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GarNet++: Improving Fast and Accurate Static
3D Cloth Draping by Curvature Loss

Erhan Gundogdu, Victor Constantin, Shaifali Parashar,
Amrollah Seifoddini, Minh Dang, Mathieu Salzmann, and Pascal Fua

Abstract—In this paper, we tackle the problem of static 3D cloth draping on virtual human bodies. We introduce a two-stream deep
network model that produces a visually plausible draping of a template cloth on virtual 3D bodies by extracting features from both the
body and garment shapes. Our network learns to mimic a Physics-Based Simulation (PBS) method while requiring two orders of
magnitude less computation time. To train the network, we introduce loss terms inspired by PBS to produce plausible results and make
the model collision-aware. To increase the details of the draped garment, we introduce two loss functions that penalize the difference
between the curvature of the predicted cloth and PBS. Particularly, we study the impact of mean curvature normal and a novel
detail-preserving loss both qualitatively and quantitatively. Our new curvature loss computes the local covariance matrices of the 3D
points, and compares the Rayleigh quotients of the prediction and PBS. This leads to more details while performing favorably or
comparably against the loss that considers mean curvature normal vectors in the 3D triangulated meshes. We validate our framework
on four garment types for various body shapes and poses. Finally, we achieve superior performance against a recently proposed
data-driven method.

F

1 INTRODUCTION

Shopping for clothes is time-consuming due to the amount of time
customers spend trying to determine if their purchases will fit.
Online shopping can streamline this process, but only if it provides
realistic and easy-to-use simulations that enable potential buyers to
view a draped version of the garment on a 3D model of their own
body. Ideally, this model should rely on a simple parametrization
[30] that can be obtained from a few images, as in [7]. Recent
Physics-Based Simulation (PBS) software [14], [37], [38], [48]
can deliver highly realistic draping results on virtual 3D bodies,
but at the cost of much computation, which makes it unsuitable
for real-time and web-based applications. We propose to train a
deep neural network to produce 3D draping results of the similar
quality to PBS ones but much faster, as shown in Fig. 1.

Realistic simulation of cloth draping over the human body
requires accounting for the global 3D pose of the person and
for the local interactions between cloth and body. To this end,
we introduce the architecture depicted by Fig. 2. It consists of
a garment stream and a body stream. The body stream uses a
PointNet [43] inspired architecture to extract local and global
information about the 3D body. The garment stream exploits
the global body features to compute point-wise, patch-wise, and
global features for the garment mesh. These features, along with
the global ones obtained from the body, are then fed to a fusion
subnetwork to predict the shape of the fitted garment. In the
simpler version of our approach depicted by Fig. 2a, the local
body features are only used implicitly to compute the global ones.
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In the more sophisticated implementation depicted by Fig. 2b, we
explicitly take them into account to further model the skin-cloth
interactions. To this end, we introduce an auxiliary stream that first
computes the K nearest body vertices for each garment vertex,
performs feature pooling on point-wise body features and finally
feeds them to the fusion sub-network. We will see that this second
version performs better than the simpler one, which indicates that
local feature pooling is valuable.

By incorporating appropriate loss terms in the objective func-
tion that we minimize during training, we avoid the need for extra
post-processing steps to minimize cloth-body interpenetration and
undue tightness that PBS tools [14], [37], [38], [48], optimization-
based [9] and data-driven [17], [54] methods often require at in-
ference time. In addition to terms that discourage interpenetration,
our loss function includes terms that favor surface predictions
whose curvatures exhibit the same statistics as those of target
shapes, thereby helping the network to infer 3D surfaces with local
deformations similar to those of real clothes. Furthermore, because
it relies only on convolution and pooling operations, our approach
naturally scales to point clouds of arbitrary resolution. This is in
contrast to earlier data-driven methods [17], [47], [54] that rely
on low-dimensional subspaces whose size would typically have to
grow to model that level of detail, thus adversely affecting their
memory requirements.

Our main contribution is therefore a novel architecture for
garment simulation that drapes clothes on virtual 3D bodies in
real-time by properly modeling the body and garment interaction
and was first reported in conference proceedings [18]. To further
increase the level of details it delivers, we have since incorporated
a novel curvature term in our training loss. It relies on Rayleigh
Quotient [50] bounds to approximate eigenvalues in a manner
that can be backpropagated and yields more realistic results
than when using more traditional differentiable approximations
of curvature [49].

We ran extensive experiments on a dataset that comprises a
pair of jeans, a t-shirt, a dress, and a sweater draped over 600 dif-
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Physics-Based	Simulation
Processing	time	>	10s

GarNet-Local-RQ
Processing	time	<	0.1s

Fig. 1: Draping a sweater, a T-shirt, a dress and a pairs of jeans. Our
method produces results as plausible as those of a PBS method, but
runs 100× faster.

ferent bodies from the SMPL model [30] in various poses and that
we will make publicly available at https://www.epfl.ch/labs/cvlab/.
They show that our network can effectively handle many body
poses and shapes. Furthermore, we can exploit additional infor-
mation, such as cutting patterns, when available. To demonstrate
this, we use the recently-published dataset of [54], which contains
different garment types with varying cutting patterns and show
that our method outperforms the most recent state-of-the-art one
of [54], which adresses the same problem as our method does.

2 RELATED WORK

Many professional tools can model cloth deformations realistically
using Physics-Based Simulation (PBS) [14], [37], [38], [48].
However, they are computationally expensive, which precludes
real-time use. Some of these can operate in near real-time. For

example, the algorithm of [51] achieves more than 10 fps with
high-resolution meshes using an incremental approach in motion
sequences. By contrast, static cloth draping over a body in an
arbitrary pose remains too slow for real-time performance. The
speed of static cloth draping is directly proportional to the distance
between the reference pose and the one for which the draping is
required. For instance, it would take about 1s for a simulation
operating at 10 fps to output the simulation result when the frame
distance between the target pose and the initial one is only 10
frames. Furthermore, manual parameter tuning is often necessary
and cumbersome. First, we briefly review recent approaches to
overcoming these limitations. Then, we summarize the deep net-
work architectures for 3D point cloud and mesh processing, and
the related works for 3D human/cloth modeling.

