The Brachistochrone Differential Equation

Francois Boulier*

May 14, 2023

Contents

1 Derivation of the Differential Equation 1
1.1 Formulation of the Problem 1
1.2 The Differential System to be Solved 3
1.3 The Differential Ideal Defined by the System 3
1.4 Extraction of the Brachistochrone Equation 4
1.5 A General and a Singular Solution 4

2 Numerical Integration of the Brachistochrone Equation 6
2.1 The Straightforward Approach Fails 6
2.2 Relationship with the Existence of a Formal Power Series Solution 6
2.3 The True Solution. e 7
2.4 Existence of a Puiseux Series Solution 7
2.5 Numerical Use of the Puiseux Series Solution 8
2.6 A Further Numerical Integration Problem 9

This text corresponds to a talk I have given at CRIStAL / CFHP working group seminar on
February 15, 2023. I had been looking for a good introductory example for the CIMPA School
Algebraic and Tropical Methods for Solving Differential Equations. It shows that polynomial
ODE do naturally arise. It relates the existence problem of formal power series with the
numerical integration of initial value problems. It introduces Puiseux series. Computations
are performed using the Python/sympy version of the DifferentialAlgebra package [1].

1 Derivation of the Differential Equation

1.1 Formulation of the Problem

A point with mass m is forced to follow a curve y(z) in the (z,y)-plane between two fixed
points (z,y) = (a,y,) = (0,0) and (b, ;). Its movement follows the gravitational law. Its

*Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique
Signal et Automatique de Lille, F-59000 Lille, France.

1

initial speed is zero. There is no friction. The problem is: find the curve y(x) which minimizes
the time needed to reach the point (b, ;).

Let s(x) be the function which gives the arc length of the curve y(x). The following formula
is classical:

/x\/1+y2<£)d£.

Differentiating w.r.t. x we get

ds

L) = VTR, (1)
Now, viewing the time t as a function of x, by the chain rule we have
ds ds dt
B 2
dx dt do)

Since the motion is frictionless, at any z, the kinetic energy is equal to the gravitational
potential energy. Since y, = 0 and assuming the y axis to be oriented downward:

1 ds\?
5m (E) = mgy. (3)
Combining (1), (2) and (3) we get

a1

dz 29y

Denote t(x) the time at which abscissa x is reached. The problem consists in minimizing

b)
HD) — ta) — /,/12*;?; dz

We are thus looking to the function y(x) which minimizes the functional

1
y = / 7 dr.
29y

Introduce the following Lagrangian:

1+ 52

Ly, y) = 294

The Beltrami formula (a special case of the Euler-Lagrange formula) applies' and the opti-
mal y(x) function satisfies the following (necessary) equation where c is a constant:

0L
o = c.
J— 9

!The assumption that the starting and the ending point are fixed is used.

2

[1]:

[2]:

[3]:

[4] :

[4]:

1.2 The Differential System to be Solved

The equation for y(x) can be obtained by differential elimination, the following computations
show. The next commands load sympy and DifferentialAlgebra and allow some ASCII
art pretty-printing.

from sympy import *
from DifferentialAlgebra import *
init_printing ()

The next commands define the independent variable x, three constants and three differential
indeterminates.

x,g,c,D = var('x,g,c,D")
L,S_L,y = function('L,S_L,y"')

The next commands define the differential polynomial ring R, endowed with a ranking. The
ranking is defined by the blocks list. The differential indeterminate y and the three constants
appear on the rightmost end of the blocks list: this aims at telling the Rosenfeld-Groébner
algorithm to seek an equation which depends on these differential indeterminates and their
derivatives only.

params = [g,c,D]

R = DifferentialRing (derivations=[x], blocks=[L,S_L,y,params],
—parameters=params)

R

We can now write down the system to be solved. The symbols L and S_L correspond to the
Lagrangian . and its “separant” 0. /y. In differential algebra, all equations are differential
polynomials. In order to handle the square root, the trick consists in defining L and S_L
through implicit equations. The last equation only aims at renaming a constant as D (it is
denoted L in |2, section 1.5, page 23]).

syst = [Eq(L(x)**2, (1+Derivative(y(x),x)**2)/(2xg*y(x))),
Eq(2+L(x)*S_L(x), Derivative(y(x),x)/(g+y(x))),
Eq(L(x) - Derivative(y(x),x)*S_L(x), c),
Eq(D, 1/(2%gkc*%2))]

syst

Do)’ Lo
M7 2L(x) St () = Y >, L(z) — St (fv)%y(m) —e D=

L) = @ 09(@) = 2%

1.3 The Differential Ideal Defined by the System

Differential elimination is performed over syst. Computations are led by the ranking. The
result is a list of two regular differential chains / characteristic sets:

