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Abstract. Semantic mapping in mobile robotics has gained significant
attention recently for its important role in equipping robots with a com-
prehensive understanding of their surroundings. This understanding in-
volves enriching metric maps with semantic data, covering object cate-
gories, positions, models, relations, and spatial characteristics. This aug-
mentation enables robots to interact with humans, navigate semanti-
cally using high-level instructions, and plan tasks efficiently. This study
presents a novel real-time RGBD-based semantic mapping method de-
signed for autonomous mobile robots. It focuses specifically on 2D se-
mantic mapping in environments where prior knowledge of object mod-
els is available. Leveraging RGBD camera data, our method generates a
primitive object representation using convex polygons, which is then re-
fined by integrating prior knowledge. This integration involves utilizing
predefined bounding boxes derived from real 3D object dimensions to
cover real object surfaces. The evaluation, conducted in two distinct of-
fice environments (a simple and a complex setting) utilizing the MIR mo-
bile robot, demonstrates the effectiveness of our approach. Comparative
analysis showcases our method outperforming a similar state-of-the-art
approach utilizing only RGBD data for mapping. Our approach accu-
rately estimates occupancy zones of partially visible or occluded objects,
resulting in a semantic map closely aligned with the ground truth.

Keywords: Semantic Mapping · Data Association · Prior Knowledge

1 INTRODUCTION

Mobile robots are increasingly finding applications across a wide range of set-
tings, including homes, offices, healthcare facilities, and manufacturing environ-
ments. To execute their tasks effectively, these robots rely on having an accurate
and up-to-date map of their surroundings. Traditional mapping techniques have
primarily focused on metric or topological maps, which ensure safe navigation
but often lack vital information about the environment, such as object cate-
gories and spatial relationships [1]. However, certain tasks demand a more pro-
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found cognitive understanding of the environment, such as human-robot collab-
oration, semantic navigation [2], and object manipulation. Additionally, robots
are increasingly transitioning from specialized, single-task machines to general-
purpose systems that operate in diverse environments. To address these chal-
lenges, semantic mapping emerges as a promising approach, enriching maps with
high-level semantic knowledge, including object categories, shapes, 3D models,
and object relationships. This enrichment allows robots to effectively generalize
knowledge, learn, and be transparent in their decision-making processes [3].

Our research delves into indoor semantic mapping within the framework of a
digital twin—a virtual replica that mirrors real-world entities in real-time. The
fast integration of this technology across various applications, such as manufac-
turing [4], and the numerous studies interested in its adoption in other domains
like agriculture [5,6], motivates our focus. Our methodology involves continu-
ously updating a semantic map within the digital twin, providing real-time in-
formation on object categories, positions, and occupancy zones. This integrated
semantic map serves as a supervision and analysis tool, facilitating swift re-
sponses during challenges and significantly enhancing the capabilities of robots.
Consequently, robots can adapt their tasks promptly to changing surroundings,
have increased flexibility and real-time decision-making capabilities.

Existing literature outlines two approaches to semantic mapping: 2D and
3D. In 2D mapping, the aim is object localization and identification, while 3D
mapping delves into the spatial characteristics of objects [7,8]. Choice depends
on the intended application. For tasks like semantic navigation [2], a 2D map
suffices, enabling navigation using high-level instructions like ”Go to the kitchen”
or ”Transport the box to the garage”. Conversely, object manipulation demands
3D models for spatial understanding [9]. Context also matters, in environments
where 3D models of objects are available beforehand, prioritizing 2D mapping
can be efficient. Real-time applications might favor 2D data for timely decision-
making. However, scenarios requiring complex object manipulation, augmented
reality applications, and surface mapping in fields like archaeology or geological
exploration, necessitate 3D mapping for accuracy.

In the domain of digital twins with accessible 3D models, the need for ex-
tensive transmission of additional 3D data might be mitigated. As a result, our
research is currently directed towards refining precise 2D mapping, aiming to
leverage existing 3D models to streamline data exchange and potentially en-
hance operational effectiveness. Prior 2D mapping works relied solely on sensor
data. For instance, Zhao et al. [10] proposed a solution that incorporates voice
instructions to annotate an occupancy grid map with object labels. In contrast,
Qi et al. [11] present a different approach, enabling the incorporation of object
topological information into an occupancy grid map. This involves utilizing an
object detection model and a triangulation algorithm, leveraging odometry and
stereo vision data to identify objects within point clouds. Subsequently, they
employ minimum bounding rectangles to represent the topological space based
on labeled point clouds. Additionally, Zaenker et al. [9] utilize RGBD data to
represent the occupancy zones of objects on the occupancy map using polygons.
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Their approach involves extracting object point clouds and simultaneously la-
beling them using a detection model. They employ the Quickhull algorithm [12]
to approximate the occupation zones from these labeled point clouds. Similarly,
Dengler et al. [13] propose an RGBD-based solution. They employ a CNN-based
detection model and a segmentation algorithm to identify object point clouds.
Then, the occupation zones of objects are determined from the labeled points
clouds. Each object’s point cloud was projected onto the map plane, and the
Quickhull algorithm was used to represent the object’s occupation zone through
polygons. Furthermore, they introduce a more accurate representation using ori-
ented bounding boxes.

