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This text comes from a joint work with David Bourqui, François Lemaire, Adrien Poteaux and Julien Sebag
on [2, chap. IV, prop. 10, page 200].

1 The Theorem
Theorem 1 Let p0 be a prime ideal of F [y1, . . . , yn] of dimension d. Then the perfect differential ideal {p0}
is a prime differential ideal of F{y1, . . . , yn} having differential dimension polynomial ω{p0} = d

(
X+m
m

)
.

As an example, consider the polynomial y21 − y32 . It is irreducible in F [y1, y2] and the ideal (y21 − y32).
However, we can also view it as an order zero differential polynomial and differentiate it (its first derivative
is 2 y1 ẏ1 + 3 y22 ẏ2). The differential ideal [y21 − y32 ] of F{y1, y2} which is the ideal generated by y21 − y32 and
all its derivatives is not radical. However, according to Kolchin’s Theorem, the radical of this differential
ideal, which is the perfect differential ideal {y21 − y32}, is prime. The Theorem would be false in nonzero
characteristic. It would be false for general differential ideals (the perfect differential ideal {ẏ21 − 4 y1} is not
prime though the polynomial ẏ21 − 4 y1 is irreducible).

Kolchin’s proof is short: one page, two paragraphs. The first paragraph is pretty straightforward, in partic-
ular for readers used to algorithms for decomposing differential ideals as intersections of differential ideals
presented by characteristic sets or regular differential chains. The interesting paragraph is the second one.
Though it is pretty theoretical in nature, we show in this document that its subtleties can be illustrated with
the DifferentialAlgebra package [1] and become (hopefully) much easier to understand.

2 The First Paragraph of Kolchin’s Proof

[1]: from sympy import *
from DifferentialAlgebra import *
init_printing ()

Let us assume we have a single derivation with respect to some independent variable x (Kolchin’s Theorem
holds for the partial case also) and introduce a few differential indeterminates which can thus be viewed as
functions of x:

[2]: x = var ('x')
y3, y2, y1, rho, alpha, phi, c = function ('y3, y2, y1, rho, alpha, phi, c')

[3]: R = DifferentialRing (derivations = [x], blocks = [c, y3, y2, y1, rho, alpha, phi])
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The differential field F has characteristic zero but it may contain some non constant element ϕ. Let us
assume ϕ ∈ F satisfies some differential relation such as this one:

[4]: phi_defining_equation = Derivative(phi(x),x,x) - 1
phi_defining_equation

[4]: d2

dx2
φ(x)− 1

The first paragraph simply explains that the prime ideal p0 admits a characteristic set A, which is made of
polynomials of order zero and that this set A is also a characteristic set of the prime differential ideal p =
[A] : H∞

A by [2, chap. IV, sect. 9, Lemma 2]. The claim on the differential dimension polynomial follows
immediately from this observation by [2, chap. II, sect. 12, Theorem 6(d)].

In our running example, the characteristic set is made of a single differential polynomial (y3 − y2)2 − ϕ̇ y31 ,
that we denote A. The differential polynomial HA (denoted H_A) is the separant 2 (y3− y2) of the differential
polynomial A:

[5]: A = (y3(x) - y2(x))**2 - Derivative(phi(x),x)*y1(x)**3
A

[5]:
(− y2 (x) + y3 (x))

2 − y1
3 (x)

d

dx
φ(x)

[6]: H_A = R.separant (A)
H_A

[6]: −2 y2 (x) + 2 y3 (x)

3 The Second Paragraph of Kolchin’s Proof
First we quote this paragraph. Then we illustrate some of its parts using DifferentialAlgebra. This being
done, readers should understand much better its whereabouts and we can rewrite it.

It is clear that {p0} ⊂ p. Let (α1, . . . , αn) be any zero of p0. By Chapter 0, Section 16, Corollary
3 to Proposition 11, there exists power series Q1, . . . , Qn ∈ U [[c]] such that each element of p0
vanishes at (Q1, . . . , Qn), HA does not, and Qj(0) = αj (1 ≤ j ≤ n). Now, U is universal over
some differential field of definition F0 ⊂ F of p that is also a field of definition of p0. Therefore
there exists a point (ξ1, . . . , ξn) that is a generic differential specialization of (Q1, . . . , Qn) over F0.
It is clear that (ξ1, . . . , ξn) is a zero of A but not of HA, hence is a zero of p = [A] : H∞

A , and that
(α1, . . . , αn) is a differential specialization of (ξ1, . . . , ξn) over F0. It follows that (α1, . . . , αn) is
a zero of p. Therefore (by Section 2, Theorem 1) p ⊂ {p0}, whence p = {p0}.

