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This text illustrates quite an interesting derivation formula due to A. Hurwitz [3] and applied
in [2, Lemma 2.3]. Computations are performed using the Python/sympy version of the
DifferentialAlgebra package [1] and a small extra Python package Hurwitz which is
based on it.

1 Louis Example

1.1 The Problem

We start with the following (autonomous) differential polynomial

p(y, ẏ, ÿ) = y ÿ + ẏ2 − 6 y . (1)

[1]: from sympy import *
from DifferentialAlgebra import *
from Hurwitz import *
init_printing ()
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[2]: x = var ('x')
y = indexedbase ('y')

[3]: R = DifferentialRing(derivations = [x], blocks = [y], notation = 'jet')

[4]: p = y*y[x,x] + y[x]**2 - 6*y

In order to solve the nonlinear ODE p = 0 or integrate it numerically, we would need two
initial values (since p has order 2) such that y0 ̸= 0 to avoid the cancellation of the separant
∂p/∂ÿ which is equal to y. In this section however, we are concerned by the following problem:
computing solutions of the ODE where vanilla methods do not apply i.e. such that y0 = 0.
As we shall see, such solutions exist but are not unique: they are the functions y(x) = 0 (the
singular solution) and y(x) = x2 (a particular case of the general solution).

[5]: R.evaluate (p, {y:0}).doit ()

[5]:
0

[6]: R.evaluate (p, {y:x**2})

[6]:
x2 d2

dx2
x2 − 6x2 +

(
d

dx
x2

)2

[7]: expand (R.evaluate (p, {y:x**2}).doit ())

[7]:
0

1.2 Singular and General Solution

Our example features a single differential polynomial. In this context, the notions of general
and singular solutions have a nice theoretical description and solution in differential algebra,
by means of the Low Power Theorem initiated by Ritt in [5, chap. III] and quite extended
by Kolchin in [4, chap. IV]. The simplest way to apply it consists in providing the argument
singsol=’essential’ to the RosenfeldGroebner simplifier (this argument is meaningful
only in the case of a system made of a single differential polynomial):

[8]: ideal = R.RosenfeldGroebner([p], singsol='essential')
[ C.equations (solved = True) for C in ideal ]

[8]: [[
yx,x =

−y2x + 6y

y

]
, [y = 0]

]
[9]: Cgnrl = ideal[0]

Csing = ideal[1]

Two regular differential chains are produced. This means that none of them is redundant:
the differential ideals they define are pairwise disjoint. The first one is the general solution.
The second one corresponds to a truly singular solution. Therefore, y(x) = 0 is singular
and y(x) = x2 necessarily is a particular case of the general solution. Readers who want to

2



enter details may compute the preparation equation of p with respect to the second regular
differential chain:

[10]: Csing.preparation_equation(p)

[10]:
yx,xy + y2x − 6y = z1

2
x + z1xz1 − 6z1

The last term of this preparation equation is zq1 with q = 1 (q is the low power). This is
sufficient to conclude that the second regular differential chain defines an essential component
[4, chap. IV, sect. 15, Theorem 6].

1.3 Reformulation of the Problem

But let us come back to our existence problem of power series solutions for an initial
value y0 = 0 which cancels the separant. In such situations, the number of needed ini-
tial values cannot always be clearly read from the order of the differential polynomial. In
general, this number depends on the values of the initial values! A way to overcome this
difficulty consists in providing arbitrarily many initial values y0, ẏ0, ÿ0, . . . and encode them
by means of a formal power series

ȳ = y0 + y1 x+ y2
x2

2
+ · · ·

Notice y0, y1, y2 = ȳ(0), ȳ′(0), ȳ′′(0) are initial values. Of course, initial values must be
compatible with the differential polynomial. For instance the three first initial values y0, y1, y2
must satisfy1 p(y0, y1, y2) = 0. Since p(y0, y1, y2) is the first term of p(ȳ, ȳ′, ȳ′′) (which is a
series in x), we can express this compatibility constraint as p(ȳ, ȳ′, ȳ′′) mod x = 0.

