z)).

Let (ϕn, Yn)n≥1 be a sequence of independent random vectors in Rp+1×{0, 1} with the same distribution as

(ϕ, Y ). In this context, Bercu et al. (2020b) uses algorithm (11)-(13) to estimate θ with φn =
√

a(ϕT
nθ

SN
n−1)ϕn

and ∇hg(Xn, θ
SN
n−1) = −Φn

(
Yn − π(ϕT

nθ
SN
n−1)

)
.

We conduct extensive simulations to evaluate the performance of our novel methods, USNA and UWASNA,
in comparison to SNA and WASNA. For this purpose, we consider the logistic regression model introduced
by Bercu et al. (2020b) where p = 10 and the true coefficients are set as follows:

θ = (0, 3,−9, 4,−9, 15, 0,−7, 1, 0)T .

We compare USNA and UWASNA against SNA and WASNA in terms of their ability to accurately estimate
the true coefficients. The evaluation of the algorithms’ performance is carried out using the mean squared
error (MSE) metric. We simulate N = 100 independent sample of size n = 10 000. The results are averaged
to mitigate the effects of sampling fluctuations. For all algorithms, we initialize the estimate of the parameter
with θinit = θ + eϵ, where ϵ ∼ N (0, Ip+1) and e = 1 or 2.
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Figure 1: Evolution of the mean squared error with respect to the sample size for logistic regression.

As shown in the figure 1, the weighted averaged estimators converge more rapidly than the other two
methods. Both USNA and UWASNA perform comparably to SNA and WASNA in accurately estimating
the true coefficients of the logistic regression model. Remarkably, USNA and UWASNA achieve this without
using the Riccati formula.
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5.2.2 Geometric Median

Next, we conduct simulations in the context of geometric median estimation for a multivariate distribution.
We focus on the model introduced by Godichon-Baggioni and Lu (2023). We generate n = 10 000 copies of
the random vector X of Rp with p = 10, where X ∼ N (0,Σ) with Σi,j = |i− j|0.5. Recall that the geometric
median is defined by:

m = argmin
h∈Rp

E [∥X − h∥ − ∥X∥] .

In this model, the result leads to m = (0, . . . , 0)T in this model. In addition, the Hessian matrix H is defined
by:

H = E
[

1

∥X −m∥

(
Ip −

(X −m)(X −m)T

∥X −m∥2

)]
.

In this context, algorithm (11)-(13) can be used to estimate m taking ∇hg(Xn,m
SN
n−1) = − Xn−mn−1

∥Xn−mn−1∥
and φn = ∇hg(Xn,m

SN
n−1 + αnZn) − ∇h(Xn,m

SN
n−1), where αn = 1

n ln (n+1) and (Zn)n≥1 is a sequence of
independent standard Gaussian vectors.

For a comprehensive evaluation of our methods’ effectiveness in geometric median estimation, we also
compare them against two baselines : SNA and WASNA. For all four algorithms, we initialize the estimate
of the geometric median with minit = eϵ, where ϵ ∼ N (0, Ip+1) and e = 1 or 2. Throughout the simulations,
we recorded the MSE of the estimated medians for the four algorithms. The simulation results were averaged
over multiple iterations (N = 100).
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Figure 2: Evolution of the mean squared error with respect to the sample size for geometric median estima-
tion.

In Figure 2, the results consistently indicate that when the sample size is relatively small (around 100),
USNA and UWASNA converge slightly slower. However, beyond that point, they achieve performance on
par with both WASNA and SNA in estimating the geometric median.

5.3 Cases where the Riccati formula cannot be used

In this section, we focus on the scenarios where using the Riccati formula in SNA or WASNA is not feasible.
We explore the performance of USNA and UWASNA in contrast to an alternative averaged stochastic
gradient-based method (”ASGD”) proposed by Polyak and Juditsky (1992), which is defined as:

θSGD
n = θSGD

n−1 − ηn∇hg(Xn, θ
SGD
n−1 ) (14)

θASGD
n = θASGD

n−1 + 1/n(θSGD
n − θASGD

n−1 ) (15)

where (ηn)n≥1 is a sequence of learning rates and θASGD
0 = θSGD

0 .
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5.3.1 Spherical Distribution

In this paragraph, we focus on the estimation of the parameters of a spherical distribution (Godichon-
Baggioni and Portier, 2017). The aim of the task is to fit a sphere onto a 3D point cloud with noise. In this
context, we assume that the observations represent independent realizations of a random vector X, which
is defined as

X = µ+ rWU,

where U is uniformly distributed on the unit sphere of R3, W ∼ U ([1− δ, 1 + δ]) with δ > 0, W and
U are independent. The radius r > 0 and the center µ ∈ R3 are parameters to be estimated. The
unknown parameter θ = (µ, r)T is a local minimizer of the function G : R3 × R∗

+ −→ R defined for all
h = (a, b) ∈ R3 × R∗

+ by:

G(h) := E [g(X,h)] =
1

2
E
[
(∥X − a∥ − b)2

]
.

In this scenario, one can use algorithm (14)-(15) to estimate θ with

∇hg(X,h) =

(
a−X + b(X−a)

∥X−a∥
b− ∥X − a∥

)
.

Second-order methods USNA and UWASNA can also be used with

∇2
hg(X,h) =

(1− b
∥X−a∥

)
I3 +

b(X−a)(X−a)T

∥X−a∥3
X−a

∥X−a∥
(X−a)T

∥X−a∥ 1

 .

We emphasize that in this specific case, neither the conventional Stochastic Newton Algorithms (SNA) nor
the Weighted Averaged version (WASNA) using the Riccati formula are applicable due to the nature of the
problem. Thus, we conduct simulations to compare the performance of the USNA, UWASNA, and ASGD.
The synthetic datasets were generated with a sample size of 10 000 and the true parameters of the spherical
distribution were set as follows: µ = (0, 0, 0) and r = 2. In addition, we set δ = 0.2, which results in a
Hessian matrix with eigenvalues of different order sizes. For all three algorithms, we initialize the estimate
of the parameter by

θinit = (µinit, rinit)
T = (0, 0, 0, 2)T + eϵ

where ϵ ∼ N (0, I4) and e = 0.5 or 1. Multiple iterations (N = 100) were performed to reduce the impact
of sampling variations.

Figure 3 illustrates the comparison between the performances of USNA, UWASNA and ASGD in terms
of the mean squared error (MSE) of the estimated parameters. Throughout the simulations, UWASNA
amd USNA demonstrate superior performance in accurately estimating the parameters of the spherical
distribution when compared to the gradient-based method. Additionally, the Hessian matrix H of the
model can be explicitly calculated (Godichon-Baggioni and Portier, 2017), one has

H =

(
I3 − 2

3I3E [W ]
[
W−1

]
0

0 1

)
.

Note that this matrix is diagonal, making its inverse computation straightforward. Therefore, we investigate
the Frobenius norm of the difference between the estimated matrix An and the true matrix H−1. From
Figure 4, it’s evident that our methods provide a good estimation of the inverse of the Hessian matrix.
Moreover, UWASNA offers a better estimation compared to USNA.

5.3.2 p-means

Now we focus on the estimation of p-means of a multivariate distribution (Fréchet, 1948). We consider a
random vector X of Rd with d = 40, where X ∼ N (0,Σ) with Σi,j = |i − j|0.5. The p-mean m of X is
defined as the minimizer of the functional Gp : Rd → R given for all h ∈ Rd by:

Gp(h) =
1

p
E [∥X − h∥p] ,

10
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Figure 3: Evolution of the mean squared error with respect to the sample size for parameters estimation in
a spherical Gaussian distribution.
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Figure 4: Frobenius norm of the difference between the estimated matrix An and the true matrix H−1.

where 1 ≤ p < +∞. Note that in our model m = (0, . . . , 0)T . We can easily verify that the gradient and
the Hessian of Gp are given by:

∇Gp(h) = −E
[
(X − h) ∥X − h∥p−2

]
,

∇2Gp(h) = E
[
∥X − h∥p−2

(
Id − (2− p)

(X − h)(X − h)T

∥X − h∥2

)]
.

