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Unlocking Feature Visualization for Deeper Networks with Magnitude Constrained Optimization

Feature visualization has gained substantial popularity, particularly after the influential work by Olah et al. in 2017, which established it as a crucial tool for explainability. However, its widespread adoption has been limited due to a reliance on tricks to generate interpretable images, and corresponding challenges in scaling it to deeper neural networks. Here, we describe MACO, a simple approach to address these shortcomings. The main idea is to generate images by optimizing the phase spectrum while keeping the magnitude constant to ensure that generated explanations lie in the space of natural images. Our approach yields significantly better results -both qualitatively and quantitatively -and unlocks efficient and interpretable feature visualizations for large state-of-the-art neural networks. We also show that our approach exhibits an attribution mechanism allowing us to augment feature visualizations with spatial importance. We validate our method on a novel benchmark for comparing feature visualization methods, and release its visualizations for all classes of the ImageNet dataset on Lens. Overall, our approach unlocks, for the first time, feature visualizations for large, state-of-the-art deep neural networks without resorting to any parametric prior image model.

Introduction

The field of Explainable Artificial Intelligence (XAI) [START_REF] Doshi | Towards a rigorous science of interpretable machine learning[END_REF][START_REF] Jacovi | Formalizing trust in artificial intelligence: Prerequisites, causes and goals of human trust in ai[END_REF] has largely focused on characterizing computer vision models through the use of attribution methods [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF][START_REF] Smilkov | Smoothgrad: removing noise by adding noise[END_REF][START_REF] Ramprasaath R Selvaraju | Grad-cam: Visual explanations from deep networks via gradient-based localization[END_REF][START_REF] Fel | Look at the variance! efficient black-box explanations with sobol-based sensitivity analysis[END_REF][START_REF] Novello | Making sense of dependence: Efficient black-box explanations using dependence measure[END_REF][START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF][START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF][START_REF] Shrikumar | Learning important features through propagating activation differences[END_REF][START_REF] Fong | Interpretable explanations of black boxes by meaningful perturbation[END_REF][START_REF] Graziani | Sharpening local interpretable model-agnostic explanations for histopathology: improved understandability and reliability[END_REF]. These methods aim to explain the decision strategy of a network by assigning an importance score to each input pixel (or group of input pixels [START_REF] Vitali Petsiuk | Rise: Randomized input sampling for explanation of black-box models[END_REF][START_REF] Fel | Don't lie to me! robust and efficient explainability with verified perturbation analysis[END_REF][START_REF] Il Idrissi | On the coalitional decomposition of parameters of interest[END_REF]), according to their contribution to the overall decision. Such approaches only offer a partial understanding of the learned decision processes as they aim to identify the location of the most discriminative features in an image, the "where", leaving open the "what" question, i.e. the semantic meaning of those features. Recent work [START_REF] Colin | What i cannot predict, i do not understand: A human-centered evaluation framework for explainability methods[END_REF][START_REF] Sunnie | HIVE: Evaluating the human interpretability of visual explanations[END_REF][START_REF] Nguyen | The effectiveness of feature attribution methods and its correlation with automatic evaluation scores[END_REF][START_REF] Nguyen | Understanding neural networks via feature visualization: A survey. Explainable AI: interpreting, explaining and visualizing deep learning[END_REF][START_REF] Sixt | Do users benefit from interpretable vision? a user study, baseline, and dataset[END_REF][START_REF] Hase | Evaluating explainable ai: Which algorithmic explanations help users predict model behavior[END_REF] has highlighted the intrinsic limitations of attribution methods [START_REF] Sixt | When explanations lie: Why many modified bp attributions fail[END_REF][START_REF] Adebayo | Sanity checks for saliency maps[END_REF][START_REF] Slack | Reliable post hoc explanations: Modeling uncertainty in explainability[END_REF][START_REF] Rao | Towards better understanding attribution methods[END_REF], calling for the development of methods that provide a complementary explanation regarding the "what".

Feature visualizations provide a bridge to fill this gap via the generation of images that elicit a strong response from specifically targeted neurons (or groups of neurons). One of the simplest approaches uses gradient ascent to search for such an image. In the absence of regularization, this optimization is [START_REF] Olah | Feature visualization[END_REF]. (Bottom) Proposed approach, MACO, which incorporates a Fourier spectrum magnitude constraint. known to yield highly noisy images -sometimes considered adversarial [START_REF] Szegedy | Intriguing properties of neural networks[END_REF]. Hence, regularization methods are essential to rendering more acceptable candidate images. Such regularizations can consist of penalizing high frequencies in the Fourier domain [START_REF] Olah | Feature visualization[END_REF][START_REF] Mahendran | Understanding deep image representations by inverting them[END_REF][START_REF] Nguyen | Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[END_REF][START_REF] Tyka | Class visualization with bilateral filters[END_REF][START_REF] Audun | Visualizing googlenet classes[END_REF], regularizing the optimization process with data augmentation [START_REF] Olah | Feature visualization[END_REF][START_REF] Tsipras | Robustness may be at odds with accuracy[END_REF][START_REF] Santurkar | Image synthesis with a single (robust) classifier[END_REF][START_REF] Engstrom | Adversarial robustness as a prior for learned representations[END_REF][START_REF] Mordvintsev | Inceptionism: Going deeper into neural networks[END_REF][START_REF] Ghiasi | Plug-in inversion: Model-agnostic inversion for vision with data augmentations[END_REF][START_REF] Ghiasi | What do vision transformers learn? a visual exploration[END_REF] or restricting the search space to a subspace parameterized by a generative model [START_REF] Wei | Understanding intra-class knowledge inside cnn[END_REF][START_REF] Nguyen | Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks[END_REF][START_REF] Nguyen | Synthesizing the preferred inputs for neurons in neural networks via deep generator networks[END_REF][START_REF] Nguyen | Plug & play generative networks: Conditional iterative generation of images in latent space[END_REF]. The first two approaches provide faithful visualizations, as they only depend on the model under study; unfortunately, in practice, they still fail on large modern classification models (e.g., ResNet50V2 [START_REF] He | Deep residual learning for image recognition[END_REF] and ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF], see Figure 1). The third approach yields interpretable feature visualizations even for large models but at the cost of major biases: in that case, it is impossible to disentangle the true contributions of the model under study from those of the generative prior model. Herein, we introduce a new feature visualization approach that is applicable to the largest state-of-the-art networks without relying on any parametric prior image model.

