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Abstract: Operation at low speed and high torque can lead to the generation of strong ripples in
the speed, which can deteriorate the system. To reduce the speed oscillations when operating a
five-phase asynchronous motor at low speed, in this article, we propose a control method based on
Gray Wolf optimization (GWO) algorithms to adjust the parameters of proportional–integral (PI)
controllers. Proportional–integral controllers are commonly used in control systems to regulate the
speed and current of a motor. The controller parameters, such as the integral gain and proportional
gain, can be adjusted to improve the control performance. Specifically, reducing the integral gain
can help reduce the oscillations at low speeds. The proportional–integral controller is insensitive to
parametric variations; however, when we employ a GWO optimization strategy based on PI controller
parameters, and when we choose gains wisely, the system becomes more reliable. The obtained
results show that the hybrid control of the five-phase induction motor (IM) offers high performance in
the permanent and transient states. In addition, with this proposed strategy controller, disturbances
do not affect motor performance.

Keywords: PI-controller; five-phase asynchronous motor; Gray Wolf optimization; speed oscillations

1. Introduction

The study and control of the asynchronous machine are currently one of the major
concerns of researchers in the field compared to the direct current machine; this machine has
many advantages in terms of dynamic performance, longevity, and its ability to withstand
overloads, which justifies its use in various industrial environments, including electric
traction [1]. However, the reduced number of phases can be a handicap in particular areas
of application, such as rail traction, naval propulsion, automotive, and aerospace [2]. In
contrast, the properties of polyphase machines are very appealing, as a rise in the number
of phases results in a decrease in the ripples of the electromagnetic torque [3,4]. The
fractionation of the power, which results in a reduction in the sizing constraints on the
power electronic components supplying each phase in addition to this increase, makes it
possible to operate one or more faulty phases [3]. This issue is fundamental for applications
that must guarantee an excellent continuity of service.

Many works have studied the control of polyphase machines, such as the flux orienta-
tion control [3], the fuzzy logic control [5], the direct torque control (DTC) [4], the predictive
control (PC) [6], and the sliding mode control (MGC) [7]. Research has aimed to develop a
control system for the polyphase asynchronous machine that operates at low speed and
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high torque to reduce the occurrence of periodic torque ripples. These ripples can cause
speed oscillations and potentially harm the machine [8].

The fields of control and regulation theory have been considerably developed over
the past decades; however, the importance of the proportional–integral–derivative (PID)
controller in the industry remains unaffected. Because of its straightforward design, it is
simple to comprehend and operate, as well as resilient and stable across a wide range [5].