Data-Driven Approaches. They are computationally less in-
tensive and memory demanding, at least at run-time, and have
emerged as viable competitors to PBS. One of the early meth-
ods [26] relies on generating a set of garment-body pairs. At test
time, the garment shape in an unseen pose is predicted by linearly
interpolating the garments in the database. An earlier work [34]
proposes a data-driven estimation of the physical parameters of
the cloth material, while [25] constructs a finite motion graph for
detailed cloth effects. In [22], potential wrinkles for each body
joint are stored in a database so as to model fine details in various
body poses. However, it requires performing this operation for
each body-garment pair. To speed up the computation, the cloth
simulation is modeled in a low-dimensional linear subspace as a
function of 3D body shape, pose and motion in [12]. [16] also
models the relation between 2D cloth deformations and corre-
sponding bodies in a low-dimensional space. [17] extends this
idea to 3D shapes by factorizing the cloth deformations according
to what causes them, which is mostly shape and pose. The fac-
torized model is trained to predict the garment’s final shape. [47]
trains an MLP and an RNN to model the cloth deformations by
decomposing them as static and dynamic wrinkles. Both [17] and
[47], however, require an a posteriori refinement to prevent cloth-
body interpenetration. In a recent approach, [54] relies on a deep
encoder-decoder model to create a joint representation for bodies,
garment sewing patterns, 2D sketches and garment shapes. This
defines a mapping between any pair of such entities, for example
body-garment shape. However, it relies on a Principal Component
Analysis (PCA) representation of the garment shape, thus reducing
the accuracy. In contrast to [54], our method operates directly
on the body and garment meshes, removing the need for such
a limiting representation. We will show that our predictions are
more accurate as a result.

Cloth fitting has been performed using 4D data scans as
in [28], [41]. In [41], [57], garments deforming over time are
reconstructed using 4D data scans and the reconstructions are
then retargeted to other bodies without accounting for physics-
based clothing dynamics. Unlike in [41], we aim not only to obtain
visually plausible results but also to emulate PBS for cloth fitting.
In [28], fine wrinkles are generated by a conditional Generative
Adversarial Network (GAN) that takes as input predicted, low-
resolution normal maps. This method, however, requires a com-
putationally demanding step to register the template cloth to the
captured 4D scan, while ours needs only to perform skinning of
the template garment shape using the efficient method of [24].

Image/Video-Based Approaches. Apart from methods requir-
ing 3D scans [63], depth data [61], [62] or markers [31], there is a
huge amount of literature on image/video-based reconstruction of
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Fig. 2: Two versions of our GarNet. Both take as input a target body and the garment mesh roughly aligned with the body pose by using [24].
GarNet-Global: We fuse the global body features with the garment features both early and late. GarNet-Local: In addition, we use a nearest
neighbor approach to pooling local body features and feed the result to the fusion network whose job is to combine the body and garment
features.

3D human shapes [1], [2], [3], [5], [15], [19], [46], [56], [64], and
deformable 3D surfaces [4], [11], [42], to only quote some of the
most recent papers. Moreover, conditional generative models [20],
[29] are also proposed to predict clothed human bodies. Some of
these include cloth modeling but none of them directly focus on
mimicking PBS and cloth draping. By contrast, our method learns
to drape a 3D cloth on different 3D target bodies in a visually
plausible manner by incorporating notions of physical draping,
such as interpenetration, bending and curvature.

Cloud and Mesh Processing. A key innovation that has
made our approach practical is the recent emergence of deep
architectures that allow for the processing of point clouds [43],
[44] and meshes [52]. PointNet [43], [44] was the first to effi-
ciently represent and use unordered point clouds for 3D object
classification and segmentation. It has spawned several approaches
to point cloud upsampling [60], unsupervised representation learn-
ing [58], 3D descriptor matching [13], and finding 2D correspon-
dences [59]. In our architecture, as in PointNet, we use Multilayer
Perceptrons (MLPs) for point-wise processing and max-pooling
for global feature generation. However, despite its simplicity and
representative power, the point-wise operations in PointNet [43]
are not sufficient to produce visually plausible garment fitting
results, as we experimentally demonstrate via qualitative and
quantitative analysis.

Given the topology of the point clouds, for example in the
form of a triangulated mesh, graph convolution methods, unlike
PointNet [43], can produce local features, such as those of [8],
[32], [35] that rely on hand-crafted patch operators. FeastNet [52]
generalizes this approach by learning how to dynamically asso-
ciate convolutional filter weights with features at the vertices of
the mesh, and demonstrates state-of-the-art performance on the
3D shape correspondence problem. Similarly to [52], we also
use mesh convolutions to extract patch-wise garment features that
encode the neighborhood geometry. However, in contrast to the
methods whose tasks are 3D shape segmentation [43], [44] or 3D
shape correspondence [8], [32], [35], [52], we do not work with a
single point cloud or mesh as input, but with two: one for the body
and the other for the garment, which are combined in our novel
two-stream architecture to account for both shapes.

3 3D GARMENT FITTING

To fit a garment to a body in a specific pose, we start by using
a dual quaternion skinning (DQS) method [24] that produces a
rough initial garment shape that depends only on body pose. In
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Fig. 3: Garment branch of our network. The grey boxes and
the numbers in parenthesis denote network layers and their output
channel dimensions. Red and blue ones represent garment and global
body features, respectively. The green box is the mesh convolution
subnetwork and depicted in more detail in Fig. 4. STN stands for a
Spatial Transformer Network used in PointNet [43]. MLP blocks are
shared by all N points.

this section, we introduce two variants of our GarNet deep neural
network that refine this initial shape and produce the final garment.
Fig. 2 depicts these two variants.

3.1 Problem Formulation

Let M0 be the template garment mesh in the rest pose and let
M = dqs(M0,B,J 0

M,JB,W) be the garment after skinning to
the body B, also modeled as a mesh, by the method [24]. Here,
J 0
M and JB are the joints of M0 and B, respectively. W is
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Fig. 4: Mesh convolution subnetwork. The residual block is repeated
6 times. Dashed red rectangles indicate channel-wise concatenation.
The N × 3-dimensional tensors contain the 3D vertex locations of
the input garment, which are passed at different stages via skip
connections.

the skinning weight matrix for M0. Let fθ be the network with
weights θ chosen so that the predicted garment GP givenM and
B is as close as possible to the ground-truth shape GG. We denote
the ith vertex of M, B, GG and GP by Mi, Bi, GG

i and GP
i

∈ R3, respectively. Finally, let N be the number of vertices inM,
GG and GP .

Since predicting deformations from a reasonable initial shape
is more convenient than predicting absolute 3D locations, we train
fθ to predict a translation vector for each vertex of the warped
garmentM that brings it as close as possible to the corresponding
ground-truth vertex. In other words, we optimize θ so that

T P = fθ(M,B) ≈ T G , (1)

where T P and T G correspond to translation vectors from the
skinned garment M to the predicted and ground-truth mesh,
respectively, that is GP

i −Mi and GG
i −Mi. Therefore, the final

shape of the garment is obtained by adding the translation vectors
predicted by the network to the vertex positions after skinning.