[5]:

[6]:
[6]:

[7]:

[7]:

ideal = R.RosenfeldGroebner (syst)
ideal

Here are the differential polynomials which constitute the two regular differential chains.
For a better understanding, they are displayed in “solved form” i.e. as equations with their
leading ranks on the lefthand sides and their tails divided by their initials on the righthand
sides:

[C.equations(solved=True) for C in ideal]

”gzﬁlcy (@) =220 s @) = e, 1) DC]7

y(z) dx
1
9= 2D y(z) =D, Sy (x) =0, L(z) = CH
1.4 Extraction of the Brachistochrone Equation

The sought ODE is the second equation of the first chain. It only depends on y(x), its
first derivative and the constant D. It was exhibited by the differential elimination process
because of the chosen ranking. The next commands show how to extract it.

leader = var('leader')
derivative = function('derivative')

C = ideall[0]
edo = C.equations(selection=Eq(leader,derivative(y(x)))) [0]
edo

d 2
~D+ (o) (o0l)) -+
The brachistochrone equation can be written as

D
T— 5—1 or yy*+y = D. (4)

The solution is known to be a cycloid generated by a circle of diameter D.

1.5 A General and a Singular Solution

Each regular differential chain defines some differential ideal. The intersection of these two
differential ideals is the radical of the differential ideal generated by syst. Therefore, the
solution set of syst is the union of the solution sets of the regular differential chains.

The first regular differential chain defines the general solution of syst, which is a family
of curves satisfying an implicit order one ODE (the brachistochrone equation). The second
regular differential chain defines a degenerate solution: the constant function y(x) = D.
Over some examples, it happens that degenerate solutions are particular cases of the general

4

[8]:
[8]:

[9]:

[9]:

[10]:

[10]:

[11]:

[11]:

[12]:
[12]:

solution (obtained from the general solution, for particular initial values). Over this example,
the degenerate solution is a genuine singular solution.

Let us prove this claim. Denote & = {syst} the radical of the differential ideal generated
by syst. Denote Ay, A; the two regular differential chains and 2A; = [A;] : H4,* the
differential ideals that they define, for : = 1,2. We have & = 2, N 25. In order to prove
our claim, let us admit it is sufficient to prove that 2; and 2, are disjoint. For this, it is
sufficient to exhibit some product p; po of two differential polynomials such that p;p, € &
and p; € A; but p; ¢ A; for i = 1,2 and j # .

Start with the brachistochrone equation. It necessarily belongs to 2(;. To make sure it
belongs to & it is sufficient to check that its mormal form with respect to each regular
differential chain is zero:

[C.normal_form(edo) for C in ideal]

[0, 0]
It turns out that its derivative factors:

dedo = R.differentiate (edo, x).factor ()
dedo

d> d 2 d
2 — — 1] —
< o)) + (0] +) e
Let us extract the two factors:
p2 = Derivative(y(x),x)
p2

%y(fﬂ)

pl = dedo / p2
pl

20(0) o) + (i) 1

The following normal forms computations conclude the proof of our claim. They also prove
that & is not a prime differential ideal.

[C.normal_form (pl) for C in ideal], [C.normal_form (p2) for C in ideal]

(0. 11 | vt 0])

Remark that, in general, no algorithm is known to decide the inclusion between two differ-
ential ideals defined by regular differential chains (it is a famous open problem in differential

algebra). This is due to the fact that regular differential chains are not generating families
of the differential ideals they define.

2 Numerical Integration of the Brachistochrone Equa-
tion

2.1 The Straightforward Approach Fails

Let us assume that a = 0 for simplicity (from now on, a is denoted z). In the former section,
we assumed y(a) = y(zg) = yo = 0. First transform ODE (4) into explicit form:

y = flz,y),
y(ro) = Yo, (5)

where (it is classical to view f as a function of and y though the ODE is here autonomous):

| D
f(xay) = 5_1'

Let us consider the Runge mid-point formula, which is an order 2 explicit Runge-Kutta
method, for this initial value problem:

kl = f(xl% yO))
ke = flwo+35h yo+5hki), (6)
Y1 = Yo+ hky.
In the above scheme, h is the step size, (x¢,yo) is the starting point. The next point is
supposed to be (z¢ + h,y;). Unfortunately, for (zg,y0) = (0,0), the function call f(xq,yo)

raises a division-by-zero error. Let us recall |2, section 1.7, Thm 7.4| which gives a sufficient
condition for the existence and uniqueness of a solution.

Theorem 1 Assume U to be an open set in R? and let f and Of/dy be continuous on U.
Then, for every (zo,yo) € U, there exists a unique solution of (5), which can be continued
up to the boundary of U (in both directions).

