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dX t = g(X t )dt + λdW t Law of X 0 = µ 0 , (1) 
we couple N such neurons with independent initial distribution (Law of (X 1 0 , • • • , X N 0 ) = µ ⊗N 0 ) as

dX i t = g(X i t ) + Σ j J ij f (X j t ) dt + λdW i t 1 ≤ i ≤ N (2 
) f is a regular bounded function (typically a sigmoid) that converts membrane potential to activities. The W i s are independent Brownians. The synaptic weights J ij are i.i.d. Gaussian random variables

J ij ≃ N ( J N , σ 2 N ), i, j = 1, • • • , N (3) 
The theory of large deviations allows us, inspired by [START_REF] Benarous | Large deviations for Langevin spin glass dynamics[END_REF], to write the mean-field equations:

   X t = X 0 + t 0 g(X s ) ds + λB t B t = t 0 m Q (s) ds + B 0 t B 0 t = W t + t 0 s 0 Ks Q (s, u) dB 0 u ds m Q (t) = JE Q [ f (X t )], J = J/λ K Q (t, s) = σ2 E Q [f (X t )f (X s )], σ = σ/λ Q is the law of X t , W t is a Brownian under Q (4) Kt Q is a simple function of K Q .
The theory of Volterra equations allows us to compute B 0 as a function of the Brownian W and the covariance K Q :

B 0 t = W t + t 0 W s ds + t 0 s 0 H s Q (s, u) W u du ds where W t = t 0 Kt Q (t, s) dW s , (5) 
and H t Q (t, s) is the resolvent kernel of the corresponding Volterra equation in the variable B 0 t which is a simple function of KQ and hence of K Q . Equations ( 4) and ( 5) are a new description of the mean-field dynamics as a set of non-Markov stochastic equations.

The functions K Q and m Q are unknown functions of g, f , J and σ. We have proved that a certain map defined on the set of pairs of functions (m(t), K(t, s)) has a unique fixed point, i.e. (m Q (t), K Q (t, s)) which defines the dynamics ( 4) and characterized its rate of convergence.

We have implemented the corresponding algorithm in the Julia language using Monte Carlo methods and found experimentally that it converged in just a few iterations, allowing us to simulate the mean-field dynamics [START_REF] Alexander Van Meegen | Large-Deviation Approach to Random Recurrent Neuronal Networks: Parameter Inference and Fluctuation-Induced Transitions[END_REF].

We show some of our numerical results in the Figure below for a network of Hopfield neurons, i.e. g(x) = -x, f a sigmoid. From left to right we use J = -6 (inhibitory network), J = 0 and J = 2 (excitatory network). In all cases we have σ = λ = 1. The simulations run over 10 seconds. Due to lack of space we do not show any results for the spin-glass network.

To summarize we have generalized and set on a firm mathematical basis the work of Sompolinsky et al., e.g. [START_REF] Crisanti | Path integral approach to random neural networks[END_REF], Helias et al., e.g. [START_REF] Alexander Van Meegen | Large-Deviation Approach to Random Recurrent Neuronal Networks: Parameter Inference and Fluctuation-Induced Transitions[END_REF]. We have also extended the work of Ben Arous and Guionnet, e.g. [START_REF] Benarous | Large deviations for Langevin spin glass dynamics[END_REF], and clarified and complemented the work of Faugeras et al., e.g. [START_REF] Faugeras | A constructive mean-field analysis of multi population neural networks with random synaptic weights and stochastic inputs[END_REF]. 
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 1 Figure 1: Results of the Hopfield network mean-field estimation