Beyond object recognition, studies have focused on semantic place categoriza-
tion using sensor data, intending to enable autonomous robots to discern area-
specific semantic labels akin to human perception, such as ”office” or ”kitchen”
[14]. Recent methodologies leverage diverse technologies: Hiller et al. [15] utilize
2D laser sensor data, employing image patches from 2D occupancy maps as in-
put for Convolutional Neural Networks (CNNs) to determine precise locations.
Kaleci et al. [16] employ a 2D deep learning architecture, annotating occupancy
grid maps using laser data, while Posada et al. [17] use CNNs to categorize
omnidirectional camera images.

Clearly, the majority of prior works in 2D semantic mapping relied solely on
sensor data. In contrast, the focal point of our approach lies in 2D mapping,
introducing a major novelty: how to integrate prior knowledge into the semantic
mapping process to enhance the quality of the created map ? This approach
distinguishes our work from existing methodologies, as it strategically leverages
prior knowledge to augment the mapping process. Specifically, in this paper,
we propose an RGBD-based semantic mapping solution that utilizes real object
models to improve the approximation of the 2D occupation zone of objects. Our
solution enables the approximation of complete occupancy zones of objects, even
when only partial object representations are available. It achieves this by utilizing
predefined bounding boxes derived from the real dimensions of objects extracted
from 3D models. The primary advantage of our approach lies in its ability to
estimate the occupancy zones of partially visible or occluded objects, leading to a
more accurate semantic map that closely aligns with ground truth. We assess the
performance of our mapping solution in two distinct office settings and conduct
a comparative analysis with an alternative semantic mapping method [13].

Our paper is organized as follows: In Section 2, we provide a brief description
of the overall semantic mapping process, followed by a detailed description of
our method for integrating prior object dimensions extracted from 3D models
into the mapping process. In Section 3, we present our experimental results,
including a discussion of the experimental setup, evaluation metrics, and results
analysis. Finally, in Section 4, we summarize our findings and discuss potential
avenues for improvement.
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Fig. 1. Enhancing semantic object representation: Integration of our method within
the semantic mapping process, based on the framework proposed in [13]. Modules
highlighted in blue indicate the incorporation of prior knowledge for improved semantic
object representation.

2 METHOD DESCRIPTION

In this research, we propose a real-time semantic mapping solution tailored for
autonomous mobile robots, leveraging RGBD data. This paper specifically fo-
cuses on a novel association approach designed to generate 2D representations
of semantic objects using both RGBD data and prior knowledge. The objective
of our work is to deploy a semantic map onto a digital twin. This semantic map
serves various purposes, primarily enhancing the capabilities of mobile robots
and enabling them to perform more complex tasks. What sets our work apart is
the utilization of prior knowledge provided by the digital twin, including infor-
mation about objects existing in the environment and their numerical models.
Additionally, our method is designed to be real-time, embeddable, and resource-
efficient for deployment on a mobile robot, fulfilling the dual purpose of mapping
the environment and updating the digital twin in real-time.

The overall process is briefly summarized in the following section, followed
by a detailed description of our approach.
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Fig. 2. Semantic object occupancy zone representation

2.1 The overall semantic mapping process

There are two major semantic mapping approaches in mobile robotics: mono-
robot approaches and collaborative approaches. In mono-robot approaches, a
single robot is used for semantic mapping, whereas collaborative approaches
involve multiple agents, which can be robots or other entities, working together
in various ways to create the semantic map. This paper is interested in mono-
robot semantic mapping. Readers interested in collaborative semantic mapping
can refer to our review paper [1], where we conducted an in-depth study of both
approaches.

Existing literature presents several approaches for semantic mapping. Our
method, depicted in Figure 1, is proposed based on the RGBD-based approach
introduced in [13]. This approach assumes the presence of an established occu-
pancy grid map and knowledge of the global pose of the robot. The semantic
mapping process involves employing a detection model to identify objects within
the RGB image, combined with a rapid segmentation algorithm for segmenting
objects within the depth image. An association step establishes links between
each object detection and its corresponding segment in the point cloud, creating
object point clouds.