Our proposed approach, called MAgnitude Constrained Optimization (MACO), builds on the seminal work by Olah et al. who described the first method to optimize for maximally activating images in the Fourier space in order to penalize high-frequency content [START_REF] Olah | Feature visualization[END_REF]. Our method is straightforward and essentially relies on exploiting the phase/magnitude decomposition of the Fourier spectrum, while exclusively optimizing the image's phase while keeping its magnitude constant. Such a constraint is motivated by psychophysics experiments that have shown that humans are more sensitive to differences in phase than in magnitude [START_REF] Oppenheim | The importance of phase in signals[END_REF][START_REF] Caelli | Visual sensitivity to two-dimensional spatial phase[END_REF][START_REF] Guyader | Image phase or amplitude? rapid scene categorization is an amplitude-based process[END_REF][START_REF] Olivier R Joubert | Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise[END_REF][START_REF] Gladilin | On the role of spatial phase and phase correlation in vision, illusion, and cognition[END_REF]. Our contributions are threefold:

(i) We unlock feature visualizations for large modern CNNs without resorting to any strong parametric image prior (see Figure 1). (ii) We describe how to leverage the gradients obtained throughout our optimization process to combine feature visualization with attribution methods, thereby explaining both "what" activates a neuron and "where" it is located in an image. (iii) We introduce new metrics to compare the feature visualizations produced with MACO to those generated with other methods.

As an application of our approach, we propose feature visualizations for FlexViT [START_REF] Beyer | Flexivit: One model for all patch sizes[END_REF] and ViT [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] (logits and intermediate layers; see Figure 4). We also employ our approach on a feature inversion task to generate images that yield the same activations as target images to better understand what information is getting propagated through the network and which parts of the image are getting discarded by the model (on ViT, see Figure 6). Finally, we show how to combine our work with a state-of-the-art concept-based explainability method [START_REF] Fel | Craft: Concept recursive activation factorization for explainability[END_REF] (see Figure 6b). Much like feature visualization, this method produces explanations on the semantic "what" that drives a model's prediction by decomposing the latent space of the neural network into a series of "directions"denoted concepts. More importantly, it also provides a way to locate each concept in the input image under study, thus unifying both axes -"what" and "where". As feature visualization can be used to optimize in directions in the network's representation space, we employ MACO to generate concept visualizations, thus allowing us to improve the human interpretability of concepts and reducing the risk of confirmation bias. We showcase these concept visualizations on an interactive website: Lens. The website allows browsing the most important concepts learned by a ResNet50 for all 1, 000 classes of ImageNet [START_REF] He | Deep residual learning for image recognition[END_REF].

Related Work

Feature visualization methods involve solving an optimization problem to find an input image that maximizes the activation of a target element (neuron, layer, or whole model) [START_REF] Matthew | Visualizing and understanding convolutional networks[END_REF]. Most of the approaches developed in the field fall along a spectrum based on how strongly they regularize the model. At one end of the spectrum, if no regularization is used, the optimization process can search the whole image space, but this tends to produce noisy images and nonsensical high-frequency patterns [START_REF] Dumitru Erhan | Visualizing higher-layer features of a deep network[END_REF].

To circumvent this issue, researchers have proposed to penalize high-frequency in the resulting images -either by reducing the variance between neighboring pixels [START_REF] Mahendran | Understanding deep image representations by inverting them[END_REF], by imposing constraints on the image's total variation [START_REF] Nguyen | Synthesizing the preferred inputs for neurons in neural networks via deep generator networks[END_REF][START_REF] Nguyen | Plug & play generative networks: Conditional iterative generation of images in latent space[END_REF][START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF], or by blurring the image at each optimization step [START_REF] Nguyen | Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[END_REF]. However, in addition to rendering images of debatable validity, these approaches also suppress genuine, interesting high-frequency features, including edges. To mitigate this issue, a bilateral filter may be used instead of blurring, as it has been shown to preserve edges and improve the overall result [START_REF] Tyka | Class visualization with bilateral filters[END_REF]. Other studies have described a similar technique to decrease high frequencies by operating directly on the gradient, with the goal of preventing their accumulation in the resulting visualization [START_REF] Audun | Visualizing googlenet classes[END_REF]. One advantage of reducing high frequencies present in the gradient, as opposed to the visualization itself, is that it prevents high frequencies from being amplified by the optimizer while still allowing them to appear in the final image if consistently encouraged by the gradient. This process, known as "preconditioning" in optimization, can greatly simplify the optimization problem. The Fourier transform has been shown to be a successful preconditioner as it forces the optimization to be performed in a decorrelated and whitened image space [START_REF] Olah | Feature visualization[END_REF]. The feature visualization technique we introduce in this work leverages a similar preconditioning. The emergence of high-frequency patterns in the absence of regularization is associated with a lack of robustness and sensitivity of the neural network to adversarial examples [START_REF] Szegedy | Intriguing properties of neural networks[END_REF], and consequently, these patterns are less often observed in adversarially robust models [START_REF] Engstrom | Adversarial robustness as a prior for learned representations[END_REF][START_REF] Santurkar | Image synthesis with a single (robust) classifier[END_REF][START_REF] Tsipras | Robustness may be at odds with accuracy[END_REF]]. An alternative strategy to promote robustness involves enforcing small perturbations, such as jittering, rotating, or scaling, in the visualization process [START_REF] Mordvintsev | Inceptionism: Going deeper into neural networks[END_REF], which, when combined with a frequency penalty [START_REF] Olah | Feature visualization[END_REF], has been proved to greatly enhance the generated images.