Unfortunately, proportional–integral (PI) controllers are widely used in control systems
to regulate a process variable, such as the speed or position of a motor. The PI controller
has two parameters, the proportional gain (Kp) and integral gain (Ki), that determine
the response of the controller. The PI controller parameters can be tuned using several
methods, including metaheuristic algorithms [9]. Metaheuristic algorithms are optimization
algorithms that can be used to find optimal solutions for complex problems. Here are some
examples of metaheuristic algorithms that can be used to tune PI controllers: Inspired by
the social behavior of bird flocks, Particle Swarm Optimization (PSO) is an optimization
algorithm based on population. In PSO, a population of particles is used to search for
the optimal solution by adjusting their positions based on the best solution [10]. Genetic
Algorithm (GA) is an optimization algorithm that imitates the process of natural selection.
It uses a group of individuals to explore the optimal solution by applying genetic operators,
such as crossover and mutation, to produce new solutions [11–14]. The optimization
algorithm known as Ant Colony Optimization (ACO) draws inspiration from the foraging
behavior of ants. In ACO, a population of ants is used to search for the optimal solution by
depositing pheromones on the paths that lead to better solutions [15,16]. Inspired by the
foraging behavior of honeybees, Artificial Bee Colony (ABC) is an optimization algorithm.
The Artificial Bee Colony (ABC) algorithm imitates the behavior of real bees, where a
population of artificial bees is employed to explore the optimal solution [17]. Grey Wolf
Optimization (GWO) is an optimization algorithm inspired by the hunting behavior of
grey wolves [18]. In Grey Wolf Optimization (GWO), a population of wolves is employed
to search for the optimal solution by mimicking the hunting behavior of a wolf pack. The
Grey Wolf Optimizer and Particle Swarm Optimization are two popular metaheuristic
optimization algorithms that are used to solve complex optimization problems. Both
algorithms are based on the principles of swarm intelligence and are inspired by the
behavior of animals in nature. However, there are some key differences between GWO
and PSO: Optimization approach: GWO is a population-based optimization algorithm,
where a group of grey wolves search for the optimal solution to a problem. PSO, on the
other hand, is based on the behavior of a swarm of particles that explore the solution
space. Solution representation: In GWO, the solution to a problem is represented as a
position vector of the grey wolves, while, in PSO, it is represented as a position vector
of the particles. Exploration vs. exploitation: GWO emphasizes the exploration of the
search space in the early stages of the optimization process and gradually shifts towards
exploitation in the later stages. PSO, on the other hand, maintains a balance between
exploration and exploitation throughout the optimization process. Convergence rate:
GWO has been shown to have a faster convergence rate than PSO for some optimization
problems. However, PSO is known to be more effective at handling high-dimensional
problems. Initialization: GWO requires an initial population of grey wolves to begin the
optimization process, while PSO only requires an initial set of particles. In summary, both
GWO and PSO are effective optimization algorithms that can be used to solve a wide range
of problems. The choice between them depends on the specific problem being addressed
and the performance requirements of the solution [17–20]. To achieve precise monitoring
of the rotational speed with minimal ripple in the low-speed and high-torque operations
of the five-phase asynchronous machine, the algorithm precisely tunes the parameters
of the proportional–integral controller (PI) [19–24]. Although the advantages mentioned
earlier are noteworthy, conventional PID controllers need a linear model, which cannot
guarantee robustness against uncertainties because of the significant nonlinear dynamics
of a five-phase induction motor (IM). In this paper, we propose a recently developed
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optimization method based on the Grey Wolf algorithm (GWO). Under low speed and high
torque conditions, this algorithm optimizes the gains of the PI controller to determine the
optimal path of input commands that achieves the desired speed while minimizing ripple
in the five-phase asynchronous machine [18].

This document is structured as follows: the first section covers the system description,
and the second section addresses the modeling of the five-phase IM. The design methodol-
ogy of the PI controller based on GWO is presented in the third section. The fourth section
illustrates the results of the simulation and discusses the efficacy of the suggested control
approach, and the final section provides a summary of the contributions of this work.

2. System Description

Achieving optimal control performance through the PID regulator requires a me-
thodical approach to determine the appropriate values for the controller’s proportional,
integral, and derivative gains. We propose a meta-heuristic optimization technique based
on the hunting style of grey wolves as illustrated in Figure 1. The five-phase IM control
structure employs three control loops: the motor angular speed control loop Ω that uses a
PI controller, and two PI controllers for the stator flux ψ and the electromagnetic torque
Cem. The primary electromagnetic torque is obtained directly from the external speed loop.
The two regulators output the reference stator voltage (vqsre f , vdsre f ) along the q and d axes.
After the inverse Park transformation, we obtain the real stator voltage, which produces
the real speed of the motor. The inputs of the estimator are the real currents along the
(d,q) axis obtained after the Park transformation of the real currents. The estimation block
determines the instantaneous amplitude of the stator flux ψs, the electromagnetic torque
Cem, and the stator electric angles θs.
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Figure 1. Schematic diagram of Optimized Controller applied on five-phase IM. 

3. Modeling of Five Phase Induction Machine 
The voltage model of the five phase induction motor is obtained as [5]: 

⎩⎪⎨
⎪⎧ 𝑉 = 𝑅 𝑖 + 𝑑𝑑𝑡 𝜓𝑉 = 𝑅 𝑖 + 𝑑𝑑𝑡 𝜓𝜓 = 𝐿 𝑖 + 𝑀 𝑖𝜓 = 𝐿 𝑖 + 𝑀 𝑖

 (1)

where 𝑅  and 𝑅  are the resistance martices, 𝐿  and 𝐿  are the matri-
ces of inductances, 𝑀  and 𝑀  are mutual inductance between stator and rotor 
martices, 𝑉 and 𝑉   are the voltage martices, 𝑖   and 𝑖   are the current 
martices, 𝑉  and 𝑉  are flux linkages matrices, and the subscripts s and r refer to 
the stator and rotor windings, respectively. The mutual inductance matrices are given be-
low. 𝑀 = 𝑀  (2)

All resistance matrices are symmetric as shown below, which is a direct result of the 
perfect symmetry of the machine: 𝑅 =𝑅 ∗ 𝐼  𝑅 =𝑅 ∗ 𝐼  

(3)

where 𝑅𝑠 and 𝑅  are stator resistance and stator inductance, respectively, and I is the ma-
trix consisting of ones on the main diagonal and zeros elsewhere; this is referred to as the 
identity matrix. 