3.2 Network Architecture
We rely on a two-stream architecture to compute fθ(M,B). The
body stream takes as input the 3D point cloud representing the
body while the garment stream takes as input the triangulated 3D
mesh of the garment. Their respective outputs are fed to a fusion
network that relies on a set of MLP blocks to produce the predicted
translations T P of Eq. (1). To not only produce a rough garment
shape, but also predict fine details such as wrinkles and folds,
we include early connections between the two streams, allowing
the garment stream to account for the body shape even when
processing local information. As shown in Fig. 2, we implemented
two different versions of the full architecture and discuss them in
more detail below.

Body Stream. The body stream processes the body B in a
manner similar to that of PointNet [43] (see Sec. 3.5 for details). It
efficiently produces point-wise and global features that adequately
represent body pose and shape. Since there are no direct corre-
spondences between 3D body points and 3D garment vertices, the
global body features are key to incorporating such information
while processing the garment. We observed no improvement by
using mesh convolution layers in this stream.

Garment Stream. The garment stream takes as input the
warped garmentM and the global body features extracted by the
body stream to also compute the point-wise and global features.
As we will see in the results section, this suffices for a rough
approximation of the garment shape but not to predict wrinkles
and folds. We therefore use the garment mesh to create patch-wise
features, by using mesh convolution operations [52] that account
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Max.	Pooling N

𝒙𝟓
𝟏𝟐

𝑴𝒙𝑵
Distance	Matrix

(Sorted)

Fig. 5: K nearest neighbor pooling in Fig. 2b. We compute the K
nearest neighbor body vertices of each garment vertex and max-pool
their local features.

for the local neighborhood of each garment vertex. In other words,
instead of using a standard PointNet architecture, we use the
more sophisticated one depicted by Fig. 3 to compute point-wise,
patch-wise, and global features. As shown in Fig. 3, the features
extracted at each stage are forwarded to the later stages via skip
connections. Thus, we directly exploit the low-level information
while extracting higher-level representations.

Fusion Network. Once the features are produced by the
garment and body streams, they are concatenated and given as
input to the fusion network shown as the purple box in Fig. 2. It
consists of four MLP blocks shared by all the points, as done
in the segmentation network of PointNet [43]. The final MLP
block outputs the 3D translations T P of Eq. (1) from the warped
garment shapeM.

Global and Local Variants. Fig. 2a depicts the GarNet-
Global version of our architecture. It discards the point-wise
body features produced by the body stream and exclusively relies
on the global body ones. Note, however, that the local body
features are still implicitly used because the global ones depend
on them. This enables the network to handle the garment/body
dependencies without requiring explicit correspondences between
body points and mesh vertices. In the more sophisticated GarNet-
Local architecture depicted by Fig. 2b, we explicitly exploit
the point-wise body features by introducing a nearest neighbor
pooling step to compute separate local body features for each
garment vertex. It takes as input the point-wise body features and
uses a nearest neighbor approach to compute additional features
that capture the proximity of M to B and feeds them into the
fusion network, along with the body and garment features. This
additional step shown in Fig. 5 improves the prediction accuracy
due to the explicit use of local body features.

3.3 Loss Function

To learn the network weights, we minimize the loss function
L(GG,GP ,B,M). We designed it to reduce the distance of the
prediction GP to the ground truth GG while also incorporating
regularization terms derived from physical constraints. We write

L = λpLp + λcurvLcurv , (2)

where Lcurv is the curvature loss that considers our proposed
curvature or mean curvature normals. This will be detailed in
Sec. 3.4. In the equation above, Lp penalizes the descrepancy
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between vertices of PBS and network predictions either indepen-
dently or pair-wise using the following individual terms:

Lp = Lvert + λpenLpen + λnormLnorm + λbendLbend . (3)

Here, λpen, λnorm, and λbend are weights associated with the
individual terms described below. We will study the individual
impact of these terms in the results section.

Data Term. We take Lvert to be the average L2 distance
between the vertices of GG and GP ,

1

N

N∑
i=1

∥∥∥GG
i −GP

i

∥∥∥2, (4)

where N is the total number of vertices.
Interpenetration Term. To assess whether a garment vertex

is inside the body, we first find the nearest body vertex. At each
iteration of the training process, we perform this search for all
garment vertices. This yields C(B,GP ), a set of garment-body
index pairs. We write Lpen as∑
{i,j}∈C(B,GP )

1{‖GP
j −GG

j ‖<dtol}ReLU(−NT
Bi

(GP
j −Bi))/N, (5)

to penalize the presence of garment vertices inside the body. Here,
NBi

is the normal vector at the ith body vertex, as depicted by
Fig 6a. This formulation penalizes the garment vertex GPj for not
being on the green subspace of its corresponding body vertex Bi,
provided that it is less than a distance dtol from its ground-truth
position. In other words, the constraint only comes into play when
the vertex is sufficiently close to its true position to avoid imposing
spurious constraints at the beginning of the optimization. The
loss term also penalizes traingle-triangle intesections between the
body and the garment, which could happen when two neighboring
garment vertices are close to the same body vertex. Unlike in [17],
we do not force the garment vertex to be within a predefined
distance of the body because, in some cases, garment vertices can
legitimately be far from it, e.g. in the lower parts of a dress or in
wrinkles for most garment types.

Normal Term. We write Lnorm as

1

NF

NF∑
i=1

(
1−

(
FGi

)T
FPi

)2

, (6)

to penalize the angle difference between the ground-truth and
predicted facet normals. Here, NF , FGi and FPi are the number of
facets, the normal vector of the ith ground-truth facet and of the
corresponding predicted one, respectively.

Bending Term. We take Lbend to be

1

|N2|
∑

{i,k}∈N2

| ‖GP
i −GP

k ‖ − ‖GG
i −GG

k ‖ |, (7)

to emulate the bending constraint of NvCloth [37], the PBS
method we use, which is an approximation of the one in [36].
Here, N2 denotes a set of pairs of vertices connected by a
shortest path of two edges. This term helps preserve the distance
between neighboring vertices of a given vertex, as shown in
Fig. 6b. Although it is theoretically possible to consider larger
neighborhoods, the number of pairs would grow exponentially.

𝐁" 𝐍$%

𝐍$%
& (𝐆)* − 𝐁")

𝐆)*

𝟗𝟎°

(a)

𝐆"#

𝐆$#

𝐆%#

𝐆"&

𝐆$&

𝑮%&

𝑑%,$& 𝑑%,$#

𝑑%,$& − 𝑑%,$#

(b)

Fig. 6: Interpenetration and Bending loss terms. (a) The interpen-
etration term Lpen penalizes a garment vertex GP

j for being on the
wrong side of the corresponding body point Bi. (b) The bending term
Lbend penalizes the distance between two neighbors of GP

j to differ
from that in the ground truth.

minimum Rayleigh Qutient maximum Rayleigh Qutient

minimum eigenvalue maximum eigenvalue

mean curvatureGaussian curvature

-0

-1.0

Fig. 7: Visualizing different kinds of curvature. All of the metrics
above are normalized between 0 and 1.