We aim to compare the performance of USNA, UWASNA, and ASGD for estimating the p-mean of X
through simulations. We consider the case p = 1.5 and we simulate N = 100 independent samples of size
n = 10 000. For all three algorithms, we initialize the estimate with minit = eϵ where ϵ ∼ N (0, Id) and e = 1
or 2.

As depicted in the Figure 5, we plotted the MSE versus sample size. It is evident that USNA and
UWASNA consistently outperforms ASGD in estimating the p-means. Their superior performance can be
attributed to the incorporation of information from the Hessian matrix. These results further emphasize
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Figure 5: Evolution of the mean squared error with respect to the sample size for p-means estimation.

the advantage of using USNA and UWASNA as alternative methods when it is impossible to use the Riccati
formula.

5.4 Application to real data

We apply the algorithms to ”COVTYPE” dataset, a well-known dataset used for classification tasks (Blackard
and Dean, 1999; Schmidt et al., 2017; Toulis et al., 2016). The original study was based on a dataset com-
prising 581,011 observations and 54 predictors. The primary objective was to predict the cover type of
forests within Roosevelt National Park. In our current investigation, we will narrow our focus to the most
prevalent category of the target variable, which is ”Spruce/Fir,” accounting for 49% of the observations. As
a result, we convert the ”covertype” variable into a binary form, with the ”fir” category assigned a value of
1, while all other categories are assigned a value of 0. The objective is to use logistic regression to predict
the variable ”covertype”. We split the dataset into training (80%) and test (20%) sets.

We implement the UWASNA, USNA, WASNA and SNA on the training set. As a baseline, we also
apply a first-order algorithm ASGD on it. We evaluate the performance of each algorithm by calculating
the accuracy of each one on both training set and test set. The results are summarized in Table 1.

UWASNA USNA WASNA SNA ASGD

Training Accuracy(%) 75.63 75.31 75.52 75.38 74.54

Test Accuracy(%) 75.61 75.34 75.50 75.33 74.64

Table 1: Accuracy of UWASNA, USNA, WASNA, SNA and ASGD algorithms on ”COVTYPE” dataset.

We observe that UWASNA, USNA, WASNA and SNA demonstrate similar performances, and they
achieve higher accuracies on both training set and test set compared to ASGD. By successfully applying
USNA and UWASNA on this dataset, we illustrate their practicality in real-world applications.

Conclusion

In this study, we thoroughly examined the stochastic optimization problem, primarily focusing on accurately
estimating the unknown parameter. Our significant contribution is the introduction of a direct method to
estimate the inverse of the Hessian matrix. Instead of the traditional approach, which estimates the Hessian
matrix first, we directly addressed its inverse, using the Robbins-Monro procedure.
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This approach led us to develop the Universal Weighted Averaged Stochastic Newton Algorithm. Through
our extensive testing, we found that our newly proposed methods are both efficient and robust. When com-
pared with standard first and second-order algorithms, our method consistently performed well. In certain
scenarios, it even outperformed these conventional algorithms.

In summary, our findings emphasize the potential of second-order methods in optimization. Our approach
to directly estimating the Hessian matrix’s inverse represents a significant advancement, combining simplicity
with efficiency.

6 Proofs

For the sake of simplicity, in the following we denote Tn := ∇2
hg(Xn, θ̂n−1)ZnZ

T
n . Recall that ∥Zn∥ is

bounded, i.e there is M such that ∥Z∥ ≤ M . In addition, let us recall that if ∥Qn+1∥ ∥Zn+1∥ ≤ βn+1, it
then follows that ∥Tn+1∥op ≤ βn+1.

6.1 Study on the largest eigenvalue of An

The following proposition provides an initial asymptotic bound of the largest eigenvalue of An without
requiring knowledge on the behavior of the estimate θ̂n. This result is crucial to prove Theorems 3.1 and
4.1.

Proposition 6.1. Under Assumptions (A3) and (A5), the largest eigenvalue of An denoted by λmax(An)
satisfies for all δ > 0

λmax(An) = o
(
n1−γ lnn1+δ

)
a.s. and λmax(An, τ) = o

(
n1−γ lnn1+δ

)
a.s.

Proof of Proposition 6.1. Define Wn := An−1T
T
n + TnAn−1. By definition of An,

∥An+1∥2F = ∥An∥2F − 2γn+1 ⟨An,Wn+1 − 2Id⟩F 1∥Qn+1∥∥Zn+1∥≤βn+1

+ γ2n+1 ∥Wn+1 − 2Id∥2F 1∥Qn+1∥∥Zn+1∥≤βn+1
.

Therefore,

E
[
∥An+1∥2F |Fn

]
= ∥An∥2F − 2γn+1 ⟨An,∇2G(θ̂n)An +An∇2G(θ̂n)− 2Id⟩F

+ γ2n+1E
[
∥Wn+1 − 2Id∥2 1∥Qn+1∥∥Zn+1∥≤βn+1

|Fn

]
+ 2γn+1E

[
⟨An,Wn+1 − 2Id⟩F 1∥Qn+1∥∥Zn+1∥>βn+1

|Fn

]
.

Assumption (A5) ensures that

E
[
∥Wn+1 − 2Id∥2F 1∥Qn+1∥∥Zn+1∥≤βn+1

|Fn

]
≤ 8

(
E
[∥∥∥∇2

hg(Xn+1, θ̂n)
∥∥∥2
F

]
E
[
∥Zn+1∥4

]
∥An∥2F + d

)
≤ 8

(
C2/q
q ∥An∥2F + d

)
.

Since ∥Qn+1∥ = ∥Qn+1∥q ∥Qn+1∥1−q with q > 1, for any ζn > 0,

γn+1E
[
⟨An,Wn+1 − 2Id⟩F 1∥Qn+1∥∥Zn+1∥>βn+1

|Fn

]
≤ 2γn+1 ∥An∥2F E

[
∥Qn+1∥ ∥Zn+1∥1∥Qn+1∥∥Zn+1∥≥βn+1

|Fn

]
+

γn+1

ζn+1
∥An∥2F + ζn+1d

≤
(
2CqM

2qγn+1β
1−q
n+1 +

γn+1

ζn+1

)
∥An∥2F + γn+1ζn+1d.
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Since ∇2G(θ̂n) and An are positive, one has for any ζn > 0,

−γn+1 ⟨An,∇2G(θ̂n)An +An∇2G(θ̂n)− 2Id⟩F ≤ γn+1 ⟨An, 2Id⟩

≤ γn+1

ζn+1
∥An∥2F + γn+1ζn+1d.

Finally,

E
[
∥An+1∥2F |Fn

]
≤
(
1 +

4γn+1

ζn+1
+ 4Cqγn+1β

1−q
n+1 + 8γ2n+1C

2/q
q

)
∥An∥2F

+ 4γn+1ζn+1d+ 8γ2n+1d.

Setting ζn = n1−γ lnn1+δ with δ > 0, we can apply Lemma 6.2 with Vn = ∥An∥2F , and an = ζ2n. One then
obtains ∥An∥2F = o

(
ζ2n
)
= o

(
n2−2γ lnn2+2δ

)
, so that λmax(An) = o

(
n1−γ lnn1+δ

)
a.s.