Unfortunately, previous methods in the field of feature visualization have been limited in their ability to generate visualizations for newer architectures beyond VGG, resulting in a lack of interpretable visualizations for larger networks like ResNets [START_REF] Olah | Feature visualization[END_REF]. Consequently, researchers have shifted their focus to approaches that leverage statistically learned priors to produce highly realistic visualizations. One such approach involves training a generator, like a GAN [START_REF] Nguyen | Synthesizing the preferred inputs for neurons in neural networks via deep generator networks[END_REF] or an autoencoder [START_REF] Wang | Traditional classification neural networks are good generators: They are competitive with ddpms and gans[END_REF][START_REF] Nguyen | Plug & play generative networks: Conditional iterative generation of images in latent space[END_REF], to map points from a latent space to realistic examples and optimizing within that space. Alternatively, a prior can be learned to provide the gradient (w.r.t the input) of the probability and optimize both the prior and the objective jointly [START_REF] Nguyen | Plug & play generative networks: Conditional iterative generation of images in latent space[END_REF][START_REF] Tyka | Class visualization with bilateral filters[END_REF]. Another method involves approximating a generative model prior by penalizing the distance between output patches and the nearest patches retrieved from a database of image patches collected from the training data [START_REF] Wei | Understanding intra-class knowledge inside cnn[END_REF]. Although it is well-established that learning an image prior produces realistic visualizations, it is difficult to distinguish between the contributions of the generative models and that of the neural network under study. Hence, in this work, we focus on the development of visualization methods that rely on minimal priors to yield the least biased visualizations.

3 Magnitude-Constrained Feature Visualization

Notations Throughout, we consider a general supervised learning setting, with an input space X ⊆ R h×w , an output space Y ⊆ R c , and a classifier f : X → Y that maps inputs x ∈ X to a prediction y ∈ Y. Without loss of generality, we assume that f admits a series of L intermediate spaces A ℓ ⊆ R p ℓ , 1 < ℓ < L. In this setup, f ℓ : X → A ℓ maps an input to an intermediate activation v = (v 1 , . . . , v p ℓ ) ⊺ ∈ A ℓ of f . We respectively denote F and F -1 as the 2-D Discrete Fourier Transform (DFT) on X and its inverse.

Optimization Criterion. The primary goal of a feature visualization method is to produce an image x ⋆ that maximizes a given criterion L v (x) ∈ R; usually some value aggregated over a subset of weights in a neural network f (neurons, channels, layers, logits). A concrete example consists in finding a natural "prototypical" image x ⋆ of a class k ∈ 1, K without using a dataset or generative models. However, optimizing in the pixel space R W ×H is known to produce noisy, adversarial-like x ⋆ (see section 2). Therefore, the optimization is constrained using a regularizer R : X → R + to penalize unrealistic images:

x ⋆ = arg max x∈X L v (x) -λR(x). (1) 
In Eq. 1, λ is a hyperparameter used to balance the main optimization criterion L v and the regularizer R. Finding a regularizer that perfectly matches the structure of natural images is hard, so proxies have to be used instead. Previous studies have explored various forms of regularization spanning from total variation, ℓ 1 , or ℓ 2 loss [START_REF] Nguyen | Synthesizing the preferred inputs for neurons in neural networks via deep generator networks[END_REF][START_REF] Nguyen | Plug & play generative networks: Conditional iterative generation of images in latent space[END_REF][START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF]. More successful attempts rely on the reparametrization of the optimization problem in the Fourier domain rather than on regularization.

A Fourier perspective

Mordvintsev et al. [START_REF] Mordvintsev | Differentiable image parameterizations[END_REF] noted in their seminal work that one could use differentiable image parametrizations to facilitate the maximization of L v . Olah et al. [START_REF] Olah | Feature visualization[END_REF] proposed to reparametrize the images using their Fourier spectrum. Such a parametrization allows amplifying the low frequencies using a scalar w. Formally, the prototypal image x ⋆ can be written as The visualizations are obtained using the Fourier FVFourier FV method to maximize the logits of a ViT network [START_REF] Olah | Feature visualization[END_REF]. In (b) the spectrum is averaged over all training images of the ImageNet dataset.

x ⋆ = F -1 (z ⋆ ⊙ w) with z ⋆ = arg max z∈C W ×H L v (F -1 (z ⊙ w)).
Finding x ⋆ boils down to optimizing a Fourier buffer z = a+ib together with boosting the lowfrequency components and then recovering the final image by inverting the optimized Fourier buffer using inverse Fourier transform.

However, multiple studies have shown that the resulting images are not sufficiently robust, in the sense that a small change in the image can cause the criterion L v to drop. Therefore, it is common to see robustness transformations applied to candidate images throughout the optimization process. In other words, the goal is to ensure that the generated image satisfies the criterion even if it is rotated by a few degrees or jittered by a few pixels. Formally, given a set of possible transformation functions -sometimes called augmentations -that we denote T such that for any transformation τ ∼ T , we have τ (x) ∈ X , the optimization be-

comes z ⋆ = arg max z∈C W ×H E τ ∼T (L v ((τ • F -1 )(z ⊙ w)).
Empirically, it is common knowledge that the deeper the models are, the more transformations are needed and the greater their magnitudes should be. To make their approach work on models like VGG, Olah et al. [START_REF] Olah | Feature visualization[END_REF] used no less than a dozen transformations. However, this method fails for modern architectures, no matter how many transformations are applied. We argue that this may come from the low-frequency scalar (or booster) no longer working with models that are too deep. For such models, high frequencies eventually come through, polluting the resulting images with high-frequency content -making them impossible to interpret by humans. To empirically illustrate this phenomenon, we compute the k logit visualizations obtained by maximizing each of the logits corresponding to the k classes of a ViT using the parameterization used by Olah et al. In Figure 2 (left), we show the average of the spectrum of these generated visualizations over all classes:

1 k k i=1 |F(x ⋆ i )|.
We compare it with the average spectrum of images on the ImageNet dataset (denoted D): 2, right panel). We observe that the images obtained through optimization put much more energy into high frequencies compared to natural images. Note that we did not observe this phenomenon in older models such as LeNet or VGG.