To represent the spatial extent of objects, our method projects object point
clouds onto the ground plane and uses the Quickhull algorithm [12] to generate
a convex polygonal representation of the object. We choose this algorithm for
its computational simplicity and efficiency in approximating convex shapes from
point sets. It produces streamlined object representations with minimal compu-
tational overhead, making it suitable for real-time mapping applications. Figure
2.a illustrates object representations using convex polygons.

It’s important to note that the generated polygonal representation captures
only the observable portion of the object, as the robot’s RGBD sensor detects
partial aspects of objects within its operational range and field of view during
navigation. To address this limitation, we incorporate prior knowledge of object
dimensions from a pre-existing dataset of CAD models to construct a comple-
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Fig. 3. Example of the prior knowledge base of objects existing in the environment.

mentary rectangular bounding box representation, as shown in Figure 2.b. This
integration of prior information significantly enhances the accuracy and con-
sistency of the resulting map. Moreover, the mapping process is incremental,
allowing the assimilation of new information to fill in missing details or update
object shapes and positions.

In the following, we assume that the polygon representing the object at each
time point has already been constructed using the Quickhull algorithm. We
then focus on the association method for the generation of the bounding box
representation.

2.2 Prior knowledge

In our work, prior knowledge consists of a list of objects found in the environ-
ment. Each object is described by the dimensions length and width, represented
respectively by l and w, of the rectangular bounding box enclosing its 2D projec-
tion to the ground. Indeed, bounding boxes are commonly used in many mapping
approaches to represent the zone occupied by objects. They allow the representa-
tion of a wide variety of objects in the real world, ranging from simple geometric
shapes to complex structures. Even curved objects can often be enclosed within
a bounding box that is large enough to contain it without excessive waste of
space. Additionally, bounding boxes reduce the complexity of object represen-
tation, as they are defined by a few simple parameters such as the center point,
orientation, and size.

In our case, the environment being considered is an office environment, so
objects such as tables, chairs, desks, etc. may be present. We have adopted a
strategy of employing a single model for each object category. This choice is
driven by our core objective, which is to validate our mapping technique. While
the consideration of multiple models does not currently influence our mapping
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process directly, it does introduce an additional challenge: the precise association
of detections with the appropriate shape in our knowledge base. While this aspect
is not our current primary focus, it remains a potential avenue for exploration
in our future work.

For instance, when considering the ”table” class, there is only one model
present in the environment, and consequently, only one set of dimensions {l, w}
is stored in our prior knowledge base. Using these known dimensions, a prede-
fined bounding box, denoted as Bo = {b1, b2, b3, b4}, with vertices defined in a
clockwise direction, will be created to represent the occupancy of the object. Fig-
ure 3 shows an example of the prior knowledge and predefined bounding boxes
for two objects: ”table” and ”chair”.

Fig. 4. Generation of candidate bounding boxes: Ot represents the polygon denoting
the partial occupancy zone of the semantic object. The green and red boxes are two
candidate options for augmenting this polygon. For each selected edge, the box orienta-
tion is determined by the edge’s orientation, and two potential positions are proposed:
the green box is positioned on the left side of the edge, aligned with its right extremum,
while the red box is placed on the right side of the edge, aligned with its left extremum.
Following the box generation process, the most suitable box will be chosen to represent
the object.
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2.3 2D geometric association method

The objective of our method is to establish a connection between the predefined
bounding box Bo and the partial polygon of the object denoted as Ot at time
t. This association enables us to estimate the actual occupied area of the object
from partial occupancy.

Our approach is designed to determine both the orientation and position of
the object by identifying potential connections between the object’s bounding
box and the edges of its polygon. To accomplish this, we introduce a method
involving the generation of multiple candidate bounding boxes, followed by their
association and evaluation, ultimately leading to the selection of the most suit-
able candidate to represent the object. The method is visually depicted in Figure
4. In particular, we propose creating two bounding boxes for each edge of the
polygon : one shifted to the left (indicated in green) and the other to the right (in-
dicated in red). This approach results in a total of 2n potential candidates, each
exhibiting distinct positions and orientations, where n represents the number of
edges of the polygon. Given that each edge can be associated with either the
length or the width of the object, we apply this reasoning initially with bounding
box dimensions {l, w}, and subsequently with dimensions {w, l}, resulting in a
total of 4n candidate bounding boxes.

To evaluate the quality of each candidate association, we calculate an as-
sociation score for each, selecting the bounding box with the highest score to
accurately represent the object.