6.2 Proof of Theorem 3.1

The aim is to provide an initial rate of convergence for An. A more refined or faster rate will be established
later. First, note that

An+1 −H−1 = An −H−1 − γn+1(Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥≤βn+1

= An −H−1 − γn+1(Wn+1 − 2Id) + γn+1(Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥>βn+1

= An −H−1 − γn+1 (E [Wn+1|Fn]− 2Id) + γn+1ξn+1

+ γn+1(Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥>βn+1

= An −H−1 − γn+1

(
∇2G(θ̂n)An +An∇2G(θ̂n)− 2Id

)
+ γn+1ξn+1+

γn+1(Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥>βn+1

where ξn+1 := −Wn+1 +∇2G(θ̂n)An +An∇2G(θ̂n). Let α
∗
k be the function defined for all h ∈ Mp(R) by

α∗
k(h) = (Id − γk+1H)h (Id − γk+1H) ,

we then have

An+1 −A = α∗
n

(
An −H−1

)
− γ2n+1H(An −H−1)H

+ γn+1r1,n + γn+1r2,n + γn+1sn + γn+1s
′
n + γn+1ξn+1 (16)

where

r1,n = (∇2G(θ̂n)−H)H−1 +H−1(∇2G(θ̂n)−H),

r2,n = (Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥>βn+1
− E

[
(Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥>βn+1

|Fn

]
,

sn = E
[(
Tn+1

(
An −H−1

)
+
(
An −H−1

)
Tn+1

)
1∥Qn+1∥∥Zn+1∥>βn+1

|Fn

]
+
(
∇2G(θ̂n)−H

) (
An −H−1

)
+
(
An −H−1

) (
∇2G(θ̂n)−H

)
,

s′n = E
[(
Tn+1H

−1 +H−1Tn+1 − 2Id
)
1∥Qn+1∥∥Zn+1∥>βn+1

|Fn

]
By induction,

An −H−1 = Ψ∗
n,0

(
A0 −H−1

)
+

n−1∑
k=0

Ψ∗
n,k+1γk+1ξk+1 +

n−1∑
k=0

Ψ∗
n,k+1γk+1r1,k

+

n−1∑
k=0

Ψ∗
n,k+1γk+1r2,k +

n−1∑
k=0

Ψ∗
n,k+1γk+1sk +

n−1∑
k=0

Ψ∗
n,k+1γk+1s

′
k, (17)
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where Ψ∗
n,k is the function defined for all h ∈ Mp(R) by :

Ψ∗
n,k(h) =

 n∏
j=k+1

α∗
j

 (h) =

 n∏
j=k+1

(Id − γjH)

h

 n∏
j=k+1

(Id − γjH)

 .

Next, we will determine the rate of convergence for each term on the right-hand side of equation (17).

Rate of convergence of Mn :=
∑n−1

k=0 Ψ
∗
n,k+1γk+1ξk+1: Recall that for all δ > 0, λmax(An) = o

(
n1−γ lnn1+δ

)
a.s.

Thus, there exists a constant c′ > 0 such that E
[
∥ξn+1∥2F |Fn

]
≤ c′

(
1 + ∥An∥2F

)
= o

(
n2−2γ lnn2+2δ

)
a.s.,

and according to Lemma 6.3, it follows that∥∥∥∥∥
n−1∑
k=0

Ψ∗
n,k+1γk+1ξk+1

∥∥∥∥∥
2

F

= O
(
n2−3γ lnn2+2δ

)
a.s. (18)

Rate of convergence of R1,n :=
∑n−1

k=0 Ψ
∗
n,k+1γk+1r1,k: we have

R1,n+1 = (Id − γn+1H)R1,n (Id − γn+1H) + γn+1r1,n+1.

Therefore, for n large enough

∥R1,n+1∥op ≤ ∥Id − γn+1H∥2op ∥R1,n∥op + γn+1 ∥r1,n+1∥op
≤ (1− λmin(H)γn+1)

2 ∥R1,n∥op + γn+1 ∥r1,n+1∥op a.s.

By Assumption (A4), ∥r1,n+1∥op = o
(
n−a/2 lnn(1+δ)/2

)
a.s. According to Lemma 6.4,

∥R1,n+1∥op = o
(
n−a/2 lnn(1+δ)/2

)
a.s. (19)

Rate of convergence of R2,n :=
∑n−1

k=0 Ψ
∗
n,k+1γk+1r2,k:

E
[∥∥(Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥≥βn+1

∥∥2
op
|Fn

]
≤12E

[(
∥Qn+1∥2 ∥Zn+1∥2 ∥An∥2 + d

)
1∥Qn+1∥∥Zn+1∥≥βn+1

|Fn

]
.

Applying Markov’s inequality, and since ∥Zn∥ is supposed to be bounded by M ,

E
[∥∥(Wn+1 − 2Id)1∥Qn+1∥∥Zn+1∥≥βn+1

∥∥2 |Fn

]
≤ 12dE

[∥∥∥∇2g(Xn+1, θ̂n)
∥∥∥q
op

∥∥ZnZ
T
n

∥∥q |Fn

]
β−q
n

+ 12 ∥An∥2 E
[
∥Qn∥2M21∥Qn+1∥∥Zn+1∥≥βn+1

]
≤ 12dM2qE

[∥∥∥∇2g(Xn+1, θ̂n)
∥∥∥q
op
|Fn

]
β−q
n

+ 12Cq ∥An∥2 β2−q
n+1

Thus, by Lemma 6.4,

∥R2,n∥2op = O
(
n2−3γ lnn2+2δn2β−qβ

)
a.s. (20)

Note that the rate of convergence for R2,n is faster than that of Mn.

Rate of convergence of S′
n :=

∑n−1
k=0 Ψ

∗
n,k+1γk+1s

′
k: We have similarly∥∥s′n∥∥ ≤ E

[∥∥(Tn+1H
−1 +H−1Tn+1 − 2Id

)∥∥
F
1∥Qn+1∥∥Zn+1∥≥βn+1

|Fn

]
≤ 2

∥∥H−1
∥∥
F
E
[
∥Zn+1∥2

∥∥∥∇2
hg
(
Xn+1, θ̂n

)∥∥∥
F
1∥Qn+1∥∥Zn+1∥≥βn+1

|Fn

]
+ 2qE

[
1∥Qn+1∥∥Zn+1∥≥βn+1

|Fn

]
= O

(
β1−q
n

)
.
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Therefore, thanks to Lemma 6.4,
S′
n = O

(
β1−q
n

)
. (21)

A first result for An: Thanks to equalities (18) to (21), one can rewrite An −H−1 as

An −H−1 =

n−1∑
k=0

Ψ∗
n,k+1γk+1sk + S̃n

with
∥∥∥S̃n

∥∥∥
F
= o

(
nmax(1− 3

2
γ,−a/2,β(1−q)) lnn1+δ

)
. In addition, we have

∥sn∥op ≤
∥∥An −H−1

∥∥
op
E
[
∥Qn+1∥ ∥Zn+1∥1∥Qn+1∥∥Zn+1∥≥βn

∥Fn

]
+
∥∥∥∇2G(θ̂n)−H

∥∥∥∥∥An −H−1
∥∥
op

= o
(∥∥An −H−1

∥∥
op

)
a.s.

Define Sn :=
∑n−1

k=0 Ψ
∗
n,k+1γk+1sk. There exists a positive sequence (r̃n)n≥0 with r̃n

a.s.−−−→
n→∞

0 such that

∥Sn+1∥op ≤ (1− λmin(H)γn+1)
2 ∥Sn∥op + γn+1r̃n

∥∥An −H−1
∥∥
op

≤ (1− λmin(H)γn+1)
2 ∥Sn∥op + γn+1r̃n

(
∥Sn∥op +

∥∥∥S̃n

∥∥∥
op

)
.

Applying Lemma 6.4,

∥Sn∥op = o
(
nmax(1− 3

2
γ,−a/2,β(1−q)) lnn1+δ

)
,

which implies that ∥∥An −H−1
∥∥
F
= o

(
nmax(1− 3

2
γ,−a/2,β(1−q)) lnn1+δ

)
a.s.

Final rate of convergence of An: The aim here is, with the help of this first result on An, to give better
rates of convergence for Mn and R2,n. First, note that if γ > 2/3, then 1 − 3

2γ < 0 and we have directly

An
a.s.−−−→

n→∞
H−1. If γ ≤ 2/3, we have 1− 3

2γ > 0 , so that max{1− 3
2γ,−a/2, β(1−q)} = max{1− 3

2γ, β(1−q)}

and ∥An∥ = o
(
nmax{1− 3

2
γ,β(1−q)} lnn1+δ

)
a.s.. Thus, applying Lemma 6.3 in the worse case (i.e when

γ > 2/3), one now has

∥Mn∥2F = o
(
nmax{2−4γ,β(2−2q)−γ} lnn2+2δ

)
a.s.

and
∥R2,n∥2op = O

(
n2−4γ lnn2+2δn2β−qβ

)
a.s.

Following the same process as before, we now have that for any γ ∈ (1/2, 1), An converges almost surely to
H−1, and in particular, one has ∥An∥ = O (1). Applying another time Lemma 6.3, we have

∥Mn∥2F = O
(
n−γ lnn1+δ

)
a.s.

and
∥R2,n∥2op = O

(
n−γ lnn2+2δn2β−qβ

)
a.s.

