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A new twist on the large size limit behaviour of networks of Hopfield-like neurons

Olivier Faugeras and Etienne Tanré
We revisit the problem of characterising the thermodynamic limit of a fully connected network of Hopfield-like neurons.
Our contributions are that we provide a) a complete description of the mean-field equations as a set of stochastic differential
equations depending on a mean (m(t)) and covariance (K(t, s)) functions, b) a provably convergent method for estimating
these functions, and c) numerical results of this estimation as well as examples of the resulting dynamics. The mathematical
tools are the theory of Large Deviations, Itô stochastic calculus, and the theory of Volterra equations. Starting from the
equation of the membrane potential Xt of a single neuron with intrinsic dynamics g, submitted to Brownian noise Wt{

dXt = g(Xt)dt+ λdWt

Law of X0 = µ0,
(1)

we couple N such neurons with independent initial distribution (Law of (X1
0 , · · · , XN

0 ) = µ⊗N
0 ) as

dXi
t =

(
g(Xi

t) + ΣjJijf(X
j
t )
)
dt+ λdW i

t 1 ≤ i ≤ N (2)
f is a regular bounded function (typically a sigmoid) that converts membrane potential to activities. The W is are
independent Brownians. The synaptic weights Jij are i.i.d. Gaussian random variables

Jij ≃ N (
J

N
,
σ2

N
), i, j = 1, · · · , N (3)

The theory of large deviations allows us, inspired by [1], to write the mean-field equations:
Xt = X0 +

∫ t

0
g(Xs) ds+ λBt Bt =

∫ t

0
mQ(s) ds+B0

t

B0
t = Wt +

∫ t

0

∫ s

0
K̃s

Q(s, u) dB
0
u ds mQ(t) = J̄EQ[

∫
f(Xt)], J̄ = J/λ

KQ(t, s) = σ̄2EQ[f(Xt)f(Xs)], σ̄ = σ/λ Q is the law of Xt, Wt is a Brownian under Q

(4)

K̃t
Q is a simple function of KQ. The theory of Volterra equations allows us to compute B0 as a function of the Brownian

W and the covariance KQ:

B0
t = Wt +

∫ t

0

W̃s ds+

∫ t

0

(∫ s

0

Hs
Q(s, u)W̃u du

)
ds where W̃t =

∫ t

0

K̃t
Q(t, s) dWs, (5)

and Ht
Q(t, s) is the resolvent kernel of the corresponding Volterra equation in the variable B0

t which is a simple function

of K̃Q and hence of KQ. Equations (4) and (5) are a new description of the mean-field dynamics as a set of non-Markov
stochastic equations.

The functions KQ and mQ are unknown functions of g, f , J̄ and σ̄. We have proved that a certain map defined on
the set of pairs of functions (m(t),K(t, s)) has a unique fixed point, i.e. (mQ(t),KQ(t, s)) which defines the dynamics (4)
and characterized its rate of convergence.

We have implemented the corresponding algorithm in the Julia language using Monte Carlo methods and found
experimentally that it converged in just a few iterations, allowing us to simulate the mean-field dynamics (4).

We show some of our numerical results in the Figure below for a network of Hopfield neurons, i.e. g(x) = −x, f a
sigmoid. From left to right we use J = −6 (inhibitory network), J = 0 and J = 2 (excitatory network). In all cases we
have σ = λ = 1. The simulations run over 10 seconds. Due to lack of space we do not show any results for the spin-glass
network.
To summarize we have generalized and set on a firm mathematical basis the work of Sompolinsky et al., e.g. [2], Helias
et al., e.g. [4]. We have also extended the work of Ben Arous and Guionnet, e.g. [1], and clarified and complemented the
work of Faugeras et al., e.g. [3].
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Figure 1: Results of the Hopfield network mean-field estimation