2.4 Algorithm description

Polygon simplification and foreground edges selection : The RGBD
camera generates a high-density point cloud, leading to densely populated ob-
ject point clouds. This density often causes over-segmented edges in polygons
generated using the Quickhull algorithm. Consequently, this issue significantly
increases the number of potential bounding boxes and extends processing time.
Furthermore, this density factor directly affects the scoring function, which will
be discussed later, as it relies on polygon edges length.

To tackle this challenge, we propose the introduction of a simplification step
before the association process. This step involves merging consecutive edges
within the polygon, especially those with angles greater than 178 degrees. Al-
though these edges may visually appear as a single edge, they are actually com-
posed of multiple smaller segments. Figure 5.a provides an example of a polygon
before and after undergoing this process.

Moreover, our initial association process involved considering all polygon
edges to generate candidate bounding boxes, leading to significant time con-
sumption. To optimize this process, we now exclusively focus on foreground
edges in relation to the robot, as they are more likely to be observed.

To determine whether a particular edge is in the foreground of the robot or
not, we propose a method involving the computation of a triangle using the edge’s
vertices and the robot’s position, as shown in Figure 5.b. Subsequently, we assess
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Fig. 5. Illustration of polygon simplification and selection of foreground edges: (a)
The simplification step merges consecutive edges in the polygon with angles greater
than 178 degrees, resulting in the removal of all red vertices. The total number of
edges in the polygon is reduced from 11 to 4. (b) The green edge is considered a
foreground edge because there is no intersection between the green triangle and the
polygon. In contrast, the red edge is not considered a foreground edge because there is
an intersection between the red triangle and the polygon.

whether there is an intersection between this triangle and the object polygon.
If no intersection is detected (the green triangle), the edge is considered to be
in the foreground. Conversely, if an intersection is detected (the red triangle),
the edge is not considered to be in the foreground. To compute this intersection,
we employ the Weiler-Atherton clipping algorithm [18], which effectively clips
the polygon using the triangle, generating a new polygon that represents the
intersection region.

Establishing local reference frames for edges : To elucidate the process
of generating bounding boxes, our methodology incorporates specific conditions.
Firstly, we assume a consistent clockwise arrangement of vertices for the polygon,
denoted as Ot = {si, i = 1, ..., n} at time t. Simultaneously, we ensure that the
vertices bi of the resulting bounding boxes, referred to as Bo = {b1, b2, b3, b4},
also maintain a clockwise orientation.

After applying the Quickhull algorithm, the polygon vertices are represented
in the global reference frame R0(o,

−→x ,−→y ) with coordinates (xsi , ysi). This global
frame serves as the reference coordinate system for the semantic map and is
crucial for the robot’s localization and map updates.

Our association method entails the establishment of a local reference frame
for each edge of the polygon. This frame serves the purpose of identifying can-
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Fig. 6. Example of creating the predefined bounding boxes for the first edge

didate bounding boxes for the edge within its local context and defining the
association features required for score computation. Subsequently, the box coor-
dinates are transformed into the global frame to enable map updates. In what
follows, we provide a detailed explanation of how the local frame is defined for
each edge and the necessary transformations for transitioning between the global
frame and the local frame, as well as the reverse transition.

For each edge, denoted as ei = {si, si+1} and represented by the two points
si and si+1, we establish a local reference frame Ri(si,

−→u ,−→v ) as shown in Figure
6.a. This local reference frame at point si is determined by two essential vectors:
−→u , which is a unit vector aligned with the direction of ei, and

−→v , a unit normal
vector to ei pointing inward toward the polygon. Together, the pair of vectors
(−→u ,−→v ) forms an orthonormal basis for the local reference frame at point si.
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For −→u , we express it as :

−→u =
[
∆x ∆y

]T
(1)

Here, ∆x and ∆y are determined as :

∆x =
xsi+1 − xsi

∥ei∥
∆y =

ysi+1 − ysi
∥ei∥

where ∥ei∥ represents the norm of the edge. To derive −→v , we apply a rotation
of −π/2 to −→u using the rotation matrix Rθ :

−→v = Rθ=−π/2
−→u =

[
∆y −∆x

]T
(2)

Now, Eq. 3 is employed to establish the global coordinates (xb, yb) in the
reference frame R0 for a given point b based on local coordinates (α, β), as
depicted in Figure 6.a :[

xb
yb

]
=

[
xsi
ysi

]
+

[
∆x ∆y

∆y −∆x

] [
α
β

]
(3)

Furthermore, the inverse transformation for Eq. 3 can be obtained as follows :[
α
β

]
= A−1B with A =

[
∆x ∆y

∆y −∆x

]
and B =

[
xb − xsi
yb − ysi

]
(4)

Here, the inverse of matrix A, denoted as A−1, is given by :

A−1 =
1

det(A)

[
−∆x −∆y

−∆y ∆x

]
(5)

With det(A) = −1, we can simplify the inverse transformation :[
α
β

]
=

[
∆x ∆y

∆y −∆x

] [
xb − xsi
yb − ysi

]
(6)

Given Eq. 3 and Eq. 6, we have the ability to either transform the global polygon
coordinates into local coordinates for the purpose of generating bounding boxes
or utilize the inverse transformation to update the map.