Figure 1. Schematic diagram of Optimized Controller applied on five-phase IM.
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3. Modeling of Five Phase Induction Machine

The voltage model of the five phase induction motor is obtained as [5]:
[Vs]1x5 = [Rs]5x5[is]1x5 +

d
dt [ψs]1x5

[Vr]1x5 = [Rr]5x5[ir]1x5 +
d
dt [ψr]1x5

[ψs]1x5 = [Ls]5x5[is]1x5 + [Msr]5x5[ir]1x5
[ψr]1x5 = [Lr]5x5[ir]1x5 + [Mrs]5x5[is]1x5

(1)

where [Rs]5x5 and [Rr]5x5 are the resistance martices, [Ls]5x5 and [Lr]5x5 are the matrices of
inductances, [Msr]5x5 and [Mrs]5x5 are mutual inductance between stator and rotor mar-
tices, [Vs]1x5and [Vr]1x5 are the voltage martices, [is]1x5 and [ir]1x5 are the current martices,
[Vs]1x5 and [Vr]1x5 are flux linkages matrices, and the subscripts s and r refer to the stator
and rotor windings, respectively. The mutual inductance matrices are given below.

[Msr]5x5 = [Mrs]
t
5x5 (2)

All resistance matrices are symmetric as shown below, which is a direct result of the
perfect symmetry of the machine:

[Rs]5x5= Rs ∗ [I]5x5
[Rr]5x5= Rr ∗ [I]5x5

(3)

where Rs and Rr are stator resistance and stator inductance, respectively, and I is the matrix
consisting of ones on the main diagonal and zeros elsewhere; this is referred to as the
identity matrix.

The stator inductance matrix is obtained using:

[Ls]5x5 =



Lm + L f s Lm cos
( 2π

5
)

Lm cos
(

4π
5

)
Lm cos

( 6π
5
)

Lm cos
( 8π

5
)

Lm cos
( 8π

5
)

Lm + L f s Lm cos
( 2π

5
)

Lm cos
(

4π
5

)
Lm cos

( 6π
5
)

Lm cos
( 6π

5
)

Lm cos
( 8π

5
)

Lm + L f s Lm cos
( 2π

5
)

Lm cos
(

4π
5

)
Lm cos

(
4π
5

)
Lm cos

( 6π
5
)

Lm cos
( 8π

5
)

Lm + L f s Lm cos
( 2π

5
)

Lm cos
( 2π

5
)

Lm cos
(

4π
5

)
Lm cos

( 6π
5
)

Lm cos
( 8π

5
)

Lm + L f s


(4)

It is possible to express the mutual matrix inductance in the following manner:

[Msr]5x5 = Lm



cos(θ) cos
(
θ − 2π

5
)

cos
(

θ − 4π
5

)
cos
(
θ − 6π

5
)

cos
(
θ − 8π

5
)

cos
(
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5
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cos(θ) cos
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5
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(
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5
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cos
(
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5
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(
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5
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cos
(
θ − 8π

5
)

cos(θ) cos
(
θ − 2π

5
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cos
(
θ − 2π

5
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cos
(
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(
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cos
(
θ − 8π

5
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cos(θ)


(5)

where Ls, Lfs, and Lm are stator, stator leakage, and magnetizing inductances, respectively.
The transformation matrix [Pn] for the five-phase induction motor is defined as fol-

lows [7]:

[Pn] = Lm


cos(θ) sin(θ) 0 0 0
− sin(θ) cos(θ) 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (6)
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After applying Park’s transformation matrix to the stator and rotor equations, the five-
phase system can be decomposed into the dq coordinate system as well as into an additional
xy coordinate system. The stator voltages of the system are written in the d–q–x–y axis as
follows [5–7] 

Vds = rsids −ωsψqs +
d
dt ψds

Vqs = rsiqs + ωsψds +
d
dt ψqs

Vxs = rsixs +
d
dt ψxs

Vys = rsiys +
d
dt ψys

(7)

The flux equations, which become:
ψds = (Lm + L f s)ids + Lmidr
ψqs = (Lm + L f s)iqs + Lmiqr

ψxs = L f sixs
ψys = L f siys

(8)

The expression for the electromagnetic torque Cem has been utilized to finalize the
model of the five-phase asynchronous machine.