Finally, we have ∥∥An −H−1
∥∥2
F
= o

(
lnn1+δ

nmin{γ,a,2β(q−1)}

)
a.s. (22)

Rate of convergence of An,τ . Decomposition (16) can be written as

H(An −H−1) + (An −H−1)H =
An −H−1 − (An+1 −H−1)

γn+1
+ r1,n + r2,n + sn + s′n + ξn+1,
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so that

H(An,τ −H−1) + (An,τ −H−1)H =tn

n∑
k=0

uk
(
(Ak −H−1)− (Ak+1 −H−1)

)
+ tn

n∑
k=0

ukγk+1(r1,n + r2,n + sn + s′n + ξn+1) (23)

where tn = 1∑n
k=0 log(k+1)τ

and uk+1 = ln(k+1)τ

γk+1
. Our objective is to determine the rate of convergence for

each term on the right-hand side of the decomposition given in (23).

Rate of convergence of tn
∑n

k=0 uk+1

(
(Ak −H−1)− (Ak+1 −H−1)

)
: with the help of an Abel’s trans-

form,

tn

n∑
k=0

uk+1

(
(Ak −H−1)− (Ak+1 −H−1)

)
= −tn

(
An+1 −H−1

)
un+1 + tn

(
A0 −H−1

)
u1

+ tn

n∑
k=1

(Ak −H−1)(uk+1 − uk).

It is obvious that tn
(
A0 −H−1

)
u1 is negligible while thanks to equality (22),

tn
∥∥An+1 −H−1

∥∥un+1 = o

(
lnn1+δ

n1−γ+ 1
2
min{γ,a,2β(q−1)}

)
a.s

In addition, by the mean value theorem, |uk+1 − uk| ≤ 2kγ−1max{1, τ} ln(k + 1)τ , which implies that∥∥∥∥∥
n∑

k=1

(Ak −H−1)(uk+1 − uk)

∥∥∥∥∥
F

≤
n∑

k=1

∥∥Ak −H−1
∥∥
F
2kγ−1max{1, τ} ln(k + 1)τ

and with the help of equation (22)∥∥∥∥∥tn
n∑

k=0

uk
(
(Ak −H−1)− (Ak+1 −H−1)

)∥∥∥∥∥
F

= o

(
lnn1+δ

n1−γ+ 1
2
min{γ,a,2β(q−1)}

)
a.s

Rate of convergence of tn
∑n

k=0 uk+1γk+1ξk+1. Remark that there exists c′ > 0 such that for all δ > 0

E
[
∥ξn+1∥2F ∥Fn

]
≤ c′

(
1 + ∥An∥2F

)
≤ c′

(
1 + 2

∥∥An −H−1
∥∥2
F
+ 2

∥∥H−1
∥∥2
F

)
.

By applying a law of large numbers for martingales, one obtains for all δ > 0∥∥∥∥∥tn
n∑

k=0

uk+1γk+1ξk+1

∥∥∥∥∥
2

F

= o

(
lnn1+δ

n

)
a.s.

Rate of convergence of tn
∑n

k=0 uk+1γk+1r1,k. First, let us give a useful equality: consider
∑n

k=0 k
−ã/2 ln k(1+δ)/2

with ã > 0, since
∫ n
1 x−ã/2 lnx(1+δ)/2dx ≤ c(lnn)(1+δ)/2x1−ã if ã ̸= 2 and

∫ n
1 x−ã/2 lnx(1+δ)/2dx ≤ c′(lnn)(3+δ)/2

if ã = 2 then one can verify that∥∥∥∥∥tn
n∑

k=0

ukγk+1k
−ã/2 ln k(1+δ)/2

∥∥∥∥∥
2

F

= o

(
lnn1+δ+21ã=2

nmin{2,ã}

)
a.s. (24)

Then, recalling that ∥r1,k+1∥op = o
(
n−a/2 ln k(1+δ)/2

)
∥∥∥∥∥tn

n∑
k=0

ukγk+1r1,k

∥∥∥∥∥
2

F

= o

(
lnn1+δ+21a=2

nmin{2,a}

)
a.s.
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Rate of convergence of tn
∑n

k=0 uk+1γk+1s
′
k. Recalling that s′k = O

(
β1−q
k

)
, it comes∥∥∥∥∥tn

n∑
k=0

ukγk+1s
′
k

∥∥∥∥∥
2

F

= o

(
lnn212β(q−1)=2

nmin{2,2β(q−1)}

)
a.s.

Rate of convergence of tn
∑n

k=0 uk+1γk+1sk. Recall that

∥sn∥op ≤
∥∥An −H−1

∥∥
op
E
[
∥Qn+1∥ ∥Zn+1∥1∥Qn+1∥∥Zn+1∥≥βn

∥Fn

]
+
∥∥∥∇2G(θ̂n)−H

∥∥∥∥∥An −H−1
∥∥
op
,

Recalling that E
[
∥Tn+1∥op 1∥Tn+1∥≥βn

|Fn

]
= O

(
β1−q
n

)
, and with the help of equality (22)∥∥An −H−1

∥∥
op
E
[
∥Qn+1∥ ∥Zn+1∥1∥Qn+1∥∥Zn+1∥≥βn

∥Fn

]
= o

(
lnn(1+δ)/2

nβ(q−1)+ 1
2
min{a,γ,2β(q−1)}

)
a.s

In addition, one has∥∥∥∇2G(θ̂n)−H
∥∥∥∥∥An −H−1

∥∥
op

= o

(
lnn1+δ

na/2+ 1
2
min{a,γ,2β(q−1)}

)
a.s.

leading to

∥sn∥ = o

(
lnn1+δ

nmin{a/2,β(q−1)}+ 1
2
min{a,γ,2β(q−1)}

)
a.s.

Then, since min {a/2, β(q − 1)}+ 1
2 min {a, γ, 2β(q − 1)} ≥ min {a, γ, 2β(q − 1)},∥∥∥∥∥tn

n∑
k=0

ukγk+1sk

∥∥∥∥∥
2

F

= o

(
lnn1+δ

nmin{2,2min{a,γ,2β(q−1)}}

)
a.s.

Rate of convergence of tn
∑n

k=0 uk+1γk+1r2,k. Let us recall that r2,n is a martingale difference, and with
the help of a law of large numbers for martingales it comes that∥∥∥∥∥tn

n∑
k=0

uk+1γk+1r2,k

∥∥∥∥∥
2

F

= o

(
lnn1+δ

n

)
a.s.

Rate of convergence of An,τ . We so have

∥∥H(An,τ −H−1) + (An,τ −H−1)H
∥∥2 = o

(
lnn1+δ

nmin{1,a,2β(q−1)}

)
a.s.

Note that H is diagonalisable, and its eigenvalues are denoted by λ1, ..., λd. Thus, for any matrix B ∈ Md,
we have

∥HB +BH∥2F =

n∑
i=1

n∑
j=1

(HB +BH)2i,j

=
n∑

i=1

n∑
j=1

(λi + λj)
2B2

i,j

≥ 4λmin(H)2
n∑

i=1

n∑
j=1

B2
i,j = 4λmin(H)2 ∥B∥2F .

∥∥An,τ −H−1
∥∥2 ≤ 1

4λmin(H)2
∥∥H(An,τ −H−1) + (An,τ −H−1)H

∥∥2
= o

(
lnn1+δ

nmin{1,a,2β(q−1)}

)
a.s.
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6.3 Proof of Theorem 4.1

In order to prove this theorem, we first show that the eigenvalues of An and An,τ are well controlled, which
implies the consistency of θn. Then, we give an initial rate of convergence of θn, which allows us to obtain
the rate of convergence of An and An,τ . The last step is to deduce the rate of convergence of θn and θn,τ .
We first study the smallest eigenvalue of An.

Proposition 6.2. Under Assumptions(A3) and (A5), the smallest eigenvalue of An denoted by λmin(An)
satisfies

λmin(An)
−1 = O

(
nβ
)
a.s. and λmin(An,τ )

−1 = O
(
nβ
)
a.s.