Let us generalize these remarks. Hurwitz Lemma deals, more generally, with non au-
tonomous differential polynomials of arbitrary order n i.e. with differential polynomials
p(x, y, ẏ, . . . , y(n)). Given a formal power series ȳ (which encodes initial values), it (more
precisely [2, Lemma 2.3] which is based on it) provides two non negative integers β and δ
such that, if

p(x, ȳ, ȳ′, . . . , ȳ(n)) = 0 mod xβ

then there exists a unique formal power series ¯̄y such that

¯̄y = ȳ mod xδ ,

p(x, ¯̄y, ¯̄y′, . . . , ¯̄y(n)) = 0 .

With words, if the series ȳ provides sufficiently many (i.e. δ) compatible initial values then
these initial values can be prolongated into a unique formal power series ¯̄y. The two bounds δ
and β are strongly related but need not be the same.

1In the classical/vanilla setting, a numerical integrator would compute ÿ(0) = y2 from p using y0 and y1
so that the three initial values would necessarily satisfy p(y0, y1, y2) = 0.
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1.4 Illustration over the Example

Let us come back to our example (1). In order to compute the two bounds, one first computes
the valuation k of the separant of p at y = ȳ. The separant is denoted fn in [2]

fn(x, ȳ, ȳ
′, ȳ′′) = c0 x

k + c1 x
k+1 + · · · (c0 ̸= 0)

The Lemma assumes k is finite so that we cannot handle here the singular solution ȳ = 0.
Let us assume y1 ̸= 0. Then k = 1:

[11]: ybar = Add(*[y[i]*x**i/factorial(i) for i in range (10)])
ybar = ybar.subs ({y[0]:0})
ybar

[11]: x9y9
362880

+
x8y8
40320

+
x7y7
5040

+
x6y6
720

+
x5y5
120

+
x4y4
24

+
x3y3
6

+
x2y2
2

+ xy1

[12]: H = Hurwitz (p, R)
H.k ({y:ybar})

[12]:
1

The valuation k being fixed, one can also determine an integer 0 ≤ r ≤ k which gives the
first nonzero coefficient A(q) of p(2 k+2+q)(0, y0, y1, . . .) (here q is an indeterminate standing
for a number of differentiations):

[13]: q = var ('q')
k, r, A = H.kra (q, {y:ybar})
(k, r, A)

[13]:
(1, 1, qy1 + 6y1)

The question now is: are there non negative integer values for q which annihilate A(q)? Since
we have assumed y1 ̸= 0, we see that A(q) has no non negative integer root. From this we
can deduce γ which is defined as an integer strictly bigger than any non negative integer
root of A(q). We may thus choose γ = 0. From all these numbers, we get

β = 2 k + 2 + γ + r = 5 ,
δ = n+ 2 k + 2 + γ = 6 .

[14]: H.beta (0, {y:ybar})

[14]:
5

[15]: H.delta (0, {y:ybar})

[15]:
6

Let us have a look at p(x, ȳ, ȳ′, ȳ′′) mod xβ

[16]: serie = collect (expand (R.evaluate (p, {y:ybar}).doit ()), x)
rem (serie, x**5, x)
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[16]:
x4

(
y1y5
4

+
5y2y4
8

+
5y23
12

− y4
4

)
+ x3

(
5y1y4
6

+
5y2y3
3

− y3

)
+ x2

(
2y1y3 +

3y22
2

− 3y2

)
+

x (3y1y2 − 6y1) + y21

The initial values are compatible with the differential equation if and only if this series is
identically zero. Looking at the last term, this would imply y1 = 0 which would contradict
our hypothesis. Thus the differential equation has no solution ¯̄y with y0 = 0 and y1 ̸= 0.