3.4 Increasing the Level of Detail

As will be shown in Sec. 4, the network trained by minimizing the
loss function of Eq. (3) delivers visually plausible draping results.
However, they tend to be smoother than the PBS ones, especially
in places where wrinkles are prominent. There are two reasons
for this. First, even small body shape and pose dissimilarities can
make the simulation engine yield visibly different results. Such
significant variations in output stemming from small input changes
are hard for the network to learn as the terms in Eq. (3) might not
penalize smooth predictions. Second, the loss terms in Eq. (3) all
account for the predicted 3D point locations either independently
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from each other or in pairs. In other words, no neighborhood
information is used to produce realistic local statistics.

In this section, we add to the loss function of Eq. (3) curvature
terms designed to remedy this by forcing the local statistics of the
predicted surface to be similar to that of the ground truth. We now
discuss several ways to estimate curvature and argue that the one
based on the Rayleigh quotient [23] is the most appropriate one
for our purpose. We then present our approach to incorporating
this quotient into a loss term.

3.4.1 Curvature Metrics

The curvature of a 3D surface represented by a triangulation can
be estimated in several ways. Fig. 7 depicts four of them, which
we discuss in more detail below.

𝑘"# face

θ%
𝑖

𝑗

𝛼)*

𝛽)*

Fig. 8: Neighborhood convention for the Gaussian and mean curva-
ture.

Gaussian curvature: We define the discrete Gaussian curva-
ture as in [33]. That is, we write it as

κiGC =
1

AiMixed

(
2π −

∑
k∈NF

i

θk
)
, (8)

where θk is the angle of the kth facet, NF
i is the face neigh-

borhood depicted by Fig. 8 and AiMixed is the finite-volume area
of vertex i approximating the continuous formula. Although the
Gaussian curvature can be high in wrinkly areas, it can also vanish
in the presence of ridge-like wrinkles, as shown in Fig. 7. This is
because one of the the principal curvatures can be so small that
the product of the two curvatures is small as well, even though the
other principal curvature is large.

Mean Curvature Normal: Also as in [33], we take the mean
curvature normal to be

κiMC =
1

AiMixed

∑
j∈NE

i

(cot(αij) + cot(βij))(Gj −Gi) , (9)

where Gi is the 3D vertex position and NE
i is the set of vertices

that share an edge with vertex i. In Fig. 8, αij and βij are the
opposite angles of the jth edge of vertex i. This computation
only involves vertices within a one-ring neighborhood of the
center vertex and ignores those from the larger neighborhood.
Furthermore, the cotangents in Eq. (9) can produce arbitrarily high
values for small or wide facet angles. Therefore including κMC

in a loss function could result in numerical instabilities.
Eigen Curvature: As suggested in [40], eigenanalysis can be

used for curvature estimation. To this end, one can compute a
covariance matrix for each vertex given its local neighborhood
NK
Eig that comprises its K nearest neighbors. The minimum

and maximum eigenvalues of these matrices convey the curvature
information. For instance, the ratio of the minimum eigenvalue to
the sum of the three is related to the deviation from the tangent

plane [40]. More formally, we write the covariance matrix for
vertex i as

ΣKi =
1

K

∑
j∈NK

Eig

(Gj − Ĝi)(Gj − Ĝi)
T , (10)

where Ĝi is the mean of the vertices neighboring the ith one.
Then, we compute the smallest and largest eigenvalues as σimin
and σimax. For an almost planar surface, σmax is significantly
larger than σmin. For ridge-like regions, σmax is also larger than
σmin, but not as much as in the planar case. Finally, hemispherical
regions have three large eigenvalues. Therefore, in each one of
these three cases, the eigenvalue distribution is different, which
makes them easily distinguishable. This may not be true at saddle
points where σmax and σmin get closer to each other as in the
hemispherical case. Fortunately, minimizing Lvert and Lnorm
tends to prevent this from occurring. We illustrate this in the
supplementary material.

Even though they are closely related to the minimum and
maximum local curvature, directly incorporating these eigenvalues
in a loss term is problematic because eigenvalue decomposition of
a 3 × 3 matrix in closed-form is numerically unstable, especially
in the presence of flat surfaces whose covariance matrices have
high condition numbers. This can be mitigated using an iterative
approach to eigenvalue decomposition [55] but results in a sub-
stantial increase in complexity.

Rayleigh quotient (RQ) Curvature: To overcome the limita-
tions of the three above-mentioned curvature metrics, we propose
to use the Rayleigh quotient [23] of the local neighborhood
instead. We write it as

RQ(ΣKi ,Gj) =
GT
j ΣKi Gj

GT
j Gj

, (11)

where we assume all the 3D vertex locations Gj to have been
normalized so that they are zero-mean, and ΣKi is the covariance
matrix of Eq. (10). As ΣKi is positive semi-definite, the inequality
σmin ≤ RQ(ΣKi ,Gj) ≤ σmax, where σmin and σmax are the
smallest and largest eigenvalues of ΣKi , is true. Computing RQ
in Eq. (11) does not require an eigendecomposition. Moreover,
existing deep learning libraries can efficiently carry out this com-
putation by using batch matrix multiplication, which also features
closed-form gradients. Using the property in Eq. (11) [23], we
therefore use the smallest and largest values of RQ(ΣKi , Gj) for
different choices of Gj as an estimate for these curvatures. That
is, we write

RQPi
min = min

j∈NK
Eig

RQ(ΣKi ,Gj) ,

RQPi
max = min

j∈NK
Eig

RQ(ΣKi ,Gj) ,
(12)

for a given vertex Pi of the mesh. Fig. 7 shows that the RQ
metric differentiates the flat and curved regions better than the
Gaussian one while it highlights particular details, such as the
wrinkles around the shoulders more strongly than the mean and
eigen curvature metrics. Please see the redness of wrinkly regions
in Fig. 7. Moreover, both the eigen and RQ metrics can operate
at different scales by varying K in Eq. (10) or Eq. (12). We will
study the effectiveness of the RQ metric for different choices of
K in Sec. 4.4.
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3.4.2 Curvature Loss Terms

As discussed earlier, the Rayleigh quotient fluctuates between
the minimum and maximum eigen curvatures, but there is no
guarantee that its smallest and largest values are strictly equal
to them. In practice, this is not an issue because we are more
interested in the similarity between our network’s predictions and
the ground truth than in exact curvature estimates. Therefore, let
RQPi

min and RQPi
max be the minimum and maximum values of

Eq. (12) for vertex i of the predicted mesh and RQGi
min and

RQGi
max the corresponding values for the ground truth. We write

the curvature loss term as

LRQ =
1

N

N∑
i=1

(RQPi
min −RQ

Gi
min)2 + (RQPi

max −RQGi
max)2 .