Proof of Proposition 6.2. First of all, note that for all n ≥ 0, λmin (An) > 0. According to the definition of
An, one has

λmin(An+1) = λmin

(
An − γn+1

(
Tn+1An +AnT

T
n+1 − 2Id

)
1∥Qn+1∥∥Zn+1∥≤βn+1

)
≥ λmin

(
Id − γn+1Tn+11∥Qn+1∥∥Zn+1∥≤βn+1

)
An

×
(
Id − γn+1T

T
n+11∥Qn+1∥∥Zn+1∥≤βn+1

)
+
(
γn+1Id − γ2n+1Tn+1AnT

T
n+1

)
1∥Qn+1∥∥Zn+1∥≤βn+1

)
≥ λmin

(
Id − γn+1Tn+11∥Qn+1∥∥Zn+1∥≤βn+1

)
An

×
(
Id − γn+1T

T
n+11∥Qn+1∥∥Zn+1∥≤βn+1

)
+ γn+1 − γ2n+1β

2
n+1λmax(An)− γn+11∥Qn+1∥∥Zn+1∥≥βn+1

For all h ∈ Rp, one has

ht
(
Id − γn+1Tn+11∥Qn+1∥∥Zn+1∥≤βn+1

)
An

(
Id − γn+1T

T
n+11∥Qn+1∥∥Zn+1∥≤βn+1

)
h

≥
∥∥∥A1/2

n

(
Id − γn+1Tn+11∥∥Qn+1∥∥Zn+1∥≤βn+1∥

)
h
∥∥∥2

≥ λmin(An)
∥∥(Id − γn+1Tn+11∥Qn+1∥∥Zn+1∥≤βn+1

)
h
∥∥2

≥ λmin (An) (1− γn+1βn+1)
2 ∥h∥2

Thus,

λmin

((
Id − γn+1Tn+11∥Qn+1∥∥Zn+1∥≤βn+1

)
An

(
Id − γn+1T

T
n+11∥Qn+1∥∥Zn+1∥≤βn+1

))
≥ λmin (An) (1− γn+1βn+1)

2 .

Therefore,

λmin(An+1) ≥ (1− γn+1βn+1)
2 λmin (An) + γn+1 − γ2n+1β

2
n+1λmax(An)

− γn+11∥Qn+1∥∥Zn+1∥>βn+1
.

Note that (βnγn)n is a decreasing sequence and βnγn ≤ 1/2. Let Un and Vn be sequences defined as

Un :=
n∑

k=1

n∏
j=k+1

(1− γkβk)
2 γ2k+1β

2
k+1λmax(An),

and

Vn :=

n∑
k=0+1

n∏
j=k+1

(1− γkβk)
2 γk+11∥Qn+1∥∥Zn+1∥≥βk+1

.

One can prove by induction that

λmin(An) ≥ λmin (A0)

n∏
k=1

(1− γkβk)
2 +

n∑
k=1

n∏
j=k+1

(1− γjβj)
2 γk − Un − Vn,
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with the convention
∏n

j=n+1 (1− γjβj)
2 = 1. One has

Un+1 = (1− γn+1βn+1)
2 Un + γ2n+1β

2
n+1λmax(An),

since λmax(An) = o
(
lnn1+δn1−γ

)
a.s.,

Un = o
(
lnn1+δβn+1n

1−γγn+1

)
= o

(
1

βn

)
since β < γ − 1/2. One also has

Vn+1 = (1− γn+1βn+1)
2 Vn + γn+11∥Qn+1∥∥Zn+1∥≥βn+1

.

We define V ′
n := nv ln(n+ 1)−(1+δ)Vn for some v > 0, then, for n large enough,

E
[
V ′
n+1|Fn

]
≤ lnn1+δ

ln(n+ 1)1+δ

(n+ 1)v

nv
(1− γn+1βn+1)

2 V ′
n +

γn+1(n+ 1)vCq

ln(n+ 1)1+δβq
n
M2q

≤ V ′
n +

γn+1(n+ 1)vCq

ln(n+ 1)1+δβq
n
M2q.

In order to apply the Robbins-Siegmund theorem, let us take v = γ + qβ − 1, then V ′
n converges almost

surely to a finite random variable for all δ, which can be translated by

Vn = o

(
ln(n+ 1)1+δ

nγ+qβ−1

)
a.s

which is negligible as soon as β > 1−γ
q−1 . It is obvious that λmin (A0)

∏n
k=1 (1− γkβk)

2 ≥ 0. Finally

n∑
k=1

n∏
j=k+1

(1− γjβj)
2 γk ≥

n∑
k=1

1

2βk

n∏
j=k+1

(1− γjβj)
2 2γkβk

≥
n∑

k=1

1

2βk

n∏
j=k+1

(1− γjβj)
2 (2γkβk − β2

kγ
2
k

)

=

n∑
k=1

1

2βk

 n∏
j=k+1

(1− γjβj)
2 −

n∏
j=k

(1− γjβj)
2


Since

(
1
βn

)
n
is a decreasing sequence, one has

n∑
k=1

n∏
j=k+1

(1− γjβj)
2 γk ≥ 1

2βn

n∑
k=1

 n∏
j=k+1

(1− γjβj)
2 −

n∏
j=k

(1− γjβj)
2


≥ 1

2βn

1−
n∏

j=1

(1− γjβj)
2


≥ 1− (1− γ1β1)

2

2βn
.

Thus, λmin(An) ≥ c1
βn

+ o
(

1
βn

)
a.s with c1 = 1− (1− γ1β1)

2 /2, which implies that

1

λmin(An)
= O (βn) a.s.
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We now prove the convergence of θn. According to Taylor’s theorem, and using Assumption (A2), we
obtain

G(θn+1) = G(θn) +∇G(θn)
T (θn+1 − θn)

+
1

2
(θn+1 − θn)

T

∫ 1

0
∇2G(θn+1 + t(θn − θn+1))dt(θn+1 − θn)

≤ G(θn) +∇G(θn)
T (θn+1 − θn) +

L∇G

2
∥θn+1 − θn∥2 .

From the definition of θn (6),

G(θn+1) ≤ G(θn)− νn+1∇G(θn)
TAn,τ∇g(Xn+1, θn) +

L∇G

2
ν2n+1 ∥An,τ∥2op ∥∇g(Xn+1, θn)∥2 .

Letting Kn := G(θn)−G(θ), we can rewrite the inequality as

Kn+1 ≤ Kn − νn+1∇G(θn)
TAn,τ∇2g(Xn+1, θn) +

L∇G

2
ν2n+1 ∥An,τ∥2op ∥∇g(Xn+1, θn)∥2 ,

which implies

E [Kn+1|Fn] ≤ Kn − νn+1∇G(θn)
TAn,τ∇G (θn)

+
L∇G

2
ν2n+1 ∥An,τ∥2op E

[
∥∇g(Xn+1, θn)∥2 |Fn

]
.

According to Assumption (A1), we have

E [Kn+1|Fn] ≤
(
1 +

CL∇G

2
ν2n+1 ∥An,τ∥2op

)
Kn − νn+1λmin(An,τ ) ∥∇G(θn)∥2

+
CL∇G

2
ν2n+1 ∥An,τ∥2op .

With the help of Proposition 6.1,
∞∑
n=0

ν2n+1 ∥An,τ∥2op < +∞ a.s.

Subsequently, according to Robbins-Siegmund Theorem, Kn is guaranteed to converge almost surely to a
finite random variable, and

∞∑
n=0

νn+1λmin(An,τ ) ∥∇G(θn)∥2 < +∞ a.s.

With the help of Proposition 6.2,

∞∑
n=0

νn+1λmin(An,τ ) = +∞ a.s.

It suggests that lim infn ∥∇G(θn)∥ = 0 almost surely and lim infnKn = 0 almost surely. As Kn converges
almost surely to a random variable, G(θn) converges almost surely to G(θ). By local strict convexity,

θn
a.s.−−−→

n→∞
θ and θn,τ ′

a.s.−−−→
n→∞

θ.

6.4 Proof of Theorem 4.2

Rate of convergence of θn. Recall that

E [G(θn+1)−G(θ)|Fn] ≤
(
1 +

L∇GC

2
ν2n+1λmax(An,τ )

2

)
(G(θn)−G(θ))

− νn+1∇G(θn)
TAn,τ∇G(θn) +

L∇GC

2
ν2n+1λmax(An,τ )

2.
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According to equation (6) in Godichon-Baggioni (2021), there is a positive constant c0 such that

∇G(θn)
TAn,τ∇G(θn) ≥ λmin(An,τ ) ∥∇G(θn)∥2 ≥ c0λmin(An,τ ) (G(θn)−G(θ)) .