Candidate bounding boxes generation: Now that we have all the essential
components in place, we outline the procedure for generating bounding boxes,
a fundamental aspect of our solution. The steps for creating shifted bounding
boxes within the global reference frame R0 are as follows:

1. Generation of leftward shifted bounding box:
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– For a leftward shift (Figure 6.b), the Shift Distance (d) along the u-Axis
is set to αmax, representing the α value of the extremum right vertex.
The identification of the right extremum vertex involves calculating local
coordinates (α, β) for all polygon vertices using Eq. 6. Subsequently, the
vertex with the maximum α value is selected.

– Further, determining the coordinates of b2 involves aligning the bounding
box edge b12 with ei while ensuring that the edge b23 passes from the
extremum right vertex with α value equal to αmax. Applying Eq. 7 gives
the coordinates of b2. [

xb2
yb2

]
=

[
xsi
ysi

]
+ αmax

−→u (7)

– After determining the coordinates of b2, Eq. 8 is applied to compute
coordinates for the remaining bounding box vertices.[

xbm
ybm

]
=

[
xb2
yb2

]
+ a−→u + b−→v (8)

For m = 1, a = −l and b = 0; for m = 3, a = 0 and b = −w; for m = 4,
a = −l and b = −w.

2. Generation of rightward shifted bounding box:
– Conversely, for a rightward shift (Figure 6.c), the Shift Distance (d) is

set to αmin, denoting the α of the extremum left vertex.
– Further, determining the coordinates of b1 involves aligning the bounding

box edge b12 with ei while ensuring that the edge b14 passes from the
extremum left vertex with α value equal to αmin. Applying Eq. 9 gives
the coordinates of b1. [

xb1
yb1

]
=

[
xsi
ysi

]
+ αmin

−→u (9)

– After determining the coordinates of b1, Eq. 10 is applied to compute
coordinates for the remaining bounding box vertices.[

xbm
ybm

]
=

[
xb1
yb1

]
+ a−→u + b−→v (10)

For m = 2, a = l and b = 0; for m = 3, a = l and b = w; for m = 4,
a = 0 and b = −w.

As previously mentioned, this process is executed twice for each edge. Ini-
tially, it is performed using a bounding box with dimensions {l, w}, where
∥b12∥ = l and ∥b23∥ = w, resulting in the generation of two candidate bounding
boxes for the edge. Subsequently, the process is repeated with the bounding box
having its dimensions flipped to {w, l}, where ∥b12∥ = w and ∥b23∥ = l. At this
stage, two distinct candidate bounding boxes, differing in terms of both position
and orientation, are generated. This approach allows for the consideration of a
broader range of potential candidates, ultimately enhancing the final selection.
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Association score computation : In order to select the best bounding box
for an object representation, a scoring function is calculated for each generated
bounding box to assess the quality of the association. The scoring function,
named S ∈ [0, 1], provides an indication of the deviation between the polygon
and the box. The boxes with scores higher than a specified threshold are kept,
and the one with the highest score is selected as the final representation of the
object. The selection threshold ϵ is determined through testing.

The computation of the S is performed using the following equation:

S = 1− (w1 · f1 + w2 · f2 + w3 · f3) (11)

where f1, f2 and f3 are the features that are considered in evaluating the asso-
ciation and w1, w2 and w3 are the corresponding weights, with the constraint
w1 + w2 + w3 = 1.

Definition of the f1 equation: The f1 equation quantifies the quality of the
alignment between the created bounding box and its associated polygon. Since
bounding boxes are inherently rectangular, they inherently possess angles of
90◦. The primary objective of this equation is to minimize its value when the
bounding box aligns perfectly with the polygon at a 90◦ angle.

To achieve this alignment, two conditions must be met. First, as we shift
the bounding box to the right, αmin should approach zero, signifying that the
bounding box aligns with the leftmost edge of the polygon. Second, as we shift
the bounding box to the left, αmax − ∥ei∥ should tend to zero, indicating align-
ment with the rightmost edge of the polygon. These conditions ensure that the
bounding box aligns precisely with the orientation of the polygon, achieving the
desired 90◦ orientation.