(13)
It is minimized when the curvature statistics of both meshes are
the same, which is what we are trying to achieve. We also tried
using the ratio of RQmax and RQmin, which yielded similar
results but made the training numerically less stable.

Note that the proposed curvature loss term’s main purpose is
not to align the predicted surface normal with that of the ground
truth. This task is already carried out by the normal term of Eq. 6
that improves angular accuracy but without increasing the level of
details. The latter is a function of how the vertices are distributed
in their local neighborhood. This distribution is not well-captured
by the normal loss as our experiments will show. This requires
using larger neighborhoods, which is precisely what our RQ-based
loss function does.

For comparison purposes, we also implemented a loss term
based on the mean curvature normals instead of the Rayleigh
quotient, similar to the one used in [53]. We take it to be

LMC =
1

N

N∑
i=1

∥∥∥κPi

MC − κ
Gi

MC

∥∥∥2 , (14)

where κMC is the mean curvature normal vector of Eq. (9).
Fig. 7 shows that the norm of the mean curvature normal is high
around the ridge-like wrinkles. However, its region of interest
per-vertex is limited to the one-ring neighborhood, and extension
to larger neighborhoods would require re-triangulation and extra
computation. By contrast, RQ and eigen curvatures can be easily
adapted to larger regions by changing the neighborhood size.

As mentioned earlier, another drawback of the mean curvature
is that the cotangent function used to compute κMC can return
very large values, and special care must be taken when minimizing
LMC to prevent divergence. Concretely, the weight of the loss
term based on mean curature normals should be altered when a
high cotangent value is computed. In practice, when using the
mean curvature normal computation, we observed instabilities for
some garments during the training stage even though we tried
ad hoc modifications in the loss function where the loss term is
turned-off if it is higher than a predefined threshold. By contrast,
our RQ-based loss term does not need such a careful supervision.
To confirm that the difficulties we encountered when using the
mean curvature loss are not due only to numerical instabilities, we
conducted an ablation study in Sec. 4.4.2.

3.4.3 Overall Loss Terms for Fine-Tuning the Network
To further increase the level of details of the draped cloth on target
bodies, we refine the weights of GarNet-Local by minimizing
an extended loss that incorporates the curvature terms LRQ and

LMC introduced in Sec. 3.4.2. Thus, we define two complete loss
function LMC and LRQ, which we write as

Ltot
MC = λpLp + λMCLMC , (15)

Ltot
RQ = λpLp + λ8

RQL8
RQ + λ16

RQL16
RQ + λ32

RQL32
RQ, (16)

where Lp is the loss function of Eq. (3). The superscripts denote
the number of neighboring vertices K in Eq. (10) and the λs are
scalar weights that we will specify in Sec. 3.5. For completeness,
we also introduce a third complete loss function

Ltot
MCRQ = λpLp + λMCLMC + λ8

RQL8
RQ + λ16

RQL16
RQ + λ32

RQL32
RQ

that incorporates both LMC and LRQ.

3.5 Implementation Details

To apply the skinning method of [24], we compute the skinning
weight matrixW using Blender [6] given the pose information of
the garment mesh.

The garment stream employs six residual blocks depicted in
Fig. 4 following the common practice of ResNet [21]. In each
block, we adopt the mesh convolution layer proposed in [52],
which uses one-ring neighbors to learn patch-wise features at
each convolution layer. As the mesh convolution operators rely
on trainable parameters to weigh the contribution of neighbors,
we always concatenate the input vertex 3D locations to their
input vectors so that the network can learn topology-dependent
convolutions.

While using the exact PointNet architecture of [43] in the body
stream, we observed that all point-wise body features converged
to the same feature vector, which seems to be due to ReLU
saturation. To prevent this, we use leaky ReLUs with a slope of
0.1 and add a skip connection from the output of the first Spatial
Transformer Network (STN) to the input of the second MLP block.
To use the body features in the garment stream as shown in Fig. 3,
the 512-dimensional global body features are repeated for each
garment vertex.

For the local body pooling depicted by Fig. 5, we downscale
the 3D body points along with their point-wise features by a factor
10. This is done by average-pooling the point-wise body features
with a 16 neighborhood size. For the local max-pooling of body
features in Fig. 5, the number of neighbors is 15. To increase the
effectiveness of the interpenetration term in Eq. (5), each matched
body point Bi is extended in the direction of its normal vector by
20% of average edge length of the mesh to ensure that penetrations
are well-penalized, and the tolerance parameter dtol is set to 0.05
for both our dataset and that of [54].

To train the network, we use the PyTorch [39] implementation
of the Adam optimizer [27] with a learning rate of 0.001. In all
the experiments reported in the following section, we empirically
set the weights of Eq. (3), λnormal, λpen and λbend to 0.3, 1.0
and 0.5, respectively.

In Eq. (15) and (16), λMC and λp are set to 10.0 and 0.1,
respectively. We fixed the RQ loss term weights so that all terms
have roughly the same overall loss value at the beginning of the
training. Hence, λ8RQ, λ16RQ, λ32RQ are set to 500, 50 and 10.0. As
evidenced by the results of Table 6, including all three loss terms
achieves the best trade-off between distance and angle error. In
Fig. 13, we show that different features are captured at different
neighborhood sizes.
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4 EXPERIMENTS

In this section, we evaluate the performance of our framework
both qualitatively and quantitatively. In Sec. 4.1, we first in-
troduce the evaluation metrics we use, and conduct extensive
experiments on our dataset to validate our architecture design.
Then, in Sec. 4.2, we compare our method against the only
state-of-the art method [54] for which the training and testing
data is publicly available. We also perform an ablation study to
demonstrate the impact of our loss terms. In Sec. 4.4, to show
the effectiveness of using curvature, we present qualitative and
quantitative comparison of the network predictions when using
either our RQ-based measure, or the one based on mean curvature
normals. Finally, in Sec. 4.5, we demonstrate that our approach
generalizes to body shapes generated using models other than the
SMPL model [30] we used in previous experiments.

4.1 Evaluation Metrics
We introduce the following two quality measures:

Edist =
1

N

N∑
i=1

‖GG
i −GP

i ‖ , (17)

Enorm =
1

NF

NF∑
i=1

arccos

(
(FGi )

T
FPi

‖FGi ‖‖FPi ‖

)
. (18)

Edist is the average vertex-to-vertex distance between the pre-
dicted mesh and the ground-truth one, while Enorm is the average
angular deviation of the predicted facet normals to the ground-
truth ones. As discussed in [9], the latter is important because the
normals are key to the appearance of the rendered garment.

4.2 Analysis on our Dataset
We created a large dataset featuring various poses and body
shapes. We first explain how we built it and then test various
aspects of our framework on it.