Cem =
P
2
([is]

t ∂[Msr]

∂θ
[ir] + [ir]

t ∂[Msr]

∂θ
[is] (9)

where P is the number of pole pairs.
The mechanical model is obtained using:

J
d
dt

Ωr = Cem − Cr − f Ωr (10)

where Cem is the electromagnetics torques, Cr is the resistance torque, and J is the inertia.

4. Grey Wolf Optimizer

Grey Wolf Optimization (GWO) is a population-based metaheuristic optimization
algorithm inspired by the hunting behavior of grey wolves in nature [12]. The algorithm
was proposed by Seyedali Mirjalili, Shima Saremi, and Seyed Mohammad Mirjalili in 2014.
This algorithm is applied to the machine as stated by Ali Djerioui in [18]. GWO mimics the
social hierarchy and hunting behavior of grey wolves. A group of wolves, comprising of
alpha, beta, delta, and omega wolves, operates in this algorithm. The alpha wolf is the pack
leader, and the remaining wolves follow its lead. The beta, delta, and omega wolves have a
lower pack rank and serve as subordinates to the alpha wolf. The GWO algorithm starts by
randomly initializing the positions of the alpha, beta, delta, and omega wolves in the search
space. Then, the fitness function is evaluated for each wolf, and the position of the alpha
wolf is updated based on the best fitness value obtained so far. The positions of the other
wolves are updated using a formula that depends on the positions of the alpha (α), beta
(β), delta (δ), and omega (ω) wolves. The GWO algorithm has been applied successfully to
a variety of optimization problems, including function optimization, feature selection, and
classification. One of the advantages of GWO is its simplicity and ease of implementation.
However, as with other metaheuristic algorithms, GWO cannot be guaranteed to find the
global optimum for all optimization problems [12].

4.1. Objective Function

A function that is considered as a potential objective function is referred to as a
candidate objective function. The objective function is a mathematical function that takes
one or more input variables and produces a single output value. The optimization process
involves searching for the input values that result in the highest or lowest possible output
value, depending on the specific problem being addressed. It is a fundamental tool for
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decision making and problem solving, and it enables researchers and practitioners to find
the best solutions to complex problems.

To minimize the disparity between the estimated torque and flux and their references,
traditional PI regulators are utilized; alternatively, the GWO algorithm is employed to ob-
tain optimal gains. The GWO algorithm boasts several benefits, including fast convergence,
robustness, and minimal adjustment of gains. The following candidate objective functions
can be optimized using GWO:

H[n] =


K1 K2 0 0 0 0 0 0
0 0 K3 K4 0 0 0 0
0 0 0 0 K5 K6 0 0
0 0 0 0 0 0 K7 K8

T[n] (11)

where n is the current iteration, K1 . . . 8 are the constant gains, and H[n] is the objective
function vector with two objective functions along the axis (d, q).

The first objective function optimization can be applied to optimize the flux of a
machine. The objective function in this case would be a function that quantifies the
performance or efficiency of the machine in terms of the flux ψd with only one control
input ud.

The second objective function optimization can be used to optimize the speed Ω[k]
and torque Cem of a machine by determining the input variables that result in the highest
possible speed with only one control input uq. The objective function in this case would
be a function that quantifies the performance or efficiency of the machine in terms of its
speed. The objective function could be the maximum torque (or speed) that the machine
can achieve while maintaining a certain level of speed (or torque). The extent to which the
function should be minimized is closely associated with the amplitude of the speed ripple:

T[k] =
[
Td[k], Tq[k]

]T (12)

with
Td[k] =

[
ψre f [k]− ψ∗[k], ψre f [k− 1]− ψ∗[k− 1]

]
(13)

Tq[k] =

[
Ωre f [k]−Ω[k], Ωre f [k− 1]−Ω[k− 1],

Cre f
em [k]− C∗em[k], Cre f

em [k− 1]− C∗em[k− 1]

]
(14)