The tuples (α1, . . . , αn) are zeros of the order zero ideal p0 but they must run over a sufficiently large set of
zeros to permit the application of the differential Theorem of Zeros [2, chap. IV, sect. 2, Theorem 1]. Kolchin
takes the coordinates αi in a universal differential field extension U of F . Thanks to the Theorem which
states that every perfect differential ideal is the intersection of the prime differential ideals which contain it,
it is possible to avoid this heavy theoretical construct and consider some zero (α1, . . . , αn), defined by some
prime differential ideal containing {p0}.

In the next computations, the zero is denoted Alpha. Its coordinates are taken in some differential field
extension G = F<α> of F where α (denoted alpha) satisfies some differential equation such as this one:

[7]: alpha_defining_equation = Derivative(alpha(x),x)**2 - phi(x)*alpha(x)
alpha_defining_equation
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[7]:
−α(x)φ(x) +

(
d

dx
α(x)

)2

This is not mentioned in Kolchn’s proof but the issue arises when the zero (α1, . . . , αn) annihilates HA. Let
us thus consider such a zero:

[8]: Alpha = { y1(x):0, y2(x):alpha(x), y3(x):alpha(x) }
Alpha

[8]: {y1 (x) : 0, y2 (x) : α(x), y3 (x) : α(x)}

[9]: R.evaluate (A, Alpha)

[9]:
0

[10]: R.evaluate (H_A, Alpha)

[10]:
0

By an analogue of Puiseux Lemma [2, chap. 0, sect. 16, corollary 3 to prop. 11], Kolchin then builds a
tuple (Q1, . . . , Qn) of formal power series in U [[c]] centered at (α1, . . . , αn), which annihilate p0 (hence A),
but do not annihilate HA. The coefficients of these formal power series actually belong to a finite algebraic
extension L of G . Here we only need to introduce the square root % of ϕ̇:

[11]: rho_defining_equation = rho(x)**2 - Derivative(phi(x),x)
rho_defining_equation

[11]:
ρ2(x)− d

dx
φ(x)

The example was chosen so that the formal power series Qi are polynomials but this would not be true in
general. The tuple (Q1, Q2, Q3) = (c2, α, α+ % c3) is denoted Beta:

[12]: Beta = { y1(x):c(x)**2, y2(x):alpha(x), y3(x):alpha(x) + rho(x)*c(x)**3 }
Beta

[12]: {
y1 (x) : c

2(x), y2 (x) : α(x), y3 (x) : α(x) + c3(x)ρ(x)
}

Let us check that (Q1, Q2, Q3) annihilates A but not HA (the % defining equation is needed in the simplifi-
cation process):

[13]: R.evaluate (A, Beta)

[13]:
c6(x)ρ2(x)− c6(x) d

dx
φ(x)

[14]: rem (R.evaluate (A, Beta), rho_defining_equation, rho(x))

[14]:
0

[15]: R.evaluate (H_A, Beta)

[15]:
2c3(x)ρ(x)

At this stage, it should be clear that (Q1, . . . , Qn) is a zero of the ideal p0 which does not annihilate HA

but, to permit the application of the differential Theorem of zeros, it is necessary that (Q1, . . . , Qn) is a
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differential zero of the prime differential ideal {p0}. In order to get convinced that this is actually the case,
let us pick some differential polynomial f of arbitrary order, from this differential ideal:

[16]: f = Derivative(A,x,x) + y1(x)*Derivative(A,x)
f

[16]:
y1 (x)

d

dx

(
(− y2 (x) + y3 (x))

2 − y1
3 (x)

d

dx
φ(x)

)
+

d2

dx2

(
(− y2 (x) + y3 (x))

2 − y1
3 (x)

d

dx
φ(x)

)
Let us evaluate it at (Q1, . . . , Qn). The result is a formal power series (it is a differential polynomial over
this particular example) in c and its derivatives with coefficients in L i.e. an element of the differential
power series algebra denoted L {{c}} in [2, chap. I, sect. 12]. The variables koeffs and terms contain the
coefficients ki and the terms ti of the formal power series series, which is then equal to the sum of the ki ti:

[17]: series = R.evaluate (f.doit(), Beta).doit ()

[18]: koeffs, terms = R.coeffs(series, c(x))
terms

[18]: [
c5(x)

d2

dx2
c(x), c4(x)