Recall that 2γ + 2ν − 2 > 1, so that there exists η > 0 such that η < 2γ + 2ν − 3. We define Ṽn :=
nη (G(θn)−G(θ)), so that

E
[
Ṽn+1|Fn

]
=

(
n+ 1

n

)η ((
1 +

L∇GC

2
ν2n+1λmax(An,τ )

2

)
− c0νn+1λmin(An,τ )

)
Ṽn

+
L∇GC

2
ν2n+1λmax(An,τ )

2(n+ 1)η.

Let Ũn :=
(
n+1
n

)η ((
1 + L∇GC

2 ν2n+1λmax(An,τ )
2
)
− c0ν

2
n+1λmin(An,τ )

)
, then

E
[
Ṽn+1|Fn

]
≤ Ṽn +

L∇GC

2
ν2n+1λmax(An,τ )

2(n+ 1)η + Ṽn1Ũn>1
.

As ν + β < 1, one can easily verify that 1
Ũn>1

a.s.−−→ 0. We can now apply the Robbins-Siegmund theorem.

We therefore have ∥G(θn+1)−G(θ)∥ = o (n−η) for all η < 2γ+2ν− 3. Thanks to the local strong convexity
of G, this leads to ∥θn − θ∥2 = o (n−η) a.s. We are now able to apply Theorem 3.1 and one obtains

∥An −A∥2 = o

(
lnn1+δ

nmin{γ,η,2β(q−1)}

)
a.s. and ∥An,τ −A∥2 = o

(
lnn1+δ

nmin{η,2β(q−1)}

)
a.s.

According to Theorem 4.2 and Theorem 4.3 in Boyer and Godichon-Baggioni (2022), one so has

∥θn − θ∥2 = o

(
lnn1+δ

nν

)
a.s. (25)

Rate of convergence of θn,τ ′. For all non-negative integers n,

θn+1 − θn = −νn+1An,τ∇hg(Xn+1, θn),

so that
θn − θ − (θn+1 − θ)

νn+1
=

θn − θn+1

νn+1
= An,τ∇hg(Xn+1, θn).

In addition,

θn − θ = H−1∇hg(Xn+1, θn) +
(
H−1∇G(θn)−H−1∇hg(Xn+1, θn)

)
−
(
H−1∇G(θn)− (θn − θ)

)
.

Finally,

θn − θ = H−1A−1
n,τ

θn − θ − (θn+1 − θ)

νn+1
+H−1 (∇G(θn)−∇hg(Xn+1, θn))

−H−1 (∇G(θn)−H(θn − θ)) ,

which implies that

θn,τ − θ = t′n

n∑
k=0

ln(k + 1)τ
′
H−1A−1

k,τ

θk − θ − (θk+1 − θ)

νk+1

+ t′n

n∑
k=0

ln(k + 1)τ
′
H−1 (∇G(θk)−∇hg(Xk+1, θk))

− t′n

n∑
k=0

ln(k + 1)τ
′
H−1 (∇G(θk)−H(θk − θ))
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where t′n = 1∑n
k=0 log(k+1)τ ′

.

Rate of convergence of t′n
∑n

k=0 log(k + 1)τ
′
H−1 (∇G(θk)−∇hg(Xk+1, θk)). Analogous to the proof of

Theorem 3.1, one can check with the help of a law of large numbers for martingales that∥∥∥∥∥t′n
n∑

k=0

log(k + 1)τ
′
H−1 (∇G(θk)−∇hg(Xk+1, θk))

∥∥∥∥∥
2

F

= o

(
lnn1+δ

n

)
.

Rate of convergence of t′n
∑n

k=0 log(k + 1)τ
′
H−1 (∇G(θk)−H(θk − θ)). With the help of Assumption

(A3) and since θn converges almost surely to θ, ∥G(θn)−H(θn − θ)∥ = O
(
∥θn − θ∥2

)
a.s. Then, with the

help of Thanks to equality (25) and since ν < 1, we can prove with the help of the equation (24) that∥∥∥∥∥t′n
n∑

k=0

log(k + 1)τ
′
H−1 (∇G(θk)−H(θk − θ))

∥∥∥∥∥
F

= o

(
lnn1+δ

nν

)
,

and this term is negligible as soon as ν > 1/2.

Rate of convergence of t′n
∑n

k=0 ln(k + 1)τ
′
H−1A−1

k+1,τ
θk−θ−(θk+1−θ)

νk+1
. One can easily check that

t′n

n∑
k=0

ln(k + 1)τ
′
H−1A−1

k,τ

θk − θ − (θk+1 − θ)

νk+1

= t′n

n∑
k=0

ln(k + 1)τ
′
H−1

A−1
k,τ (θk − θ)−A−1

k+1,τ (θk+1 − θ)

νk+1

+ t′n

n∑
k=0

ln(k + 1)τ
′
H−1

(A−1
k+1,τ −A−1

k,τ )(θk+1 − θ)

νk+1
.

With the help of an Abel’s transform and since An,τ converges almost surely to H−1, one has∥∥∥∥∥t′n
n∑

k=0

ln(k + 1)τ
′
H−1

A−1
k,τ (θk − θ)−A−1

k+1,τ (θk+1 − θ)

νk+1

∥∥∥∥∥
2

F

= o

(
lnn1+δ

n2−ν

)
.

Observe that
A−1

k+1,τ −A−1
k,τ = A−1

k+1,τ (Id −Ak+1,τA
−1
k,τ ) = A−1

k+1,τ (Ak,τ −Ak+1,τ )A
−1
k,τ .

Therefore,

t′n

n∑
k=0

ln(k + 1)τ
′
H−1

(A−1
k+1,τ −A−1

k,τ )(θk+1 − θ)

νk+1

= −
n∑

k=0

ln(k + 1)τ
′
H−1

A−1
k+1,τ (Ak+1 −Ak,τ )A

−1
k,τ (θk+1 − θ)

νk+1
ln(k + 1)τ tk.

As Ak+1 and Ak,τ converge to H−1,∥∥∥∥∥t′n
n∑

k=0

ln(k + 1)τ
′
H−1

(A−1
k+1,τ −A−1

k,τ )(θk+1 − θ)

νk+1

∥∥∥∥∥
F

≤ t′n ln(n+ 1)τ
′

n∑
k=0

∥∥∥H−1A−1
k+1,τ (Ak+1 −Ak,τ )A

−1
k,τ

∥∥∥
op
∥θk+1 − θ∥

νk+1
ln(k + 1)τ tk.

Thus, as ∥θn − θ∥2 = o
(
lnn1+δ

nν

)
a.s. we have for all δ > 0∥∥∥∥∥t′n

n∑
k=0

ln(k + 1)τ
′
H−1

(A−1
k+1,τ −A−1

k,τ )(θk+1 − θ)

νk+1

∥∥∥∥∥
2

F

= o

(
ln(n+ 1)1+δ+2τ

n2−ν

)
,

which is negligible as soon as 2− ν > 1. Finally, we can conclude that

∥θn,τ − θ∥2 = o

(
lnn1+δ

n

)
a.s.
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6.5 Useful lemmas

The following lemma is a corollary of the Robbins-Siegmund theorem Robbins and Siegmund (1971).

Lemma 6.1. Let (Vn), (Bn), (Dn) and (an) be positive sequences adapted to F = (Fn). Assume that V0 is
integrable and, for all n ≥ 0,

E [Vn+1|Fn] ≤ Vn +Bn −Dn a.s.

Assume also that
∑∞

n=0
Bn
an

< +∞ a.s. If an → ∞, then Vn = o (an) a.s.

The proof of this lemma is given in Chapter 1.III in Duflo (1990), and here we give a generalized version
of it.

Lemma 6.2. Let (Vn), (Bn), (Dn), En and (an) be positive sequences adapted to F = (Fn). Assume that
V0 is integrable and, for all n ≥ 0,

E [Vn+1|Fn] ≤ (1 + En)Vn +Bn −Dn a.s.