Let us thus study the case y0 = y1 = 0 and assume y2 ̸= 0:

[17]: ybar = ybar.subs ({y[1]:0})
ybar

[17]: x9y9
362880

+
x8y8
40320

+
x7y7
5040

+
x6y6
720

+
x5y5
120

+
x4y4
24

+
x3y3
6

+
x2y2
2

[18]: k, r, A = H.kra (q, {y:ybar})
(k, r, A)

[18]: (
2, 2, 8qy2 +

(
q

2

)
y2 + 28y2 − 6

)
[19]: A.combsimp ()

[19]: q2y2 + 15qy2 + 56y2 − 12

2

We have found k = r = 2 and a degree two polynomial A(q) which may have arbitrary
high positive integer roots, depending on y2. Without any further information on y2, the
analysis is not so easy. In order to get some insight, let us have a look at the lowest terms
of p(x, ȳ, ȳ′, ȳ′′):

[20]: serie = collect (expand (R.evaluate (p, {y:ybar}).doit ()), x)
rem (serie, x**4, x)

[20]:
x3

(
5y2y3
3

− y3

)
+ x2

(
3y22
2

− 3y2

)
Indeed, we see that y2 must be equal to 2. Let us restart computations:

[21]: ybar = ybar.subs ({y[2]:2})
ybar

[21]: x9y9
362880

+
x8y8
40320

+
x7y7
5040

+
x6y6
720

+
x5y5
120

+
x4y4
24

+
x3y3
6

+ x2

[22]: k, r, A = H.kra (q, {y:ybar})
(k, r, A)

[22]: (
2, 2, 16q + 2

(
q

2

)
+ 50

)
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[23]: solve (A.combsimp())

[23]:
[−10, −5]

Here we see that A(q) has no non negative integer root. We can thus choose γ = 0 which
gives us β = 8:

[24]: H.beta (0, {y:ybar})

[24]:
8

and the following truncated series:

[25]: serie = collect (expand (R.evaluate (p, {y:ybar}).doit ()), x)
rem (serie, x**8, x)

[25]:
x7

(
y3y6
60

+
y4y5
40

+
11y7
840

)
+x6

(
7y3y5
90

+
7y24
144

+
5y6
72

)
+x5

(
7y3y4
24

+
3y5
10

)
+x4

(
5y23
12

+ y4

)
+

7x3y3
3

Obviously, this series is identically zero if and only if y3 = y4 = · · · = y7 = 0. Thus for these
initial values, the formal power series ¯̄y exists and is unique. Observe that [2, Lemma 2.3]
does not tell us that all further coefficients are zero (so that ¯̄y = x2).

1.5 Numerical Integration

The knowledge of a truncated power series solution (y0, y1, y2) = (0, 0, 2) permits us to
integrate numerically the ODE. The order two differential polynomial is converted into a
vector of two order one ODE. Denote Y = (y, ẏ). The coordinates of Y are denoted Y =
(Y0, Y1). The system to be integrated is

Ẏ = f(x, Y ) =

(
Y1

6− Y1

2Y0

)
. (2)

The initial values are Y = (0, 0). In order to avoid a division by zero, the truncated power
series can be used as long as Y0 = 0 (which happens at the two first steps of the integration
process). See Figure 1.

[26]: from scipy.integrate import solve_ivp
import numpy as np
def f (x,y) :

if y[0] == 0 :
return np.array ([y[1], 2], dtype=np.float64)

else :
return np.array ([y[1], 6 - y[1]**2/y[0]], dtype=np.float64)

[27]: ode_sol = solve_ivp (f, [0,1.5], np.array ([0,0], dtype=np.float64), rtol=1e-8)

Here are the commands which produced Figure 1:
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Figure 1: The curve obtained by numerical integration of ODE (2) and the parabola fit.

[28]: import matplotlib.pyplot as plt
plt.axis('equal')
plt.plot (ode_sol.t, ode_sol.y[0], linestyle='dashed', label='ODE sol')
plt.plot (ode_sol.t, [x**2 for x in ode_sol.t], linestyle='dotted',␣
↪→label='$x^2$')

plt.legend ()
plt.show ()

2 Michael Example
Consider the following (linear) differential polynomial where a is a constant

p = x ẏ − a y .

One solution is the zero function y(x) = 0. If a is a non negative integer then there also exist
power series solutions y(x) = c xa where c is a constant, This example was used by Michael
Singer in [6] to show that the problem “given a polynomial ODE system, determine if there
exists a nonzero formal power series solution” is undecidable.