E x∼D (|F(x)|) (Figure
In the following section, we introduce our method named MACO, which is motivated by this observation. We constrain the magnitude of the visualization to a natural value, enabling natural visualization for any contemporary model, and reducing the number of required transformations to only two.

MACO: from Regularization to Constraint

Parameterizing the image in the Fourier space makes it possible to directly manipulate the image in the frequency domain. We propose to take a step further and decompose the Fourier spectrum z into its polar form z = re iφ instead of its cartesian form z = a + ib, which allows us to disentangle the magnitude (r) and the phase (φ).

It is known that human recognition of objects in images is driven not by magnitude but by phase [START_REF] Oppenheim | The importance of phase in signals[END_REF][START_REF] Caelli | Visual sensitivity to two-dimensional spatial phase[END_REF][START_REF] Guyader | Image phase or amplitude? rapid scene categorization is an amplitude-based process[END_REF][START_REF] Olivier R Joubert | Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise[END_REF][START_REF] Gladilin | On the role of spatial phase and phase correlation in vision, illusion, and cognition[END_REF]. Motivated by this, we propose to optimize the phase of the Fourier spectrum while fixing its magnitude to a typical value of a natural image (with few high frequencies). In particular, the magnitude is kept constant at the average magnitude computed over a set of natural images (such as ImageNet), so r = E x∼D (|F(x)|). Note that this spectrum needs to be calculated only once and can be used at will for other tasks.

Algorithm 1 MACO

Require: r, φ 0 ∼ U([-π, π]) W ×H Require: α = 0 for n ∈ 0, N do τ = sample(T ) x n = (τ • F -1 )(re iφn ) φ n+1 = φ n + η∇ φ L v (x n ) α = α + |∇ xn L v (x n )| end for return x * = F -1 (re iφ N ), α
Therefore, our method does not backpropagate through the entire Fourier spectrum but only through the phase (Figure 3), thus reducing the number of parameters to optimize by half. Since the magnitude of our spectrum is constrained, we no longer need hyperparameters such as λ or scaling factors, and the generated image at each step is naturally plausible in the frequency domain. We also enhance the quality of our visualizations via two data augmentations: random crop and additive uniform noise. To the best of our knowledge, our approach is the first to completely alleviate the need for explicit regularizationusing instead a hard constraint on the solution of the optimization problem for feature visualization. To summarize, we formally introduce our method: Definition 3.1 (MACO). The feature visualization results from optimizing the parameter vector φ such that:

φ ⋆ = arg max φ∈R W ×H E τ ∼T (L v ((τ • F -1 )(re iφ )) where r = E x∼D (|F(x)|)
The feature visualization is then obtained by applying the inverse Fourier transform to the optimal complex-valued spectrum:

x ⋆ = F -1 ((re iφ ⋆ )
Transparency for free: Visualizations often suffer from repeated patterns or unimportant elements in the generated images. This can lead to readability problems or confirmation biases [START_REF] Borowski | Exemplary natural images explain cnn activations better than state-of-the-art feature visualization[END_REF]. It is important to ensure that the user is looking at what is truly important in the feature visualization. The concept of transparency, introduced in [START_REF] Mordvintsev | Differentiable image parameterizations[END_REF], addresses this issue but induces additional implementation efforts and computational costs.

We propose an effective approach, which leverages attribution methods, that yields a transparency map α for the associated feature visualization without any additional cost. Our solution shares theoretical similarities with SmoothGrad [START_REF] Smilkov | Smoothgrad: removing noise by adding noise[END_REF] and takes advantage of the fact that during backpropagation, we can obtain the intermediate gradients on the input ∂L v (x)/∂x for free as ∂Lv(x) ∂φ = ∂Lv(x) ∂x ∂x ∂φ . We store these gradients throughout the optimization process and then average them, as done in SmoothGrad, to identify the areas that have been modified/attended to by the model the most during the optimization process. We note that a similar technique has recently been used to explain diffusion models [START_REF] Boutin | Diffusion models as artists: Are we closing the gap between humans and machines?[END_REF]. In Algorithm 1, we provide pseudo-code for MACO and an example of the transparency maps in Figure 6 (third column).

Evaluation

We now describe and compute three different scores to compare the different feature visualization methods: Fourier (Olah et al.), CBR (optimization in the pixel space), and MACO (ours). It is important to note that these scores are only applicable to output logit visualizations. To keep a fair comparison, we restrict the benchmark to methods that do not rely on any learned image priors. Indeed, methods with learned prior will inevitably yield lower FID scores (and lower plausibility score) as the prior forces the generated visualizations to lie on the manifold of natural images.

Plausibility score. We consider a feature visualization plausible when it is similar to the distribution of images belonging to the class it represents. We quantify the plausibility through an OOD metric (Deep-KNN, recently used in [START_REF] Sun | Out-of-distribution detection with deep nearest neighbors[END_REF]): it measures how far a feature visualization deviates from the corresponding ImageNet object category images based on their representation in the network's intermediate layers (see Table 1).

FID score. The FID quantifies the similarity between the distribution of the feature visualizations and that of natural images for the same object category. Importantly, the FID measures the distance between two distributions, while the plausibility score quantifies the distance from a sample to a distribution. To compute the FID, we used images from the ImageNet validation set and used the Inception v3 last layer (see Table 1). Additionally, we center-cropped our 512 × 512 images to 299 × 299 images to avoid the center-bias problem [START_REF] Nguyen | Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks[END_REF].