Assume also that
∑∞

n=0En < +∞ a.s. and
∑∞

n=0
Bn
an

< +∞ a.s. If an → ∞, then Vn = o (an) a.s.

Proof of Lemma 6.2. Note that the case where En = 0 is exactly the case of Lemma 6.1. Therefore, we are
going to study the case where En ̸= 0. We define αn :=

∏n
k=0(1 +Ek). Note that since

∑∞
n=0En converges

almost surely, αn converges almost surely to a finite random variable α∞. Moreover, noting

V ′
n =

Vn

αn−1
, B′

n =
Bn

αn
, D′

n =
Dn

αn
,

we observe that
E
[
V ′n|Fn

]
≤ V ′

n +B′
n −D′

n.

In addition, since αn ≥ 1, we have
∞∑
n=0

B′
n ≤

∞∑
n=0

Bn < +∞ a.s.

According to Lemma 6.1, we have V ′
n = o(an) a.s., and therefore Vn = o(an) a.s. Furthermore,

∞∑
n=0

Dn ≤ α∞

∞∑
n=0

D′
n < +∞ a.s.

We now give two lemmas which will be tools for the study of the rate of convergence associated to the
estimates An.

Lemma 6.3. Let us denote by H = Mq(R) the set of squared matrices of size q × q. Let us consider

Mn+1 =
n∑

k=1

βn,kγkRkξk+1,

where

• (ξn) is a H-valued martingale differences sequence adapted to a filtration (Fn) such that

E
[
∥ξn+1∥2F |Fn

]
≤ C +R2,n a.s,∑

n≥1

γnE
[
∥ξn+1∥2F 1∥ξn+1∥2F≥γ−1

n (lnn)−1 |Fn

]
< +∞ a.s, (26)

where C is a non-negative random variable and (R2,n)n converges almost surely to 0;

• γn = cn−γ with c > 0 and γ ∈ (1/2, 1);
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• (Rn) is a sequence of matrices lying in H such that

∥Rn∥F = o (vn) a.s where vn =
(lnn)a

nb
,

with a, b ∈ R;

• For all n ≥ 1 and 1 ≤ k ≤ n, and for all A ∈ H,

βn,kA =
n∏

j=k+1

(Iq − γjΓ)A
n∏

j=k+1

(Iq − γjΓ) and βn,nA = A,

where Γ ∈ H is symmetric and satisfies 0 < λmin(Γ) ≤ λmax(Γ) < +∞.

Then,
∥Mn+1∥2F = O

(
γnv

2
n lnn

)
a.s.

Proof of Lemma 6.3. Let us now consider the events

An = {∥Rn∥F > vn or R2,n > C}
Bn+1 = {∥Rn∥F ≤ vn, R2,n ≤ C, ∥ξn+1∥F ≤ δn}
Cn+1 = {∥Rn∥F ≤ vn, R2,n ≤ C, ∥ξn+1∥F > δn}

with δn = γ
−1/2
n (lnn)−1/2. One can check that Ac

n = Bn+1 ⊔ Cn+1. Then, one can write Mn+1 as

Mn+1 =

n∑
k=1

βn,kγkRkξk+11Ak
+

n∑
k=1

βn,kγkRkξk+11Ac
k

=

n∑
k=1

βn,kγkRkξk+11Ak
+

n∑
k=1

βn,kγkRk

(
ξk+11Bk+1

− E
[
ξk+11Bk+1

|Fk

])
+

n∑
k=1

βn,kγkRk

(
ξk+11Ck+1

− E
[
ξk+11Ck+1

|Fk

])
.

Let us now give the rates of convergence of these three terms.

Bounding M1,n+1 :=
∑n

k=1 βn,kγkRkξk+11Ak
. There exists a rank n0 such that for all n ≥ n0, ∥Iq −

γnΓ∥op ≤ (1 − λminγn). Furthermore, M1,n+1 = (Iq − γnΓ)M1,n(Iq − γnΓ) + γnRnξn+11An . Then, for all
n ≥ n0,

E
[
∥M1,n+1∥2F |Fn

]
≤ (1− λminγn)

4 ∥M1,n∥2F + γ2n ∥Rn∥2F (C +R2,n)1An .

Considering Vn+1 =
∏n

k=1(1 + λminγk)
4∥M1,n+1∥2F , it follows that

E [Vn+1|Fn] ≤
(
1− λ2

minγ
2
n

)4
Vn +

n∏
k=1

(1 + λminγk)
4 γ2n ∥Rn∥2F (C +R2,n)1An

Moreover, 1An converges almost surely to 0 implying that

∑
n≥1

n∏
k=1

(1 + λminγk)
4 γ2n ∥Rn∥2F (C +R2,n)1An < +∞ a.s

and applying Robbins-Siegmund Theorem, Vn converges almost surely to a finite random variable, i.e

∥M1,n+1∥2F = O

(
n∏

k=1

(1 + λminγk)
−4

)
a.s

and converges exponentially fast.
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Bounding M2,n+1 :=
∑n

k=1 βn,kγkRk(ξk+11Bk+1
−E[ξk+11Bk+1

|Fk]). Let us denote Ξk+1 = Rk(ξk+11Bk+1
−

E[ξk+11Bk+1
|Fk]). Remark that (Ξn) is a sequence of martingale differences adapted to the filtration (Fn).

As in Pinelis (1994) (proofs of Theorems 3.1 and 3.2), let λ > 0 and consider for all t ∈ [0, 1] and j ≤ n,

φ(t) = E

[
cosh

(
λ

∥∥∥∥∥
j−1∑
k=1

βn,kγkΞk+1 + tβn,jγjΞj+1

∥∥∥∥∥
F

)
|Fj

]
.

One can check that φ′(0) = 0 and (see Pinelis for more details)

φ′′(t) ≤ λ2E

[
∥βn,jγjΞj+1∥2F eλt∥βn,jγjΞj+1∥F cosh

(
λ

∥∥∥∥∥
j−1∑
k=1

βn,kγkΞk+1

∥∥∥∥∥
F

)
|Fj

]

Then,

E

[
cosh

(
λ

∥∥∥∥∥
j∑

k=1

βn,kγkΞk+1

∥∥∥∥∥
F

)
|Fj

]
= φ(1) = φ(0) +

∫ 1

0
(1− t)φ′′(t)dt

≤ (1 + ej,n) cosh

(
λ

∥∥∥∥∥
j−1∑
k=1

βn,kγkΞk+1

∥∥∥∥∥
F

)

with ej,n = E[eλ∥βn,jγjΞj+1∥F − 1 − λ∥βn,jγjΞj+1∥F |Fj ], which is well defined since Ξj+1 is a.s. finite.
Additionally, considering

Gn+1 =
cosh

(
λ ∥
∑n

k=1 βn,kγkΞk+1∥F
)∏n

j=1 (1 + ej,n)
and G0 = 1

and since E[Gn+1|Fn] = Gn, it comes E[Gn+1] = 1. For all r > 0,

P
[
∥M2,n+1∥F ≥ r

]
= P

[
Gn+1 ≥

cosh(λr)∏n
j=1 (1 + ej,n)

]
≤ P

[
2Gn+1 ≥

eλr∏n
j=1 (1 + ejn)

]
.