The f1 feature is calculated using the following equation:

f1 =
|αi| − i · ∥ei∥

l

In this equation, when performing a right shift, i is set to 0, and αi cor-
responds to αmin. For a left shift, i is set to 1, and αi corresponds to αmax.
The division of the error distance by l serves to normalize the f1 value within
the range of 0 to 1, allowing for meaningful comparisons and assessments of
alignment.

Definition of the f2 equation: The f2 equation quantifies the offset distance
between the length of the bounding box and that of its associated polygon.
In our analysis, we define the length of the polygon as the distance between
its extreme vertices in the local frame Ri, measured along the direction of the
edge used for association, and this length is represented as |αmin|+ αmax. The
primary objective of f2 is to minimize the error between the real length (l) and
the polygon length (|αmin|+ αmax).

The f2 feature is calculated using the following equation:

f2 =
l − (|αmin|+ αmax)

l
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Similar to f1, the division of the error distance by l serves to normalize the
f2 value within the range of 0 to 1.

Definition of the f3 equation: The f3 equation quantifies the offset distance
between the width of the bounding box and that of its associated polygon. More
precisely, we define the width of the bounding box as the distance from the edge
used for association to the lowest vertex in the local frame Ri. This distance
is equal to βmax, representing the coordinate of the lowest vertex in the local
frame Ri. The primary objective of f3 is to minimize the error between the real
width (w) of the object and the width of the polygon (βmax).

The f3 feature is calculated using the following equation:

f3 =
w − βmax

w

Similar to f1 and f2, normalizing the f3 value by dividing the error distance by
w ensures that it falls within the range of 0 to 1.

The score S is only calculated for boxes that meet two conditions:{
|αi|+ (1− i) · ∥ei∥ < l + ψ
βmax < w + ψ

where ψ represents a predefined constant to take into account the scaling errors
stemming from observation inaccuracies. These two conditions serve to filter out
bounding boxes with less relevant characteristics, particularly when the length
or width of the bounding box exceeds the actual dimensions of the object it
represents. The inclusion of ψ ensures that bounding boxes are not discarded
due to scaling errors caused by observation inaccuracies, thus preserving their
relevance for analysis.

Regarding the weights, there are many methods to tune them. For the first
version of our solution, we propose a method of manually determining them
by tuning parameters according to some constraints, testing, and retuning the
parameters that give the best results (Section 3.2).

3 Experimentation

We evaluated the performance of our semantic mapping approach against Den-
gler et al. open-source RGBD-based approach [13]. We selected this comparative
framework due to its close alignment with our own approach. Dengler et al.’s
method, like ours, leverages RGBD data to construct point clouds of objects and
employs the Quickhull algorithm to define object occupation zones. However, our
approach introduces a novel association solution that enriches object representa-
tion through predefined bounding boxes. Therefore, this state-of-the-art method
serves as an ideal reference point to accentuate the distinctive contributions of
our work.

To ensure a fair comparison, we used the same pre-trained detection model
as [13], namely Faster R-CNN [19], trained on the OpenImages dataset [20],
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encompassing over 600 common object categories found in home and office envi-
ronments. Our solution’s modularity allows for easy substitution of the detection
model, as it outputs object categories and detection bounding boxes.

In what follows, we present our experimental setup, highlight the importance
of polygon simplification and foreground edge selection solutions to reduce asso-
ciation processing time. Then, we compare the semantic maps obtained by the
two approaches.

3.1 Experimental setup

We conducted experiments to evaluate our approach using a computer equipped
with an i7-7700K CPU. Our approach assumes that the robot pose is provided,
so we generated a metric map using the ROS gmapping node and used the
robot ground truth pose for localization. The experiments were performed in
two different environments using the MiR1004 mobile robot with an Asus Xtion
Pro camera that had a resolution of 640x480 pixels. The camera was placed at
a height of 1.0 m above the robot and 5 degree pitch angle facing the ground.

We evaluated our solution’s performance through tests in simulated envi-
ronments. Since the association method operates downstream of the mapping
process and does not directly depend on low-level sensor data, this type of test-
ing allowed us to assess our solution across various contexts and collect diverse
performance metrics. We created three simulated office environments. In this
initial solution version, we established a knowledge base comprising four object
models: a chair, a table, a shelf, and a sofa bed. Subsequently, we populated
all three environments with multiple instances of these four object models. One
of these environments served as the test environment, where we exhaustively
defined the hyper-parameters as described in Section 3.2. We then used these
hyper-parameters to obtain validation results in the other two distinct envi-
ronments (Tables 2 and 3). The first validation environment covers an area of
approximately 100 m² and contains spaced objects along with some partially
hidden objects. The second environment shares the same surface area but fea-
tures a higher object density, with many objects concentrated in the middle and
some hidden, making it a more challenging.