Transferability score. This score measures how consistent the feature visualizations are with other pre-trained classifiers. To compute the transferability score, we feed the obtained feature visualizations into 6 additional pre-trained classifiers (MobileNet [START_REF] Andrew G Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF], VGG16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], Xception [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF], EfficientNet [START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF], Tiny ConvNext [START_REF] Liu | A convnet for the 2020s[END_REF] and Densenet [START_REF] Huang | Densely connected convolutional networks[END_REF]), and we report their classification accuracy (see Table 2).

All scores are computed using 500 feature visualizations, each of them maximizing the logit of one of the ImageNet classes obtained on the FlexiViT [START_REF] Beyer | Flexivit: One model for all patch sizes[END_REF], ViT [START_REF] Kolesnikov | Big transfer (bit): General visual representation learning[END_REF], and ResNetV2 [START_REF] He | Identity mappings in deep residual networks[END_REF] models. For the feature visualizations derived from Olah et al. [START_REF] Olah | Feature visualization[END_REF], we used all 10 transformations set from the Lucid library * . CBR denotes an optimization in pixel space and using the same 10 transformations, as described in [START_REF] Nguyen | Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[END_REF]. For MACO, τ only consists of two transformations; first we add uniform noise δ ∼ U([-0.1, 0.1]) W ×H and crops and resized the image with a crop size drawn from the normal distribution N (0.25, 0.1), which corresponds on average to 25% of the image. We used the NAdam optimizer [START_REF] Dozat | Incorporating nesterov momentum into adam[END_REF] with lr = 1.0 and N = 256 optimization steps. Finally, we used the implementation of [START_REF] Olah | Feature visualization[END_REF] and CBR which are available in the Xplique library [66] † which is based on Lucid.

FlexiViT

ViT ResNetV2 For all tested metrics, we observe that MACO produces better feature visualizations than those generated by Olah et al. [START_REF] Olah | Feature visualization[END_REF] and CBR [START_REF] Nguyen | Deep neural networks are easily fooled: High confidence predictions for unrecognizable images[END_REF]. We would like to emphasize that our proposed evaluation scores represent the first attempt to provide a systematic evaluation of feature visualization methods, but we acknowledge that each individual metric on its own is insufficient and cannot provide a comprehensive assessment of a method's performance. However, when taken together, the three proposed scores provide a more complete and accurate evaluation of the feature visualization methods.

Human psychophysics study

Ultimately, the goal of any feature visualization method is to demystify the CNN's underlying decision process in the eyes of human users. To evaluate MACO 's ability to do this, we closely followed the psychophysical paradigm introduced in [ 3: Ablation study on the FlexiViT model: This reveals that 1. augmentations help to have better FID and Plausibility scores, but lead to lesser salients visualizations (softmax value), 2. Fourier [START_REF] Olah | Feature visualization[END_REF] benefits less from augmentations than MACO. different part of the image hidden from the model by a square occludor. The task for participants is to judge which of the two queries would be "favored by the model" (i.e., maximally activate the unit). The rationale here is that a good feature visualization method would enable participants to more accurately predict the model's behavior. Here, we compared four visualization conditions (manipulated between subjects): Olah [START_REF] Olah | Feature visualization[END_REF], MACO with the transparency mask (the transparency mask is decribed in 3.2), MACO without the transparency mask, and a control condition in which no visualizations were provided. In addition, the network (VGG16, ResNet50, ViT) was a within-subject variable. The units to be understood were taken from the output layer. Based on the data of 174 participants on Prolific (www.prolific.com) [September 2023], we found both visualization and network to significantly predict the logodds of choosing the right query (Fig. 5). That is, the logodds were significantly higher for participants in both the MACO conditions compared to Olah. On the other hand, our tests did not yield a significant difference between Olah and the control condition, or between the two MACO conditions. Finally, we found that, overall, ViT was significantly harder to interpret than ResNet50 and VGG16, with no significant difference observed between the latter two networks. Full experiment and analysis details can be found in the supplementary materials, section C. Taken together, these results support our claim that even if feature visualization methods struggle in offering interpretable information as networks scale, MACO still convincingly helps people better understand deeper models while Olah's method [START_REF] Olah | Feature visualization[END_REF] does not.

Ablation study

To disentangle the effects of the various components of MACO, we perform an ablation study on the feature visualization applications. We consider the following components: (1) the use of a magnitude constraint, (2) the use of the random crop, (3) the use of the noise addition, and (4) the use of the transparency mask. We perform the ablation study on the FlexiViT model, and the results are presented in Table 3. We observe an inherent tradeoff between optimization quality (measured by logit magnitude) on one side, and the plausibility (and FID) scores on the other side. This reveals that plausible images which are close to the natural image distribution do not necessarily maximize the logit. Finally, we observe that the transparency mask does not significantly affect any of the scores confirming that it is mainly a post-processing step that does not affect the feature visualization itself.

Applications

We demonstrate the versatility of the proposed MACO technique by applying it to three different XAI applications:

Logit and internal state visualization. For logit visualization, the optimization objective is to maximize the activation of a specific unit in the logits vector of a pre-trained neural network (here a FlexiViT [START_REF] Beyer | Flexivit: One model for all patch sizes[END_REF]). The resulting visualizations provide insights into the features that contribute the most to a class prediction (refer to Figure 4a). For internal state visualization, the optimization objective is to maximize the activation of specific channels located in various intermediate blocks of the network (refer to Figure 4b). This visualization allows us to better understand the kind of features these blocks -of a FlexiViT [START_REF] Beyer | Flexivit: One model for all patch sizes[END_REF] in the figure -are sensitive to.