Dataset Creation. We used the Nvidia physics-based simu-
lator NvCloth [37] to fit a T-shirt, a sweater, a dress and a pair
of jeans represented by 3D triangulated meshes with 10k vertices
on synthetic bodies generated by the SMPL body model [30],
represented as meshes with 6890 vertices. To incorporate a variety
of poses, we animated the SMPL bodies using the yoga, dance and
walking motions from the CMU mocap [10] dataset. Using this
parameterization was a natural choice because it is easy to use and
handles skinning well, which is probably why it currently is one
of the most popular approach to human body modeling. However,
we will show in Section 4.5 that our approach to animation does
not depend on this.

The training, validation and test sets consist of 500, 20 and
80 bodies, respectively. The T-shirt, the sweater, the dress and the
jeans have, on average, 40, 23, 26 and 31 poses, respectively. To
guarantee repeatability for similar body shapes and poses, each
simulation was performed by starting from the initial pose of the
input garment.

Quantitative Results: Recall from Sec. 3.2 that we imple-
mented two variants of our network, GarNet-Global that relies
solely on global body-features and GarNet-Local that also ex-
ploits local body-features by performing nearest neighbor pooling,
as shown in Fig. 5. As a third variant, we implemented a simpli-
fied version of GarNet-Global in which we removed the mesh
convolution layers that produce patch-wise garment features. It

therefore performs only point-wise (i.e. 1 × 1 conv.) and max-
pooling operations, and we dub it GarNet-Naive, which can
also be interpreted as a two-stream PointNet [43] with extra skip
connections. We also compare against the garment warped by dual
quaternion skinning (DQS) [24], which only depends on the body
pose.

In Table 1, we report our results in terms of the Edist
and Enorm of Sec. 4.1. In Fig. 9, we plot the corresponding
average precision curves for T-shirts, jeans, dress and sweaters.
The average precision is the percentage of vertices/normals of all
test samples whose error is below a given threshold. GarNet-
Naive does worse than the two others, which underlines the
importance of patch-wise garment features. GarNet-Global and
GarNet-Local yield comparable results with an overall advantage
to GarNet-Local. We provide additional qualitative comparisons
between GarNet-Local and GarNet-Global in the supplementary
material. Finally, in Table 2, we report the computation times of
our networks and of the employed PBS software. Note that both
variants of our approach yield a 100 times speed-up.

Using SMPL Parameters as Input: Unlike that of [54], our
network does not depend on a specific body model, such as SMPL.
If we only used SMPL body parameters as input to our network,
it would be impossible to model interpenetration explicitly during
training as we do, which would result in severe interpenetrations at
test time and would require post-processing. This can of course be
remedied by computing the 3D locations of enough body surface
points to write an interpenetration loss term. To test this, we
implemented a variant of our approach that does this and that we
will refer to as GarNet-Global-Params. For a fair comparison,
we replaced the global body features of GarNet-Global by those
of the SMPL shape and its pose parameters but kept on using
our garment stream, with its carefully designed mesh convolution
layers and skip connections. We compare our GarNet-Local
approach against GarNet-Global-Params in Table 3. The results
are similar but our unmodified method has the advantage of being
generic and not limited to a specific body parameterization.

Qualitative Results: Fig. 10 depicts the results of the GarNet-
Local, GarNet-Global and GarNet-Naive architectures. The
GarNet-Global results are visually similar to the GarNet-Local
ones on the printed page; however, GarNet-Global produces a
visible gap between the body and the garment, while the garment
draped by GarNet-Local is more similar to the PBS one. GarNet-
Naive generates some clearly visible artifacts, such as spurious
wrinkles near the right shoulder. By contrast, the predictions of
GarNet-Local closely match those of the PBS method while being
much faster. We provide further evidence of this in Fig. 11 for the
four different garment types.

4.3 Results on the Dataset of [54]
The work in [54] is the only non-PBS method that addresses
a problem similar to ours and for which the data is publicly
available. Specifically, the main focus of [54] is to drape a garment
on several body shapes for different garment sewing patterns.
Their dataset contains 7000 samples consisting of a body shape
in the T-pose, sewing parameters, and the fitted garment. Hence,
the inputs to the network are the body shape and the garment
sewing parameters. To use GarNet for this purpose, we take one
of the fitted garments from the training set to be the template
input to our network, and concatenate the sewing parameters to
each vertex feature before feeding them to the MLP layers of our
network.
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Fig. 9: Average precision curves for the vertex distance and the facet normal angle error.

Jeans T-shirt Sweater Dress
Edist/Enorm Edist/Enorm Edist/Enorm Edist/Enorm

GarNet-Local 0.41 (± 0.29) / 5.10 (± 4.81) 0.56 (± 0.48) /8.34 (± 9.76) 0.85 (± 0.95) / 10.39 (± 10.95) 1.06 (± 1.49) / 7.8 (± 7.70)
GarNet-Global 0.42 (± 0.29) / 5.18 (± 4.85) 0.57 (± 0.49) / 8.44 (± 9.80) 0.93 (± 0.93) / 10.54 (± 11.04) 1.13 (± 1.49) / 7.83 (± 7.79)
GarNet-Naive 0.70 (± 0.80) / 8.83 (± 12.67) 0.73 (± 0.63) / 11.28 (± 14.05) 1.03 (± 0.96) / 11.3 (± 11.46) 1.19 (± 1.49) / 8.92 (± 9.61)

DQS 11.43 (± 5.16) / 22.0 (± 27.64) 9.98 (± 4.49) / 30.74 (± 24.90) 6.47 (± 3.97) / 24.64 (± 19.85) 14.79 (± 4.52) / 28.21(± 22.27)

TABLE 1: Architecture comparison: Average distance in cm and face normal angle error in degrees between the PBS and predicted vertices
in our dataset that uses SMPL body models. Numbers in paranthesis indicate standard deviation.

GarNet-Naive GarNet-Global GarNet-Local PBS
Fig. 10: Comparison on the T-shirt. GarNet-Naive produces ar-
tifacts near the shoulder while GarNet-Local, GarNet-Global and
PBS yield similar results.

GarNet-Local GarNet-Global GarNet-Naive PBS PBS†

time (ms) 68 59 0.2 > 19000 >7200

TABLE 2: Comparison of the computation time. We used a single
Nvidia TITAN X GPU for PBS and for our networks. In our case,
forward propagation was done with a batch size of 16. PBS† stands
for PBS computation excluding the time spent during the warping of
template garment onto the target body pose.

Jeans T-shirt Sweater Dress
Edist/Enorm Edist/Enorm Edist/Enorm Edist/Enorm

GarNet-Local 0.41 / 5.10 0.56 / 8.34 0.85 / 10.39 1.06 / 7.80
GarNet-Global-Params 0.44 / 5.36 0.54 / 8.40 0.77 / 9.76 1.05 / 7.47

TABLE 3: Comparison between GarNet-Local and GarNet-Global-
Params in our dataset that uses SMPL body models. The latter uses
the ground truth SMPL shape and pose parameters.