4.2. Store the Best Particle

The GWO algorithm is based on a set of mathematical equations that are used to
simulate the hunting behavior of grey wolves. Here is the general equation used in
GWO [12]: {

H[k + 1] = Hp[k]− P ∗ D
D =

∣∣C ∗ Hp[k]− H[k]
∣∣ (15)

here, k denotes the current iteration, Hp represents the position vector of the optimal
solution, and H represents an objective function and also the position vector of a search
agent. D indicates the distance between the ith wolf and the alpha wolf. P is a random
number ranging from 0 to 2, which reflects the encircling behavior of the wolves. The
values of P and C are calculated as follows:{

P = 2p ∗ r1 − p
C = 2p ∗ r2

(16)

where r1 and r2 are random numbers between [0, 1]. The GWO algorithm also includes
equations for updating the positions of the beta and delta wolves, as well as equations for
adjusting the search space and controlling the exploration–exploitation trade-off. However,
the general equation shown above is the key equation used in the encircling behavior of
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the wolves in GWO. The hunt is guided by the leader (alpha), which is the best solution
candidate; the beta and delta have better knowledge about the potential location of the prey.

Dxα = Cx1vxα(k)− Hx(k)
Dxβ = Cx2vxβ(k)− Hx(k)
Dxδ = Cx3vxδ(k)− Hx(k)

(17)

We use the optimal distance vector [Dxα, Dxβ, Dxδ] to formulate an intermediate input
control variable (vxα, vxβ, vxδ) defined by the following equation:

vx1(k + 1) = vxα(k)− Px1 ∗ Dxα(k)
vx2(k + 1) = vxβ(k)− Px2 ∗ Dxβ(k)
vx3(k + 1) = vxδ(k)− Px3 ∗ Dxδ(k)

(18)

where Cxi = 2pxirxi, Pxi = 2pxirxi − pxi, i ∈ (1, 2, 3), and x = (d, q).
The following equation is used to compute the candidate dq-input control, which

corresponds to the inverter voltages:

vxre f (k + 1) =
i=n

∑
i=1

vxi(k + 1)
3

(19)

Following the previous step, the search for the specific position for an ideal hunt is
based on the control of the particular distance of each wolf. For this, the voltage reference
is chosen as follows: {

uxre f = vxre f (k + 1) i f (|Pxi|) < 1
uxre f = vxre f (k) i f (|Pxi|) > 1

(20)

where vxre f is the actual input control, vxre f (k + 1) is the future input control, and uxre f is
the input control.

4.3. The Flowchart of the Algorithm

The Grey Wolf Optimization (GWO) algorithm is a metaheuristic optimization algo-
rithm inspired by the social hunting behavior of grey wolves. The flowchart of the GWO
algorithm is as follows:

Initialize the grey wolves’ population, which is a set of candidate solutions.
Calculate the objective function of each grey wolf in the population.
Assign the best, second best, and third best grey wolves as alpha, beta, and delta,

respectively.
Update the position of each grey wolf using Equation (14).
Update the objective function of each grey wolf in the new population.
Check if any of the updated grey wolves have a better fitness than alpha, beta, or delta.

If so, update the position of alpha, beta, or delta accordingly.
Repeat steps 4 to 6 until the stopping criteria are met, such as a maximum number of

iterations or a desired level of convergence.
In order to compare the performance of the Grey Wolf Optimizer (GWO) with another

optimization algorithm, we need to select a suitable algorithm for comparison. We propose
Particle Swarm Optimization (PSO) as a potential candidate for this purpose. The flowchart
for the basic PSO algorithm and GWO algorithm is shown in Figure 2.
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5. PI Controller Parameters Using the GWO Algorithm

The following steps can be followed to optimize the PI controller parameters for a
five-phase asynchronous motor using the GWO algorithm:

1. Define the problem: First, you need to clearly define the problem and identify the
variables that need to be controlled. In this case, the objective is to optimize the PI
controller parameters for controlling the speed of a five-phase asynchronous motor.

2. Choose the PI controller: A proportional–integral (PI) controller is commonly used
in control systems to regulate a process variable. It is a type of feedback controller
that uses the error between the desired setpoint and the measured process variable to
adjust the control signal.

3. Determine the controller parameters: The PI controller has two parameters that
need to be tuned: the proportional gain (Kp) and the integral gain (Ki). These
parameters determine the response of the controller and can be adjusted to optimize
the performance of the five-phase asynchronous motor.