Feature inversion. The goal of this application is to find an image that produces an activation pattern similar to that of a reference image. By maximizing the similarity to reference activations, we are able to generate images representing the same semantic information at the target layer but without the parts of the original image that were discarded in the previous stages of the network, which allows us to better understand how the model operates. Figure 6a displays the images (second column) that match the activation pattern of the penultimate layer of a VIT when given the images from the first column. We also provide examples of transparency masks based on attribution (third column), which we apply to the feature visualizations to enhance them (fourth column). Concept visualization. Herein we combine MACO with concept-based explainability. Such methods aim to increase the interpretability of activation patterns by decomposing them into a set of concepts [START_REF] Ghorbani | Towards automatic concept-based explanations[END_REF]. In this work, we leverage the CRAFT concept-based explainability method [START_REF] Fel | Craft: Concept recursive activation factorization for explainability[END_REF], which uses Non-negative Matrix Factorization to decompose activation patterns into main directions -that are called concepts -, and then, we apply MACO to visualize these concepts in the pixel space. To do so, we optimize the visualization such that it matches the concept activation patterns. In Figure 6b, we present the top 2 most important concepts (one concept per column) for five different object categories (one category per row) in a ResNet50 trained on ImageNet. The concepts' visualizations are followed by a mosaic of patches extracted from natural images: the patches that maximally activate the corresponding concept.

Limitations

We have demonstrated the generation of realistic explanations for large neural networks by imposing constraints on the magnitude of the spectrum. However, it is important to note that generating realistic images does not necessarily imply effective explanation of the neural networks. The metrics introduced in this paper allow us to claim that our generated images are closer to natural images in latent space, that our feature visualizations are more plausible and better reflect the original distribution. However, they do not necessarily indicate that these visualizations helps humans in effectively communicating with the models or conveying information easily to humans. Furthermore, in order for a feature visualization to provide informative insights about the model, including spurious features, it may need to generate visualizations that deviate from the spectrum of natural images. Consequently, these visualizations might yield lower scores using our proposed metrics. Simultaneously, several interesting studies have highlighted the weaknesses and limitations of feature visualizations [START_REF] Borowski | Exemplary natural images explain cnn activations better than state-of-the-art feature visualization[END_REF][START_REF] Geirhos | Don't trust your eyes: on the (un)reliability of feature visualizations[END_REF][START_REF] Roland S Zimmermann | How well do feature visualizations support causal understanding of cnn activations[END_REF]. One prominent criticism is their lack of interpretability for humans, with research demonstrating that dataset examples are more useful than feature visualizations in understanding convolutional neural networks (CNNs) [START_REF] Borowski | Exemplary natural images explain cnn activations better than state-of-the-art feature visualization[END_REF]. This can be attributed to the lack of realism in feature visualizations and their isolated use as an explainability technique. With our approach, MACO , we take an initial step towards addressing this limitation by introducing magnitude constraints, which lead to qualitative and quantitative improvements. Additionally, through our website, we promote the use of feature visualizations as a supportive and complementary tool alongside other methods such as concept-based explainability, exemplified by CRAFT [START_REF] Fel | Craft: Concept recursive activation factorization for explainability[END_REF]. We emphasize the importance of feature visualizations in combating confirmation bias and encourage their integration within a comprehensive explainability framework.

Conclusions

In this paper, we introduced a novel approach, MACO, for efficiently generating feature visualizations in modern deep neural networks based on (i) a hard constraint on the magnitude of the spectrum to ensure that the generated visualizations lie in the space of natural images, and (ii) a new attributionbased transparency mask to augment these feature visualizations with the notion of spatial importance. This enhancement allowed us to scale up and unlock feature visualizations on large modern CNNs and vision transformers without the need for strong -and possibly misleading -parametric priors.

We also complement our method with a set of three metrics to assess the quality of the visualizations.

Combining their insights offers a way to compare the techniques developed in this branch of XAI more objectively. We illustrated the scalability of MACO with feature visualizations of large models like ViT, but also feature inversion and concept visualization. Lastly, by improving the realism of the generated images without using an auxiliary generative model, we supply the field of XAI with a reliable tool for explaining the semantic ("what" information) of modern vision models.

A. This can be explained the data-augmentation that is typically employed for training these models.

A.2 Feature Inversion

Figure S4: Feature inversion and Attribution-based transparency. We performed feature inversion on the images on the first column to obtain the visualizations (without transparency) on the second column. During the optimization procedure, we saved the intensity of the changes to the image in pixel space, which we showcase on the third column, we used this information to assign a transparency value, as exhibited in the final column.

B Screenshots from the website

For our website, we picked a ResNet50V2 that had been pre-trained on ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] and applied CRAFT [START_REF] Fel | Craft: Concept recursive activation factorization for explainability[END_REF] to reveal the concepts that are driving its predictions for each class. CRAFT is a state-of-the-art, concept-based explainability technique that, through NMF matrix decompositions, allows us to factorize the networks activations into interpretable concepts. Furthermore, using Sobol indices and implicit differentiation, we can measure the importance of each concept, and trace its presence back to and locate it in the input image. In particular, we applied this technique to explain all the classes in ImageNet, and used MACO to generate visualizations that maximize the angle of superposition with each direction in the network's activation space (i.e. each concept). We also plot each of the concepts' global importance, as well as the similarities between concepts of the same class. For each class, we first showcase the most important concepts with their respective visualizations (see Fig. S5 and Fig. S6), and by clicking on them, we exhibit the crops that align the most with the concept (see Fig. S7). This allows us to diminish the effect of potential confirmation bias by providing two different approaches to understanding what the model has encoded in that concept.

Finally, we have also computed the similarity between concepts of different classes and display the closest (see Fig. S8). This feature can help better understand erroneous predictions, as the model may sometimes leverage similar concepts of different classes to classify. 

C Human psychophysical study

To evaluate MACO 's ability to improve humans' causal understanding of a CNN's activations, we conducted a psychophysical study closely following the paradigm introduced in [START_REF] Roland S Zimmermann | How well do feature visualizations support causal understanding of cnn activations[END_REF]. In this paradigm, participants are asked to predict which of two query inputs would be favored by the model (i.e., maximally activate a given unit), based on example "favorite" inputs serving as a reference (i.e., feature visualizations for that unit). The two queries are based on the same natural image, but differ in the location of an occludor which hides part of the image from the model.