3.2 Tuning the scoring function weights

To determine the appropriate weights for our scoring function S, we initiated the
process by defining a range of values [0, 1] with a step size of 0.1 for each weight.
Subsequently, we conducted an exhaustive grid search to identify the optimal
combination of weights. This involved testing numerous combinations, and the
one yielding the best results was selected. Given the time-intensive nature of this
process, we implemented optimizations inspired by the underlying principles of
our method.

4 MiR ROS packages: https://www.github.com/dfki-ric/mir robot/tree/melodic
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Table 1. An illustration of the evolution, on the basis of two sequences, of the total
number of edges used for association after polygon simplification and foreground edges
selection, as well as the average association time.

Environment
Total number of edges Average association

time per polygon (s)Initial polygons
[13]

After polygon
simplification

After foreground
edges selection

Spaced 12060 4137 1369 0.0037 (0.001)

Cluttered 25699 6813 2435 0.0039 (0.002)

One key insight guiding our weight selection was the importance of minimiz-
ing the offset angle of association (f1), as this parameter directly influences the
position of the bounding box. Consequently, a higher weight was assigned to this
parameter. On the other hand, the errors associated with the width (f3) and the
length (f2) have approximately the same effect on determining the orientation
of the bounding box, leading to close weight values for these features.

To streamline the weight selection process, we first fixed w2 and w3 to values
within the range [0, 0.5], while varying w1 within the range [0.5, 1]. Subsequently,
we adjusted the values of w1 and w2 to fine-tune the scoring function. Regarding
the selection threshold, we systematically tested values within the interval [0 to
0.9] with a step size of 0.1 and retained the value that produced the best results.
The most efficient score function S was obtained for the set of weights w1 = 0.5,
w2 = 0.3, and w3 = 0.2. The scaling error constant was set to ψ = 0.1m, and
the selection threshold was set to ϵ = 0.6.

3.3 Evaluation of polygon simplification and foreground edges
selection

The number of polygon edges generated by the Quickhull algorithm in Dengler
et al. is significant. As described in Section 2.4, we introduced polygon simpli-
fication and foreground edges selection processes to speed up the association
processing time. Tab. 1 illustrates the evolution of the total number of polygon
edges after the introduction of these two pre-association steps. The results ob-
tained for a sequence in a cluttered environment and a sequence in a spaced
environment show that only 10% of the total number of edges are retained for
association, thus the association processing time is reduced by about 10 times
compared to using the initial polygons. The last row of Tab. 1 shows that the
association process takes about 4 ms, including the pre-association steps. Since
the number of polygon edges varies from object to object, this value is an average
of the association time of all polygons processed per sequence.

3.4 Evaluation of the association algorithm

We conducted 12 mapping sequences in each validation environment, and for
each environment, we defined the waypoints for the robot to follow. The tra-
jectory of the robot varies from one sequence to another, in order to provide
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Fig. 7. (a) Visualization of the ground truth map, (b) the resulting semantic map from
the Dengler et al. approach [13], and (c) from our approach.

a performance that is agnostic to the viewpoints of the different objects in the
scene. Figure 7.a illustrates the path followed by the robot during the mapping
process in the first environment.

We calculated the average metrics for each object class relative to the ground
truth map for each sequence in both environments. Subsequently, we averaged
the metrics per object over all sequences in each environment. We utilized the
following metrics for our evaluation:

– Intersection over Union (IoU), which measures the overall similarity between
two shapes.

– The 2D Center of Mass (CoM) offset, which measures the distance between
the center of mass of two shapes and provides information about the mag-
nitude of the object displacement.

– True Positives (TP), which indicate the number of correctly mapped objects
for which the IoU relative to ground truth is greater than 0.2.
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Table 2. Mapping results for the spaced environment (TP : True Positives, IoU :
Intersection over Union, CoM : Center of Mass)

Metrics
TP

IoU CoM offset (m)

Class
Our

solution
Dengler

solution [13]
Our

solution
Dengler

solution [13]

Chair 48 0.8216 (0.04) 0.6559 (0.07) 0.0455 (0.02) 0.0782 (0.02)

Table 58 0.8825 (0.03) 0.7521 (0.05) 0.0672 (0.02) 0.1799 (0.05)