We use the same training (95%) and test (5%) splits as in [54]
and compare our results with theirs in terms of the normalized
L2 distance percentage, that is, 100× ‖G

G−GP ‖
‖GG‖ , where GG and

GarNet-Local GarNet-Global [54]
Dist. % 0.43 0.48 3.01

Angle. ^ 7.34 7.75 N/A

TABLE 4: Distance % and angle error on the shirt dataset of [54].

Loss Function Edist Enormal

Lvert + Lpen 0.49 10.01
Lvert + Lpen + Lbend 0.51 9.06
Lvert + Lnorm + Lbend 0.48 7.70
Lvert + Lpen + Lnorm 0.48 7.91

Lvert + Lpen + Lnorm + Lbend 0.42 7.34
Lvert + Lpen + Lnorm + Lbend + LRQ 0.45 7.2

TABLE 5: Ablation study on the dataset of [54] with GarNet-Local.
The term LRQ is our proposed loss term described in Sec. 3.4.

GP are the vectorized ground-truth and predicted vertex locations
normalized to the range [0, 1]. We use this metric here because it is
the one reported in [54]. As evidenced by Table 4, our framework
generalizes to making use of garment parameters, such as sewing
patterns, and outperforms the state-of-the-art one of [54].

Ablation study. We also conducted an ablation study on the
dataset of [54] to highlight the influence of the different terms
in our loss function. To this end, we trained the network while
removing the penetration term, the bending term and the normal
term one at at time. We also report results without both the normal
and bending terms. As shown in Table 5, using the normal and
bending terms significantly improves the angle accuracy. This can
be seen in Fig. 12 where the normal term helps remove spurious
wrinkles. While turning off the penetration term only has only
limited impact on the quantitative results, it causes substantial
interpenetrations that can also be seen clearly in the figure.
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Fig. 11: GarNet-Local (top) vs PBS (bottom) results for several
poses. Note how similar they are, even though the former were
computed in approx. 70ms instead of 20s. Our method successfully
predicts the overall shape and details with intermediate frequency.

No penet. No norm. Full Loss PBS
Fig. 12: Ablation study. Reconstruction without some of the loss
terms results in interpenetration (left) or different wrinkles at the back
(second from left). By contrast, using the full loss yields a result very
similar to the PBS one (two images on the right).

4.4 Fine-Tuning using the Curvature Losses

In this section, we show that fine-tuning the network using the
curvature losses introduced in Sec. 3.4.3 increases the level of
detail and plausibility of the predicted shapes.

RQ 8-NN RQ 16-NN RQ 32-NN RQ {8 + 16}-NN RQ {8 + 16 + 32}-NN
Edist 0.43 0.44 0.47 0.43 0.45
Enorm 7.51 7.44 7.42 7.38 7.2

TABLE 6: Distance and angle errors for different neighborhood
combinations in our dataset that uses SMPL body models.

8-Neighborhood 16-Neighborhood 32-Neighborhood

m
in
.	o

f	R
Q
.

m
ax
.	o

f	R
Q
.

-0

-1.0

Fig. 13: Varying the neighborhood in the RQ curvature metric.
The metrics above are normalized between 0 and 1.

4.4.1 Qualitative Results
Fig. 14 highlights the improved realism that our curvature loss
terms deliver. Adding the RQ loss terms prevent oversmoothing
and increases the level of detail. Furthermore, it removes noise
from the predicted garment while preserving its wrinkles, as this
can be observed from a qualitative comparison of the first and third
column. Moreover, using GarNet-Local-RQ yields predictions
that look more similar to the PBS ones than those using GarNet-
Local-MC. We attribute this to the following two factors. First,
the RQ loss, which is based on covariance matrices, accounts
for the second-order statistics of the local neighborhood of each
point, while the mean curvature one does not. Second, the RQ
loss has a multi-scale impact in the local neighborhood, while the
mean curvature only uses the one-ring neighborhood and does not
penalize the absence of wrinkles covering a larger region than
that neighborhood. We also compare GarNet-Local and GarNet-
Local-RQ in Fig. 15 on the dataset of [54]. Using the RQ metric
again helps produce more wrinkles while eliminating undesirable
noise. Moreover, the second-order statistics in our proposed loss
helps to mimic the statistics but not the exact 3D vertex locations
since the simulation results might be inconsistent due to numerical
instabilities for very similar body shapes and poses as also pointed
out in [53].

Admittedly, wave-like patterns cannot be reconstructed solely
by minimizing out curvature loss. However, it is not the only
loss term. In theory, the normal loss term should penalize cases
in which the network predicts a large wrinkle instead of higher
frequency but smaller wrinkles. This can be seen in Fig. 15 where
our network produces multiple consecutive wrinkles as it should.

4.4.2 Quantitative Results

Jeans T-shirt Sweater Dress
LMC/LRQ LMC/LRQ LMC/LRQ LMC/LRQ

GarNet-Local 0.29 / 0.070 0.14 / 0.23 0.13 / 0.82 0.06 / 0.52
GarNet-Local-RQ 0.29 / 0.070 0.13 / 0.09 0.11 / 0.27 0.04 / 0.15
GarNet-Local-MC 0.28 / 0.067 0.11 / 0.26 0.08 / 0.64 0.03 / 0.46

GarNet-Local-MCRQ 0.30 / 0.066 0.12 / 0.10 0.09 / 0.28 0.037 / 0.17

TABLE 7: Average loss values for RQ and mean curvature in our
dataset that uses SMPL body models.

To quantify the improvement on the wrinkle details and the
curvature deviation from the PBS results, in Table 7, we first report
the average loss values for both the mean curvature normal LMC

and the sum of all RQ curvature terms in Eq. (16). We denote the
results obtained using the mean curvature normal loss of Eq. (15)
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GarNet-Local-MC GarNet-Local-RQ PBSGarNet-Local

Fig. 14: Using the curvature metrics to improve the level of detail
on our dataset. The red ellipses in the first column denote regions that
are much smoother in the GarNet-Local prediction than in the PBS
one. More realistic wrinkles are produced in those areas by GarNet-
Local-MC and GarNet-Local-RQ.

as GarNet-Local-MC, those obtained using the Rayleigh quotient
loss of Eq. (16) as GarNet-Local-RQ, and using both curvature
losses as GarNet-Local-MCRQ, which we compare to those
of GarNet-Local, that is, without fine-tuning. Introducing the
curvature loss terms significantly improves over GarNet-Local
in terms of average mean and RQ curvature loss values in the test
dataset. Note that GarNet-Local-MCRQ and GarNet-Local-RQ
most decrease the sum of these two loss values except for the jeans

GarNet-Local GarNet-Local-RQ PBS

Fig. 15: Using the curvature metrics to improve the level of detail
on the dataset of [54]. Each row depicts a single body shape dressed
by different method in each column. On the nearly planar part at the
front of the T-shirt and on its back, GarNet-Local-RQ delivers both
more realistic wrinkles and less noise than GarNet-Local.