Participants. We recruited a total of 191 participants for our online psychophysics study using Prolific (www.prolific.com) [September 2023]. As compensation for their time (roughly 7 minutes), participants were paid 1.4$. Of those who chose to disclose their age, the average age was 39 years old (SD = 13). Ninety participants were men, 86 women, 8 non-binary and 7 chose not to disclose their gender. The data of 17 participants was excluded from further analyses because they performed significantly below chance (p < .05, one-tailed).

Design. Participants were randomly assigned to one of four Visualization conditions: Olah [START_REF] Olah | Feature visualization[END_REF], MACO with mask, MACO without mask, or a control condition in which no visualizations were provided. Furthermore, we varied Network (VGG16, ResNet50, ViT) as a within-subjects variable.

The specific units whose features to visualize were taken from the output layer, meaning they represented concrete classes. The classes were: Nile crocodile, peacock, Kerry Blue Terrier, Giant Schnauzer, Bernese Mountain Dog, ground beetle, ringlet, llama, apiary, cowboy boot, slip-on shoe, mask, computer mouse, muzzle, obelisk, ruler, hot dog, broccoli, and mushroom. For every class, we included three natural images to serve as the source image for the query pairs. This way, a single participant would see all 19 classes crossed with all 3 networks, without seeing the same natural image more than once (which image was presented for which network was randomized across participants). The main experiment thus consisted of 57 trials, with a fully randomized trial order.

Stimuli. The stimuli for this study included 171 ((4-1)x3x19) reference stimuli, each displaying a 2x2 grid of feature visualizations, generated using the respective visualization method. The query pairs were created from each of the 57 (19x3) source images by placing a square occludor on them.

In one member of the pair, the occludor was placed such that it minimized the activation of the unit. In the other member of the pair, the occludor was placed on an object of a different class in the same image or a different part of the same object. Here, we deviated somewhat from the query geneation in [START_REF] Roland S Zimmermann | How well do feature visualizations support causal understanding of cnn activations[END_REF], where the latter occludor was placed where it maximized the activation of the unit. However, we observed that this often resulted in the occludor being on the background, making the task trivial. Indeed, a pilot study (N = 42) we ran with such occludor placement showed that even the participants in the control condition were on average correct in 83% of the trials.

Task and procedure. The protocol was approved by the University IRB and was carried out in accordance with the provisions of the World Medical Association Declaration of Helsinki. Participants were redirected to our online study through Prolific and first saw a page explaining the general purpose and procedure of the study (Fig. S9). Next, they were presented with a form outlining their rights as a participant and actively had to click "I agree" in order to give their consent. More detailed instructions were given on the next page (Fig. S10, Fig. S11). Participants were instructed to answer the following question on every trial: "Which of the two query images is more favored by the machine?". The two query images were presented on the right-hand side of the screen. The feature visualizations were displayed on the left-hand side of the screen (Fig. S12). In the control condition, the left-hand side remained blank (Fig. S13). Participants could make their response by clicking on the radio button below the respective query image. They first completed a practice phase, consisting of six trials covering two additional classes, before moving on to the main experiment. For the practice trials, they received feedback in the form of a green (red) frame appearing around their selected query image if they were correct (incorrect). No such feedback was given during the main experiment.

Analyses and results. We analyzed the data through a logistic mixed-effects regression analysis, with trial accuracy (1 vs. 0) as the dependent variable. The random-effects structure included a byparticipant random intercept and by-class random intercept. We compared two regression models, both of which had Visualization and Network as a fixed effect, but only one also fitted an interaction term between the two. Based on the Akaike Information Criterion (AIC), the former, less complex model was selected (AIC = 11481vs.11482). Using this model, we then analyzed all pairwise contrasts between the levels of the Visualization variable. We found that the logodds of choosing the correct query were overall significantly higher in both MACO conditions compared to the control condition: Finally, we also examined the pairwise contrasts for the Network variable. We found that ViT was the hardest model to interpret overall: β ResN et50 -β V iT = 0.49, SE = 0.06, z = 8.65, p < .0001; β V GG16 -β V iT = 0.35, SE = 0.06, z = 6.38, p < .0001. There was only marginally significant evidence that participants could better predict ResNet50's behavior in this task than VGG16: β ResN et50 -β V GG16 = 0.13, SE = 0.06, z = 2.30, p = 0.056.

β
Taken together, these results suggest that MACO indeed helps humans causally understand a CNN's activations and that it outperforms Olah's method [START_REF] Olah | Feature visualization[END_REF] on this criterion. 
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Figure 1 :

 1 Figure 1: Comparison between feature visualization methods for "White Shark" classification. (Top) Standard Fourier preconditioning-based method for feature visualization [1]. (Bottom) Proposed approach, MACO, which incorporates a Fourier spectrum magnitude constraint.

Figure 2 :

 2 Figure 2: Comparison between Fourier FV and natural image power spectrum. In (a), the power spectrum is averaged over 10 different logits visualizations for each of the 1000 classes of ImageNet.The visualizations are obtained using the Fourier FVFourier FV method to maximize the logits of a ViT network[START_REF] Olah | Feature visualization[END_REF]. In (b) the spectrum is averaged over all training images of the ImageNet dataset.

Figure 3 :

 3 Figure 3: Overview of the approach: (a) Current Fourier parameterization approaches optimize the entire spectrum (yellow arrow). (b) In contrast, the optimization flow in our approach (green arrows) goes from the network activation (y) to the phase of the spectrum (φ) of the input image (x).

Figure 4 :

 4 Figure 4: (left) Logits and (right) internal representations of FlexiViT. MACO was used to maximize the activations of (left) logit units and (right) specific channels located in different blocks of the FlexViT (blocks 1, 2, 6 and 10 from left to right).