In our case,

oo 7)

dy — ge [D_
2y ; 1

becomes infinite at (zg,yp) hence [an open set U which contains it] does not satisfy the
hypotheses of Theorem 1.

2.2 Relationship with the Existence of a Formal Power Series So-
lution

The numerical integration problem is also related to the fact ODE (4) has no power series
solution for the initial value yo = 0. Indeed, explicit Runge-Kutta methods are derived as

6

follows |2, section I1.1, page 132|. First compute the Taylor expansion of the exact solution
of (5). It is a series in h:

2
y(zo+h) = y0+hf(x0ay0)+%((f$+fyf>(x07y0))+"'

As an example, let us take Runge mid-point formula and replace, for a better understanding,
the numerical coefficients by parameters:

kl = f(x07y0)7
ky = f(zo+cah, yo+anhk),
vy = yo—f-h(blk’l—f—bgk’g)

Then compute the Taylor expansion of y;, viewed as a function of h,

yi(h) = yo+ h(by+b2) f(wo,y0) + > by ((c2 fu + az1 fy [) (w0, 90)) + -+

and require that both series coincide termwise (for any function f hence for any ODE) up
to some order. One solution is (cg, asy, by, by) = (%, %,O, 1) which gives Runge mid-point
formula. Some further analysis permits to determine the order of the Runge-Kutta scheme,
which measures its error, as a function of h.

Thus, if (5) has no formal power series solution or non unique formal power series solutions,
at (zo, yo) then the above derivation does not make sense and Runge-Kutta methods are not
supposed to apply.

A remark on differential elimination. In principle, the above computation of the conditions
that the Runge-Kutta coefficients must satisfy is an elimination problem. However, it is
not easy to carry out in the framework of differential algebra because computations involve
applications of the chain rule and evaluations at x = xy. These operations are not handled
by classical differential algebra, though some attempts to handle the chain rule have been
undertaken in [3].

2.3 The True Solution

Observe that the above problem is due to the ODE since the sought cycloid (Figure 1) is
the solution of the following system which can be evaluated at 6§ = 0:

z(f) = (0 —sind),
(8)

| oo |

(1 —cosf).

2.4 Existence of a Puiseux Series Solution

Fortunately [2, section 1.5, page 23], ODE (4) has a Puiseux series solution. In order to

obtain it, we need the order zero term D to be cancelled by y#? evaluated at a monomial

in 9. We thus need ¢ = % Let us compute the three first terms of the Puiseux series

solution. First define a series solp in x5 with parametric coefficients:

7

e ro 27r

Figure 1: The picture is borrowed from https://tex.stackexchange.com/questions/196957.
The radius r is D/2 with our notations.

[13]: a0,al,a2 = var('a0,al,a2')
solp = aO*x**(2/Integer(3)) + al*x**(4/Integer(3)) + a2xx*x(6/Integer(3))
solp

13]:

[13] aoxg + alx% + a2x2

[14]: values = {}
values[al]
values[a2] -243/(2800*a0**3)
values[a0] = (9%D/4)#**(1/Integer(3))
y_at_solp = R.evaluate (edo, {y(x):solp})

-9/ (20*a0)

Then evaluate the ODE (4) at this series and figure out values annihilating the resulting
series up to 2

[15]: y_at_solp.subs(values).subs(values).doit() .expand()

51 00722 1968320 1800923328 72028 9/EaY

3500D 8575000003 24500003 35000003

The truncated Puiseux series solution is obtained by substituting the figured out values in
the parametric series solp:

[16]: soln = R.evaluate (R.evaluate (solp, values), values)

soln
H61: o5 329Ded o722 3.23Bat
2 700D 20~/ D

2.5 Numerical Use of the Puiseux Series Solution

Let us now use the truncated Puiseux solution to integrate numerically our ODE. First,
fix D =2:

[17]:

[18]:

[19]:

[19]:

[20]:
[20] :

[21]:

[22]:

[22] :

values[D] = 2
soln = R.evaluate (soln, values)

and evaluate the true solution (8) at zp = .01 and (say) Tena = 1:

theta = var('theta')

def true_sol (x) :
D_val = D.subs(values)
theta_val = nsolve ((D_val/2) * (theta-sin(theta)) - x, theta, .1)
return (D_val/2) * (1 - cos(theta_val))

x0 = .01
xend = 1.
true_sol (x0), true_sol (xend)

(0.0760417718282471, 1.35579714038883)

Let us now evaluate the Puiseux series at these points. As one might expect, the value
obtained at x(is pretty accurate but becomes less precise at xonq:

soln.subs({x:x0}) .evalf (), soln.subs({x:xend}).evalf ()