Jeans T-shirt Sweater Dress
Edist/Enorm Edist/Enorm Edist/Enorm Edist/Enorm

GarNet-Naive 0.7/8.83 0.73/11.28 1.03/11.3 1.19/ 8.92
GarNet-Global 0.42/5.18 0.57/8.44 0.93/10.54 1.13 / 7.83
GarNet-Local 0.41 / 5.1 0.56 / 8.34 0.85 / 10.39 1.06 / 7.8

GarNet-Local-RQ 0.53 / 5.08 0.63 / 7.79 1.1 / 9.7 1.15 / 7.15
GarNet-Local-MC 0.45 / 4.79 0.69 / 7.66 0.88 / 8.88 1.16 / 6.85

GarNet-Local-MCRQ 0.56 / 4.85 0.65/ 7.47 1.14 / 9.54 1.21 / 7.18

TABLE 8: Average distance in cm and face normal angle difference
in degrees between the PBS and predicted vertices in our dataset that
uses SMPL body models.

because they lack wrinkles.
For the sake of completeness, we now turn to the error metrics

introduced in Sec. 4.1 to show that the increase in realism does
not significantly compromise the distance and angle accuracy. We
report our results on our dataset in Table 8. In terms of lowest
distance and angle errors, GarNet-Local and GarNet-Local-MC
are virtually equivalent while GarNet-Local-RQ is slightly worse.
This decrease in the angle and distance accuracy was expected
because GarNet-Local-RQ puts more emphasis on generating
local statistics that are closer to those of the PBS ground at the
potential expense of the other loss terms.

When we compare GarNet-Local-RQ and GarNet-Local on
the dataset of [54], the average distance error increases from
0.42cm (GarNet-Local) to 0.45cm (GarNet-Local-RQ). How-
ever, the additional RQ loss helps decrease the average angle
error from 7.34 (GarNet-Local) to 7.2 (GarNet-Local-RQ).
Moreover, GarNet-Local-RQ reduces the RQ curvature loss from
0.21 to 0.11.

By contrast, when the network is fine-tuned using the curvature
loss term based on mean curvature normals, the training becomes
unstable and diverges because of very high cotangent values of

Edist Enorm LMC LRQ

GarNet-Local-UMC 0.61 8.25 0.14 0.23
GarNet-Local-MC 0.69 7.66 0.11 0.26
GarNet-Local-RQ 0.63 7.79 0.13 0.09

TABLE 9: Comparison between the proposed RQ-based curvature
loss, the discrete mean curvature operator of Eq. 9, and the uniformly
weighted mean curvature operator of Eq, 19 in our T-shirt dataset
(SMPL body model).
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GarNetLocal-RQ GarNetLocal-MC GarNetLocal-UMC PBS

Fig. 16: Comparison of different curvature loss functions in our T-shirt
dataset with SMPL body models to improve the details and reconstruct
wrinkles and folds.

the facet angles, as discussed in Sec. 3.4. Hence, we do not report
any result based on that loss here. To probe this further, we have
also experimented on our T-shirt dataset with the Laplace Operator
used in [49]. By analogy to the Mean Curvature Normal Operator
in Eq. (9), we write it as

κiUMC =
1

|NE
i |

∑
j∈NE

i

(Gj −Gi) (19)

where Gi is the ith vertex of the garment as in Sec. 3.1. This
gives uniform weights to all vertices in a neighborhood. We use
the same loss as in (14), where we replace κMC with κUMC .
We will refer to to training using this operator as GarNelLocal-
UMC. In Table 9 and Figure 16, we compare it to GarNet-Local-
RQ and GarNet-Local-MC. Our proposed RQ-based curvature
loss delivers the best trade-off between angle and distance ac-
curacy: The distance accuracy decreases slightly but allows for
a significant increase in angle accuracy. Moreover, it still yields
the smallest total loss value for both the mean curvature and RQ.
This is evidence that our RQ-based loss has a quantitative impact.
Looking at the predicted 3D shapes such as those of Fig. 16,
we can see that using our proposed loss results in more wrinkles
and/or folds that make the result perceptually more similar to the
PBS than the other two.

4.5 Moving away from SMPL Bodies.

The experiments described above were conducted on the dataset
we generated and on the one of [54], both of which rely on the
popular SMPL body models. It is currently the most widely used
but this might change sooner or later. Because our method is
generic and does not depend on the SMPL parameterization, it
will remain relevant when and if this happens.

To demonstrate this, we generated another T-shirt and Sweater
datasets based on the CAESAR female body shapes [45] in a
single pose, as depicted by Fig. 17. We split the body shapes
into train, validation and test sets comprising 1376, 344, and 432
shapes, respectively and run PBS simulations for all of them. In
Table 10, we report our proposed RQ-based detail loss value, dis-
tance and angle errors for both GarNet-Local and GarNet-Local-
RQ in the test set. Both configurations deliver good accuracy but
with a clear advantage to GarNet-Local-RQ in terms of angle
error and detail loss value.

T-shirt Sweater
Edist / Enorm /LRQ Edist / Enorm /LRQ

GarNet-Local-RQ 0.46 / 6.56 / 0.025 0.56 / 6.66 / 0.031
GarNet-Local 0.53 / 8.23 / 0.044 0.61 / 8.11 / 0.047

TABLE 10: Quantitative comparison between GarNet-Local-RQ and
GarNet-Local in our dataset curated from CAESAR female body
shapes.
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Fig. 17: Qualitative results of GarNet-Local-RQ in our dataset
curated from CAESAR female body shapes for T-shirt and sweater.

5 CONCLUSION

In this work, we have introduced a novel two-stream network
architecture that can drape a 3D garment shape on different target
bodies in many different poses, while running 100 times faster
than a Physics-Based Simulator. Its key elements are an approach
to jointly exploiting body and garment features and a loss function
that promotes the satisfaction of physical constraints. By also
taking as input different garment sewing patterns, our method
generalizes to accurately draping different styles of garments.

Our model can drape the garment shapes to within 1 cm
average distance from those of a PBS method while limiting
interpenetrations and other artifacts. To reduce the tendency of the
network to remove high-frequency details, which can also be vi-
sually observed in [17] and [47], we have proposed two curvature
loss functions that consider the local interactions between vertices
and faces. This, in turn, has led to higher similarity to the Physics-
Based Simulation while reducing the noise of the prediction of the
network when trained without these loss terms.
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