This example is also particular because the separant of p, which is fn = x does not depend
on y so that the valuation k = 1 of fn(x, ȳ) does not depend on ȳ.

[29]: x = var ('x')
a,q = var ('a,q')
y = indexedbase ('y')

[30]: R = DifferentialRing(derivations = [x], blocks = [y,a], parameters = [a],␣
↪→notation = 'jet')
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[31]: p = x*y[x] - a*y

[32]: H = Hurwitz (p, R)
k, r, A = H.kra(q, {})
k, r, A

[32]:
(1, 1, −a+ q + 4)

The integer r and the polynomial A(q) do not either but A(q) depends on a:

[33]: solve (A, q)

[33]:
[a− 4]

The bound γ is defined as an integer bigger than any non negative integer root of A(q). Thus
if a < 4 then we can choose γ = 0 else we can choose γ = a− 3. Here are the corresponding
bounds δ and β:

[34]: H.delta (0, {}), H.delta (a-3, {})

[34]:
(5, a+ 2)

Indeed, in both cases, [2, Lemma 2.3] tells us to look at sufficiently many initial values to
decide the existence and uniqueness of a formal power series solution ¯̄y.

3 François Example
Consider the following order two non autonomous differential polynomial

p(x, y, ẏ, ÿ) = x y ÿ + ẏ + y2 + 1 .

Proposition 1 The differential polynomial p admits a formal power series solution (which
is then uniquely defined) if and only if its initial value y0 /∈ E where E = {−1/a | a ∈ N∗}.
Moreover, if y0 = −1/a for some a ∈ N∗ then p(x, y, ẏ, ÿ) = 0 mod xa admits a solution.

Proof Denote pa = p(a)(0, y). Rename y(i) as yi for any i. It is easy to prove by induction
that we have pa = (a y0 +1) ya+1 + qa where qa is a nonempty sum of monomials of the form
ci,j yi yj such that ci,j > 0 and i+ j ≤ n+ 1. Here are a few values:

i pi
0 y1 + y20 + 1
1 (y0 + 1) y2 + 2 y0 y1
2 (2 y0 + 1) y3 + (2 y1 + 2 y0) y2 + 2 y21
3 (3 y0 + 1) y4 + (6 y1 + 2 y0) y3 + 6 y1 y2 + 3 y22
...

...

For any y0 /∈ E, it is clear that the above system admits a unique solution. Let us assume
y0 = −1/a for some a ∈ N∗. Then the leading coefficient of pa vanishes. Since it is the first
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one to vanish, we see that p(x, y, ẏ, ÿ) = 0 mod xa admits a solution. We now claim that
p(x, y, ẏ, ÿ) = 0 mod xa+1 has no solution. The leading coefficients i y0 + 1 of pi (0 ≤ i < a)
are positive. It is easy to prove by induction, using the form of the polynomials qi, that the
equations p0 = · · · = pa−1 = 0 force the variables y1, . . . , ya to have strictly negative values.
But the equation pa = 0 then forces ya to have a strictly positive value. Thus the system
p0 = · · · = pa = 0 is inconsistent and the claim is proved. □

Let us consider a formal power series ȳ with y0 ̸= 0. Then we have:

[35]: p = x*y*y[x,x] + y[x] + y**2 + 1

[36]: ybar = Add (*[y[i]*x**i/factorial(i) for i in range (3)])
ybar

[36]: x2y2
2

+ xy1 + y0

[37]: H = Hurwitz (p,R)
k, r, A = H.kra(q, {y:ybar})
k, r, A

[37]:
(1, 1, qy0 + 4y0 + 1)

Let us assume y0 = −1/a for some positive integer a. Then we can choose γ = a− 3 and the
bounds provided by [2, Lemma 2.3] are sufficient to prove the non existence of any power
series solution ¯̄y:

[38]: solve (A.subs({y[0]:-1/a}), q)

[38]:
[a− 4]

[39]: H.beta (a-3, {y:ybar}), H.delta (a-3, {y:ybar})

[39]:
(a+ 2, a+ 3)
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