Figure 5 :

 5 Figure 5: Human causal understanding of model activations. We follow the experimental procedure introduced in [67] to evaluate Olah and MACO visualizations on 3 different networks. The control condition is when the participant did not see any feature visualization.

Figure 6 :

 6 Figure 6: Feature inversion and concept visualizaiton. a) Images in the second column match the activation pattern of the penultimate layer of a ViT when fed with the images of the first column.In the third column, we show their corresponding attribution-based transparency masks, leading to better feature visualization when applied (fourth column). b) MACO is used to visualize concept vectors extracted with the CRAFT method[START_REF] Fel | Craft: Concept recursive activation factorization for explainability[END_REF]. The concepts are extracted from a ResNet50 trained on ImageNet. All visualizations for all ImageNet classes are available at Lens.

Figure S1 :

 S1 Figure S1: Feature visualizations on FlexiViT, ViT and ResNet50. We compare the feature visualizations from MACO generated for (a) FlexiViT, (b) ViT and (c) ResNet50 on a set of different classes from ImageNet. We observe that the visualizations get more abstract as the complexity of the model increases.

Figure S2 :

 S2 Figure S2: Logits and internal representation of a ViT. Using MACO, we maximize the activations of specific channels in different blocks of a ViT, as well as the logits for 4 different classes.

Figure S3 :

 S3 Figure S3: Hue invariance. Through feature visualization, we are able to determine the presence of hue invariance on our pre-trained ViT model manisfesting itself through phantom objects in them.This can be explained the data-augmentation that is typically employed for training these models.

Figure S5 :

 S5 Figure S5: Overview of a class explanation. Screenshot of the first glimpse of the explanations for the class axolotl. We display the concept visualizations by order of importance (the most important concepts first), with a bar plot of the importance scores and a plot of their similarity.

Figure S6 :

 S6 Figure S6: Most representative crops. If we scroll down, we get access to the crops that represent the most each of the concepts alongside the visualizations. By representing the concepts through two different approaches side by side, we reduce the effect of confirmation bias.

Figure S7 :

 S7 Figure S7: Revealing the crops. On the first overview, it is also possible to click on each concept to reveal the most representative crops.

Figure S8 :

 S8 Figure S8: Inter-class concept similarity. Scrolling further down, we also present the concepts from other classes that are the most similar to those of the current class. This can help better understand erroneous predictions, as the model may sometimes leverage similar concepts of different classes to classify.

  MACO M ask -β Control = 0.69, SE = 0.13, z = 5.38, p < .0001; β MACO N oM ask -β Control = 0.92, SE = 0.13, z = 7.07, p < .0001. Moreover, MACO visualizations helped more than Olah visualizations: β MACO M ask -β Olah = 0.43, SE = 0.13, z = 3.31, p = .005; β MACO N oM askβ Olah = 0.66, SE = 0.13, z = 4.99, p < .0001. No other contrasts were statistically significant (at a level of p < .05). P -values were adjusted for multiple comparisons with the Tukey method.

Figure S9 :

 S9 Figure S9: Welcome page. This is a screenshot of the first page participants saw when entering our online psychophysics study.

Figure S10 :

 S10 Figure S10: Instructions page. After providing informed consent, participants in our online psychophysics task received more detailed instructions, as shown here.

Figure S11 :

 S11 Figure S11: Instructions page for control condition. After providing informed consent, participants in our online psychophysics task received more detailed instructions, as shown here. If they were randomly assigned to the control condition, they were informed that they would not see examples of the machine's favorite images.

Figure S12 :

 S12 Figure S12: Example trial. On every trial of our psychophysics study, participants were asked to select which of two query images would be favored by the machine. They were shown examples of the machine's favorite inputs (i.e., feature visualizations) on the left side of the screen.

Figure S13 :

 S13 Figure S13: Example trial in the control condition. On every trial of our psychophysics study, participants were asked to select which of two query images would be favored by the machine. In the control condition, they were not shown examples of the machine's favorite inputs and the left side of the screen remained empty.

  

Table 2 :

 2 Transferability scores for different feature visualization methods applied on FlexiVIT, ViT and ResNetV2.

						FlexiViT	ViT	ResNetV2
	• Plausibility score (1-KNN) (↓)		• Transferability score(↑): MACO/ Fourier [1]
	MACO	1473	1097	1248	MobileNet	68 / 38	48/ 37	93 / 36
	Fourier [1]	1815	1817	1837	VGG16	64 / 30	50 / 30	90 / 20
	CBR [29]	1866	1920	1933	Xception	85 / 61	73 / 62	97 / 64
	• FID Score (↓)			Eff. Net	88 / 25	63 / 25	82 / 21
	MACO	230.68	241.68	312.66	ConvNext	96 / 52	84 / 55	93 / 60
	Fourier [1]	250.25	257.81	318.15	DenseNet	84 / 32	66 / 31	93 / 25
	CBR [29]	247.12	268.59	346.41				
	Table 1: Plausibility and FID scores for dif-				
	ferent feature visualization methods applied				
	on FlexiVIT, ViT and ResNetV2					
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A Additional results

In this section, we provide additional results for logit and internal feature visualizations, and feature inversion.

For all of the following visualizations, we used the same parameters as in the main paper. For the feature visualizations derived from Olah et al. [START_REF] Olah | Feature visualization[END_REF], we used all 10 transformations set from the Lucid library § . For MACO, τ only consists of two transformations; first we add uniform noise δ ∼ U([-0.1, 0.1]) W ×H and crops and resized the image with a crop size drawn from the normal distribution N (0.25, 0.1), which corresponds on average to 25% of the image. We used the NAdam optimizer [START_REF] Dozat | Incorporating nesterov momentum into adam[END_REF] with a lr = 1.0 and N = 256 optimization steps. Finally, we used the implementation of [START_REF] Olah | Feature visualization[END_REF] and CBR which are available in the Xplique library [66] ¶ which is based on Lucid. § https://github.com/tensorflow/lucid ¶ https://github.com/deel-ai/xplique