(0.0760417845217514, 1.35910982123678)

Now, the value gy, provided by the Puiseux series at x = xy can be used as an initial
value for any numerical ODE solver. For simplicity, let us use the one provided by the
scipy.integrate package. It is an explicit Runge-Kutta method of order 4 with an embed-
ded formula of order 5 used to control the error. The computed value yenq at * = Tepg is
now much more precise:

import math
def £ (x,y) :
D_val = D.subs(values)
return math.sqrt (D_val/y - 1)

from scipy.integrate import solve_ivp

yO = soln.subs({x:x0}) .evalf()

ode_sol = solve_ivp (f, [x0,xend], [yO], rtol=1le-8)
yend = ode_sol.y[0,-1]

abs (true_sol (xend) - yend)

5.95431726146955 - 1077

2.6 A Further Numerical Integration Problem

The initial point (z¢,y0) = (0,0) is not the only problematic one. Indeed, at (z1,y1) =
(m D/2,D) = (m,2), the partial derivative (7) becomes infinite also. At this point, solutions
exist but are not unique.

[23]:

Indeed, we have y(z1) = f(z1,¥1) = 0 hence a horizontal tangent. One solution is the
singular (constant) solution y(z) = D. The cycloid (which is an element of the general
solution) is another solution passing through the same point.

From a numerical integration point of view, the problem shows up as follows. Consider the
Runge-Kutta method (6). If (z,y) is close to (x1,y;) then, while computing ko, the method
attempts to evaluate f(x + %h,y + %hk:l) with y + %hkl > D which leads to the square
root computation of a negative number.

Over this example, the numerical problem is easily overcome by integrating the following
order 2 initial value problem. The ODE is the differential polynomial p; of section 1.5. The
starting point is (zo, Yo, Jo) where zo = 0.01, and yo is provided by the truncated Puiseux
series, and o = f(xo,yo) is provided by the brachistochrone equation.

= 0. 9)
In order to perform the numerical integration, the order two ODE is transformed into a sys-
tem of two order one ODE. The unknown function y becomes a vector whose first coordinate
is y and its second coordinate is y. The result can be seen on Figure 2.

2yi+ 9t +1

import numpy as np
def g(x,y) :
return np.array ([y[1], - (y[11**2 + 1)/(2*y[0])], dtype=np.float64)

xend = 2*math.pi

ypO = math.sqrt(D.subs(values)/y0 - 1)

ode_sol = solve_ivp (g, [x0,xend], np.array([y0,ypO],dtype=np.float64),
—rtol=1e-8)

3.0 1 === 0DE sol

true sol
25

210 4

10+
05 ‘f‘ ‘1\

0.0 4
0.5 1
=1.0 1

0 1 2 3 4 3 G

Figure 2: The curve obtained by numerical integration of ODE (9) and the true cycloid fit.

Here are the commands which produce Figure 2:

10

[24]:

import matplotlib.pyplot as plt

plt.axis('equal')

plt.plot (ode_sol.t, ode_sol.y[0], linestyle='dashed', label='ODE sol')
tplot = np.linspace (0, 2#math.pi, 100)

xplot = [D.subs(values)/2*(theta - math.sin(theta)) for theta in tplot]
yplot = [D.subs(values)/2*(1 - math.cos(theta)) for theta in tplot]
plt.plot (xplot, yplot, linestyle='dotted', label='true sol')

plt.legend ()

plt.show ()

References
[1] Frangois Boulier and al. DifferentialAlgebra. https://codeberg.org/francois.
boulier/DifferentialAlgebra.

[2] Ernst Hairer, Syvert Paul Norsett, and Gerhard Wanner. Solving ordinary differential
equations 1. Nonstiff problems, volume 8 of Springer Series in Computational Mathemat-
ics. Springer—Verlag, New York, 2nd edition, 1993.

[3] Elizabeth L. Mansfield. Differential Grobner Bases. PhD thesis, University of Sydney,
Australia, 1991.

11

https://codeberg.org/francois.boulier/DifferentialAlgebra
https://codeberg.org/francois.boulier/DifferentialAlgebra

	Derivation of the Differential Equation
	Formulation of the Problem
	The Differential System to be Solved
	The Differential Ideal Defined by the System
	Extraction of the Brachistochrone Equation
	A General and a Singular Solution

	Numerical Integration of the Brachistochrone Equation
	The Straightforward Approach Fails
	Relationship with the Existence of a Formal Power Series Solution
	The True Solution
	Existence of a Puiseux Series Solution
	Numerical Use of the Puiseux Series Solution
	A Further Numerical Integration Problem