(
d

dx
c(x)

)2

, c7(x)
d

dx
c(x), c5(x)

d

dx
c(x), c8(x), c6(x)

]

[19]: koeffs

[19]: [
6ρ2(x)− 6

d

dx
φ(x), 30ρ2(x)− 30

d

dx
φ(x), 6ρ2(x)− 6

d

dx
φ(x), 24ρ(x)

d

dx
ρ(x)− 12

d2

dx2
φ(x),

2ρ(x)
d

dx
ρ(x)− d2

dx2
φ(x), 2ρ(x)

d2

dx2
ρ(x)− d3

dx3
φ(x) + 2

(
d

dx
ρ(x)

)2
]

All the coefficients must be zero. To complete the simplification process, we need to simplify the coefficients
with the differential ideal generated by the defining equations we have introduced. Here is a characteristic
set C for this ideal. Observe that the % defining equation is part of the characteristic set and that the
derivatives of this equation are needed in the simplification process. In more algebraic terms, the field
extension L is endowed with a differential field structure which extends that of G . The characteristic set C
provides an algorithmic description of L as a differential field extension of the field of the rational numbers:

[20]: C = RegularDifferentialChain ([rho_defining_equation,
alpha_defining_equation, phi_defining_equation], R)

C.equations(solved=True)

[20]: [
d2

dx2
φ(x) = 1,

(
d

dx
α(x)

)2

= α(x)φ(x), ρ2(x) =
d

dx
φ(x)

]
And here is the verification:

[21]: C.normal_form (koeffs)

[21]:
[0, 0, 0, 0, 0, 0]

Last, Kolchin claims that (α1, . . . , αn) is a differential specialization of (Q1, . . . , Qn). How does this translate?
Over our example, we have f(Q1, . . . , Qn) = 0 thus f(Q1, . . . , Qn), evaluated at c = 0 is zero also. However,
we eventually need f(Q1(0), . . . , Qn(0)) i.e. that the composition of the evaluation at (Q1, . . . , Qn) and the
evaluation at c = 0 is a differential homomorphism.
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In order to obtain this, we can define c as a differential indeterminate (this is what we have done) but we could
also have defined c as an arbitrary constant i.e. have computed modulo the differential relation ċ = 0. More
generally, we could have computed modulo any differential relation g(c) = 0 such that g(c) = 0 6⇒ c 6= 0.

We are now ready to rewrite the second paragraph of Kolchin’s proof.

It is clear that {p0} ⊂ p. It is thus sufficient to prove the converse inclusion. Let f ∈ p be a
differential polynomial of arbitrary order i.e. a differential polynomial such that h f ∈ [A] where h
stands for some power product of the initials and separants of A. Let P be a prime differential
ideal containing {p0} and α = (α1, . . . , αn) be the zero of {p0} defined by P in the differential
field obtained by taking the fraction field G of F{y1, . . . , yn}/P. The tuple α is a generic zero
of P (i.e. it annihilates f if and only if f ∈ P) and {p0} is the intersection of the prime differential
ideals which contain it. Thus it is sufficient to prove that α annihilates f to conclude the proof
of the Theorem. Since h f ∈ [A] ⊂ {p0} we have (h f)(α) = 0. If h(α) 6= 0 then f(α) = 0.
Assume h(α) = 0. Then dim p0 ≥ 1. By [2, chap. 0, sect. 16, Corollary 2 to Prop. 11], there
exists a prime ideal p1 such that p1 vanishes at α, dim p1 = 1, p0 ⊂ p1 and h /∈ p1. Then, by
Puiseux Lemma applied on p1 and α, there exists a tuple of power series Q1, . . . , Qn ∈ L [[c]]
where L is a finite algebraic field extension of G such that A vanishes at β = (Q1, . . . , Qn), h
does not and Qj(0) = αj (1 ≤ j ≤ n). The field L can be endowed with a differential field
structure extending that of G (that would not be true in arbitrary characteristic). View c as
a new differential indeterminate or an arbitrary constant. Then β is a zero of the differential
ideal [A] hence it annihilates f . Thus f(β), which is an element of L {{c}} (or of L [[c]] if c is
an arbitrary constant) is the zero series. Thus f(β)(0) (i.e. f(β) evaluated at c = 0) is zero also.
Our assumptions on c imply that f(β)(0) is also equal to f(Q1(0), . . . , Qn(0)). Thus f(α) = 0
and the proof is complete.
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