4. Use the GWO algorithm for optimization: Grey Wolf Optimization (GWO) is a
population-based optimization algorithm that is inspired by the hunting behavior of
grey wolves. It is a metaheuristic optimization algorithm that can be used to find opti-
mal solutions for complex problems. You can use GWO to optimize the PI controller
parameters for the five-phase asynchronous motor.

5. Define the objective function: The fitness function is used to evaluate the performance
of the PI controller. In this case, the fitness function should measure how well the
controller is able to regulate the speed of the five-phase asynchronous motor.

6. Set up the GWO algorithm: The GWO algorithm requires several parameters to be
defined, including the population size, maximum number of iterations, and search
range for each parameter. The GWO algorithm can be set up to optimize the PI
controller parameters for the five-phase asynchronous motor.

7. Run the optimization: Once the GWO algorithm is set up, it can be used to find the
optimal values of Kp and Ki for the PI controller. The GWO algorithm will iterate
through the population and adjust the values of Kp and Ki until the fitness function
is optimized.



Energies 2023, 16, 4251 9 of 14

8. Evaluate the results.

Finally, the same can be performed to optimize the PI controller parameters for a
five-phase asynchronous motor using the PSO algorithm.

6. Simulation

To validate the performance of the proposed scheme depicted in Figure 1, we present
the simulations for a five-phase IM. The PI controller parameters are optimized using
the GWO and PSO algorithm, whose rated values and nominal electrical and mechanical
parameters are shown in Table 1. We obtained the values of PI controller gains using:

Table 1. Parameters of five-phase IM.

Parameters Values Parameters Values

Rs 4.85 Ω Ls 0.024 H
Rr 3.805 Ω Lr 0.024 H
p 2 Lm 0.258 H
k 0.0005 j 0.085

Basic PSO algorithm: The controllers’ gains are: Kpi = 21.7200, Kii = 47,700,
Kpi = 11.7200, Kii = 25,700, Kpω = 0.025375 and Kiω = 3.0290.

GWO algorithm: The controllers’ gains are: Kpi = 22.1200, Kii = 43,400, Kpi = 21.9200,
Kii = 42,300, Kpω = 0.032365 and Kiω = 2.0230.

The results shown in Figure 3a–d demonstrate the favorable dynamic behavior of
speed and torque achieved through the optimization of the PI controller parameters using
the GWO algorithm. When the rotor speed and torque are in steady state, the stator
resistance is changed from Rs to Rs/4 (stator faults). The PI control is a commonly used
control strategy for induction motors, as it provides a simple and effective way to regulate
the motor speed and torque. In this control strategy, the motor speed and torque are
controlled by adjusting the magnitude and phase of the stator current. The speed reaches
314 V, given as Ω ref at 0.05 s.
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In Figure 4a–d shows the currant (iqs) and relatives’ tracking errors in the presence of
stator faults in the optimization of the PI controller parameters using the GWO algorithm.
The stator currants (iqs) are shown in Figure 4a with the starting transients of the stator fault
as it develops the relatives’ tracking error, as displayed in Figure 4d. When the relatives’
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tracking error is in steady state, the stator resistance is changed from Rs to Rs/4 to show
the currant harmonics.
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optimization of PI controller parameters using GWO algorithm.

Figures 5 and 6 show the currant iqs component and currant iqp component in the
presence of stator faults with the optimization of PI controller parameters using the GWO
algorithm, respectively. The currants (iqs) are shown in Figure 4a with the starting transients
of the stator fault as it develops the relatives’ tracking error, as displayed in Figure 5d.
When the relatives’ tracking error is in steady state, the stator resistance is changed to show
the currant harmonics. This is also true for iqp.
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Figure 7a–d show the electromagnetics torques’ components (cemp and cems) with
the optimization of PI controller parameters using the GWO algorithm while subjecting the
stator’s resistance to a step changed from its nominal value to one-quarter of the nominal
value (the speed reference is maintained at a constant level). The electromagnetic torque
components for a five-phase machine can be expressed in the P–S reference frame. The
total electromagnetic torque is the sum of the two torque components.

Energies 2023, 16, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 7. The electromagnetic torques’ components (cemp (a,b) and cems (c,d)) in the presence of 
stator faults with the optimization of PI controller parameters using the GWO algorithm. 