Shelf 12 0.6477 (0.10) 0.7044 (0.10) 0.1030 (0.03) 0.0914 (0.05)

Sofa bed 24 0.8241 (0.04) 0.6709 (0.04) 0.1078 (0.02) 0.1770 (0.04)

Total 142 0.7940 (0.08) 0.6958 (0.03) 0.0809 (0.02) 0.1316 (0.04)

Table 3. Mapping results for the cluttered environment (TP : True Positives, IoU :
Intersection over Union, CoM : Center of Mass)

Metrics
TP

IoU CoM offset (m)

Class
Our

solution
Dengler

solution [13]
Our

solution
Dengler

solution [13]

Chair 48 0.6435 (0.07) 0.5510 (0.09) 0.0731 (0.01) 0.1046 (0,02)

Table 59 0.8134 (0.04) 0.6410 (0.04) 0.1000 (0.04) 0.2603 (0.04)

Shelf 37 0.6819 (0.06) 0.7211 (0.06) 0.0964 (0.02) 0.0574 (0.03)

Sofa bed 34 0.8669 (0.04) 0.7708 (0.03) 0.0778 (0.03) 0.1001 (0.01)

Total 178 0.7514 (0.09) 0.6710 (0.08) 0.0868 (0.01) 0.1306 (0.07)

While the False Positive (FP) metric, which represents falsely mapped instances,
is generally used as a complement to TP to evaluate the accuracy of the detection
model, we are only interested in evaluating the association method on correctly
mapped objects. Therefore, we compute only TP to show the number of objects
considered when computing the average IoU and CoM offset metrics.

The average results over the 12 sequences for each environment are presented
in Tab. 2 and Tab. 3. These results were obtained after approximately 54 minutes
of mapping, or about 2 minutes / sequence for the spaced environment and 2
minutes and 30 seconds / sequence for the cluttered environment. A total of 142
objects were mapped in the spaced environment (compared to 52 in [13]) and
178 objects in the cluttered environment (compared to 68 in [13]).

The results depicted in Tab. 2 shows that our approach incorporating the
augmentation step outperforms Dengler et al. approach for all objects, except
for the shelf, where the results are almost equivalent. Our solution well performs
in mapping large objects, such as tables or sofa beds, with large unseen parts,
leading to significant improvements in both the average IoU and average CoM
offset. We noticed also an enhancement in the shape of foreground objects, like
chairs in this environment. Our approach also performs well for the shelf class,
but it shows relatively inferior results compared to other objects, similar to
Dengler et al. solution. This can be explained by the fact that although the
orientation of the box was correctly estimated, the offset side was not selected
accurately in some cases. Since the object is small, this offset has a substantial
influence on the average IoU value.

Similarly, Tab. 3 shows that our approach performs better for all objects,
except the shelf, for the same reason mentioned above. In this setting, there are
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more partially invisible tables due to the chairs positioned in the foreground, and
we can observe that Dengler et al. solution performance declines, while our ap-
proach still performs well, especially for the table class. Moreover, our approach
almost systematically reduces the standard deviation for both environments, and
is therefore more stable.

4 Conclusion and perspectives

In this paper, a 2D semantic mapping approach is presented, designed for mobile
robots equipped with RGBD cameras. The method leverages RGBD camera data
to initially construct a primitive representation of objects using convex polygons.
Subsequently, prior object dimensions obtained from their 3D models are incor-
porated to enhance this representation. These known dimensions are used to
predefine rectangular bounding boxes that accurately cover the real occupied
surfaces of the objects. An association method is then introduced to define the
best alignment, including correct orientation and position, between these bound-
ing boxes and the polygonal representations of the objects. This approach differs
from prior works that solely relied on sensor data for this purpose.

A comparative analysis of our method against the approach presented in [13],
conducted in two distinct office settings, demonstrates several notable advan-
tages. Firstly, our solution significantly reduces the complexity of the polygonal
representation. Secondly, the use of predefined bounding boxes for object repre-
sentation significantly enhances the approximation quality for nearly all objects,
particularly those that are partially visible or occluded.

Several directions for further improvement of our method can be explored.
Firstly, expanding the knowledge base with objects of more complex geome-
tries will allow us to assess how our solution performs in response to such chal-
lenges. Additionally, addressing issues arising from limitations in the detection
model, such as class confusion or false detections, is a priority for future work.
These challenges will be tackled by enriching the knowledge base with addi-
tional information about object relationships, including the possibility of object
superposition. This supplementary data will be employed to rectify contextual
inconsistencies in the map, either in real-time or during post-processing. Lastly,
we intend to enhance the method’s capability to handle various object models
linked to the same label or category.
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