Furthermore, let ϵj+1 = ξj+11Bj − E[ξj+11Bj |Fj ] and note that E[∥ϵj+1∥2F |Fj ] ≤ 2C. Then, recalling that

δn = γ
−1/2
n (lnn)−1/2, and since for all k ≥ 2,

E
[
∥ϵj+1∥kF |Fj

]
≤ 2k−2δk−2

j E
[
∥ξj+1∥2F 1Bj |Fj

]
≤ 2k−1Cδk−2

j ,

ans since for any A ∈ H one has ∥βn,kA∥F ≤ ∥βn,j∥op ∥A∥F ,

ej,n ≤
∞∑
k=2

λk ∥βn,j∥kop γ
k
j E
[
∥Ξj+1∥kF |Fj

]
≤

∞∑
k=2

λk ∥βn,j∥kop γ
k
j v

k
jE
[
∥ϵj+1∥kF |Fk

]
≤

∞∑
k=2

λk ∥βn,j∥kop γ
k
j v

k
j 2

k−1Cδk−2
j

≤ 2Cλ2 ∥βn,j∥2op γ
2
j v

2
j

∞∑
k=2

(2λ)k−2 ∥βn,j∥k−2
op γ

k−2
2

j vk−2
j ln j−

k−2
2

= 2Cλ2 ∥βn,j∥2op γ
2
j v

2
j exp

(
2λ ∥βn,j∥op

√
γjvj

)
Then,

P
[
∥M2,n+1∥F ≥ r

]
≤P

2Gn+1 ≥
eλr∏n

j=1

(
1 + 2Cλ2 ∥βn,j∥2op γ2j v2j exp

(
2λ ∥βn,j∥op vj

√
γj ln j

))

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Applying Markov’s inequality,

P [∥M2,n+1∥ ≥ r] ≤ 2 exp

−λr + 2Cλ2
n∑

j=1

∥βn,j∥2op γ
2
j v

2
j exp

(
2λ ∥βn,j∥op vj

√
γj ln j

) .

Take λ = γ
−1/2
n v−1

n

√
lnn. Let C0 = ∥βn0,0∥op and remark that for n ≥ 2n0 (i.e such that γn/2λmax(Γ) ≤ 1),

and for all j ≤ n/2,
∥βn,j∥op ≤ C0 exp

(
−cλmin(n/2)

1−α
)
,

so that for all j ≤ n/2,
λ ∥βn,j∥op γjvj

a.s−−−−−→
n→+∞

0.

Furthermore, for all n ≥ 2n0, and for all j ≥ n/2,

λ ∥βn,j∥op
√
γjvj√
ln j

≤ C02
2b+2a+α+1.

Then, there is a positive constant C ′′ such that for all n ≥ 1 and j ≤ n,

exp
(
λ ∥βn,j∥op

√
γjvj

)
≤ C ′′

Finally, one can easily check that (see Lemma E.2 in Cardot and Godichon-Baggioni (2017))

n∑
j=1

∥βn,j∥2op γ
2
j

(ln j)2a

j2b
= O

(
(lnn)2a

n2b+α

)
.

There is a positive constant C ′′′ such that

P
[
∥M2,n+1∥F ≥ r

]
≤ exp

(
−rv−1

n γ−1/2
n

√
lnn+ C ′′′ lnn

)
Then , taking r = (2 + C ′′′)vn

√
γn lnn, it comes

P
[
∥M2,n+1∥F ≥

(
2 + C ′′′) vn√γn lnn

]
≤ exp (−2 lnn) =

1

n2

and applying Borell Cantelli’s lemma,

∥M2,n+1∥F = O
(
vn
√

γn lnn
)

a.s.

Bounding M3,n+1 :=
∑n

k=1 βn,kγkRn(ξk+11Ck+1
− E[ξk+11Ck+1

|Fk]). Let us denote

ϵk+1 = ξk+11Ck+1
− E[ξk+11Ck+1

|Fk]

and remark that for n ≥ n0,

E
[
∥M3,n+1∥2F |Fn

]
≤ (1− λminγn)

4 ∥M3,n∥2F + γ2nv
2
nE
[
∥ϵn+1∥2F |Fn

]
≤ (1− λminγn)

4 ∥M3,n∥2F + γ2nv
2
nE
[
∥ξn+1∥2F 1∥ξn+1∥2F≥γ−1

n
|Fn

]
Let V ′

n = γ−1
n v−2

n ∥M3,n∥2F . There are a rank n1 and a positive constant c such that for all n ≥ n1

E [Vn+1|Fn] ≤ (1− cγn)Vn +O
(
γnE

[
∥ξn+1∥2F 1∥ξn+1∥2F≥γ−1

n
|Fn

])
a.s.

Applying Robbins-Siegmund Theorem as well as equation (26), it comes

∥M3,n+1∥2F = O
(
γnv

2
n

)
a.s.
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Lemma 6.4. Let Jn, Kn, rn be sequences of positive random variables such that rn converges almost surely
to 0 and

Jn+1 = (1− cγ̃n+1)Jn + γ̃n+1rn(Jn +Kn)

where γ̃n = cγ̃n
γ̃ with 1/2 < γ̃ < 1 and cγ̃ > 0. In addition, it is assumed that

Kn = O(vn) a.s.

where vn = cvn
v(lnn)b with v ∈ R and b ≥ 0. Then

Jn = O(vn) a.s.

Proof of Lemma 6.4. For the sake of simplicity, let us assume that for every n ≥ 0, cγ̃n+1 ≤ 1 (up to take
n large enough). Now, consider the event En,c = {|rn| ≤ c/2}, and therefore 1EC

n,c
converges almost surely

to 0. Hence, Jn+1 can be rewritten as:

Jn+1 ≤ (1− cγ̃n+1) Jn +
c

2
γ̃n+1 (Jn +Kn) +

=:δn︷ ︸︸ ︷
γ̃n+1rn (Jn +Kn)1EC

n,c

≤
(
1− c

2
γ̃n+1

)
Jn +

c

2
γ̃n+1Kn + δn1EC

n,c

By induction, one can check that for all n ≥ 0:

Jn ≤ β̃n,0J0 +
c

2

n−1∑
k=0

β̃n,k+1γ̃k+1Kk︸ ︷︷ ︸
=:J1,n

+
n−1∑
k=0

β̃n,k+1δk1EC
k,c︸ ︷︷ ︸

=:J2,n

with β̃n,k :=
∏n

j=k+1

(
1− c

2 γ̃j
)
and β̃n,n := 1. Using standard calculations, we can easily show that β̃n,0

converges at an exponential rate. Furthermore, J2,n can be written as β̃n,0
∑n−1

k=0 β̃
−1
k,0δk1EC

k,c
and since 1EC

n,c

converges almost surely to 0, the sum is almost surely finite, leading to

J2,n = O
(
β̃n,0

)
a.s.

and this term thus converges at an exponential rate. Finally, there exists a random variable K such that
for every n ≥ 1, Kn ≤ Kvn almost surely, leading to the induction relation:

J1,n+1 =
(
1− c

2
γ̃n+1

)
J1,n +

c

2
γ̃n+1Kn ≤

(
1− c

2
γ̃n+1

)
J1,n +

c

2
γ̃n+1Kvn

By applying Proposition A.4 in Godichon-Baggioni et al. (2023), we obtain:

J1,n = O (vn) a.s.

References

Bach, F. (2014). Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic
regression. The Journal of Machine Learning Research, 15(1):595–627.

Bercu, B., Bigot, J., Gadat, S., and Siviero, E. (2023). A stochastic gauss–newton algorithm for regularized
semi-discrete optimal transport. Information and Inference: A Journal of the IMA, 12(1):390–447.

Bercu, B., Costa, M., and Gadat, S. (2020a). Stochastic approximation algorithms for superquantiles
estimation. arXiv preprint arXiv:2007.14659.

Bercu, B., Godichon, A., and Portier, B. (2020b). An efficient stochastic newton algorithm for parameter
estimation in logistic regressions. SIAM Journal on Control and Optimization, 58(1):348–367.

28



Blackard, J. A. and Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discrimi-
nant analysis in predicting forest cover types from cartographic variables. Computers and electronics in
agriculture, 24(3):131–151.

Boyer, C. and Godichon-Baggioni, A. (2022). On the asymptotic rate of convergence of stochastic newton
algorithms and their weighted averaged versions. Computational Optimization and Applications, pages
1–52.

Cardot, H., Cénac, P., and Godichon-Baggioni, A. (2017). Online estimation of the geometric median in
hilbert spaces: Nonasymptotic confidence balls. The Annals of Statistics, 45(2):591–614.

Cardot, H., Cénac, P., and Zitt, P.-A. (2013). Efficient and fast estimation of the geometric median in
Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19(1):18–43.

Cardot, H. and Godichon-Baggioni, A. (2017). Fast estimation of the median covariation matrix with
application to online robust principal components analysis. Test, 26(3):461–480.

Cénac, P., Godichon-Baggioni, A., and Portier, B. (2020). An efficient averaged stochastic gauss-newton
algorithm for estimating parameters of non linear regressions models. arXiv preprint arXiv:2006.12920.
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