The proposed control using GWO has a turnaround time of 35.3 µs in Matlab, with 
21.5 µs used for implementing the control. In comparison, using PSO, the turnaround time 
is 56.3 µs, with 39.5 µs used for implementing the control. Additionally, the proposed 
method has minimal impact on the treatment time and central processing unit (CPU) uti-
lization. 

Figure 8 shows that the rotor speed remains in a steady state. However, at 2 s, the 
stator resistance changes from Rs to Rs/2 due to stator faults. The implementation of a PI 
controller with GWO Control is more robust and results in a higher performance than a 
PI controller utilizing PSO. 

 
Figure 8. (a,b) Comparative study with a PI using GWO and PI using PSO.  

To
rq

ue
 (N

m
)

Sp
ee

d 
(ra

d/
s)

 

Figure 7. The electromagnetic torques’ components (cemp (a,b) and cems (c,d)) in the presence of
stator faults with the optimization of PI controller parameters using the GWO algorithm.



Energies 2023, 16, 4251 12 of 14

The proposed control using GWO has a turnaround time of 35.3 µs in Matlab, with
21.5 µs used for implementing the control. In comparison, using PSO, the turnaround time
is 56.3 µs, with 39.5 µs used for implementing the control. Additionally, the proposed
method has minimal impact on the treatment time and central processing unit (CPU)
utilization.

Figure 8 shows that the rotor speed remains in a steady state. However, at 2 s, the
stator resistance changes from Rs to Rs/2 due to stator faults. The implementation of a PI
controller with GWO Control is more robust and results in a higher performance than a PI
controller utilizing PSO.
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Figure 8. (a,b) Comparative study with a PI using GWO and PI using PSO.

From Table 2, the rotor speed is in a steady state, and the stator resistance is changed
from Rs to Rs/2, Rs/4, and Rs/10 (stator faults) at 2 s. It can be asserted that utilizing
the PI with GWO Control yields a high-performance control system that is more resilient
than a conventional PI controller and PI using PSO (Setting time (TSe) and Maximum
Peak Overshoot (MPO)). To summarize the improvement in low-speed conditions, the
rotor speed and electromagnetic torque of a five-phase induction motor with PI control
depends on various factors such as the operating conditions, motor parameters, and control
strategy used. When combined, the five-phase induction motor with PI control and GWO
optimization can provide precise speed control and efficient operation of the motor, making
it suitable for a wide range of applications.

Table 2. Comparative study with a classical PI controller, PI using GWO, and PI using PSO.

Stator
Resistance Rs/2 Rs/4 Rs/10

Method
Speed PI PI using

GWO
PI using

PSO PI PI using
GWO

PI using
PSO PI PI using

GWO
PI using

PSO
Setting time 0.2 0.04 0.09 0.24 0.07 0.101 0.32 0.078 0.103

Maximum Peak
Overshoot 1% 0.02% 0.056% 2.5% 0.05% 0.076% 3.5% 0.066% 0.098%

Relatives’
tracking error 6 × 10−3 1 × 10−5 4 × 10−4 13 × 10−2 2 × 10−5 6.7 × 10−4 5 2.5 × 10−5 6.7 × 10−4

7. Conclusions

In this paper, we evaluated the performance of the optimized PI controller by analyzing
the output data and comparing it to the desired setpoint. If the speed of the five-phase
asynchronous motor is regulated within an acceptable range and the ripples are minimized,
then the PI controller parameters can be considered optimized for this application. If not,
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the objective function may need to be adjusted. The proposed approach exploits the rapid
optimization process of the GW technique under real-time working conditions to determine
the optimal voltage vector that ensures the desired tracking speed at high torque and
with less ripple. The mathematical principle of the proposed GWO controller is detailed,
and the simulation results show that the GWO algorithm offers the best convergence
towards optimal solutions with the best quality. Moreover, GWO shows a good balance
between exploration and exploitation, which makes it a better algorithm to solve complex
engineering optimization problems. To gain further insights into the effectiveness of the
PI controller using GWO under real-time working conditions, it would be beneficial to
conduct additional comparisons with advanced control methods such as intelligence-based
algorithms. Additionally, the GWO algorithm could be extended to solve speed or torque-
tracking tasks in other five-phase IM drives where low-order harmonics are undesired and
traditional control algorithms are ineffective.
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