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Francesca Poggiolesi,
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(Conceptual) explanations in logic

Abstract

To explain phenomena in the world is a central human activity and one of the main
goals of rational inquiry. There are several types of explanation: one can explain by
drawing an analogy, as one can explain by dwelling on the causes (see e.g. see Woodward
(2004)). Amongst these different kinds of explanation, in the last decade philosophers
have become receptive to those explanations which explain by providing the reasons
why a statement is true; these explanations are often called conceptual explanations
(e.g. see Betti (2010)). The main aim of the paper is to propose a logical account
of conceptual explanations. We will do so by using the resources of proof theory, in
particular sequent rules analogous to deep inferences (e.g. see Brünnler (2004)). The
results we provide not only shed light on conceptual explanations themselves, but also
on the role that logic and logical tools might play in the burgeoning field of inquiry
concerning explanations. Indeed, we conclude the paper by underling interesting links
between the present research and some other existing works on explanations and logic
that have arise in recent years, e.g. see Arieli et al. (2022); Piazza et al. (2023).

For here it is for the empirical sci-

entist to know the fact and for the

mathematical to know the reason

why.1 Aristotle (1993).

1 Introduction

To explain phenomena in the world is a characteristically human enterprise and a central
goal of rational inquiry; it is thus no surprise that the notion of explanation has been one
of the most intensely discussed topics in philosophy of science over the past century, and
computer science over the past decade. Though the term covers a wide range of diverse cases
– from explaining how to build an Ikea bookcase, or what a symbol means, to explaining a
new concept to a child – doubtless the main ones for human endeavor are explanations that
have a deductive form and aim to shed light on why a certain phenomenon occurs or why a
certain proposition is true. Archetypal examples are causal explanations (Woodward, 2004;
Pearl, 2000), which explain their target phenomena by providing their causes. However,
it has recently become increasingly clear that plenty of compelling examples of deductive
explanations-why cannot be captured by causal accounts. In physics as well as in mathemat-
ics, several types of explanations arose that do not seem to rely on any causal mechanism:
very naturally, the idea that causation, though certainly a key ingredient of explanation, is
probably not the full story, started to spread; non-causal explanations, namely explanations
that in one way or another go beyond causation, have become a new thrilling and thriving
subject of research.2

Here we focus on a type of non-causal explanation that has been receiving increasing
attention in the philosophical literature: conceptual explanations (e.g. see Betti (2010);

2E.g. see Lange (2017).
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Figure 1: Toy examples of conceptual explanations

Informal Example 1.1. Example 1.2. Example 1.3.
Formal  pp_ qq V @xpSCpxq Ñ ICpxqq

because because because

 p and  q F1 and F2 @xpSCpxq Ñ Cpxqq and

@xpSCpxq Ñ T pxqq

p:= “it is raining,” q:= “it is windy,”V := “this animal is a vixen,” F1:= “this animal is a female,” F2:= “this

animal is a fox,” SCpxq:= “x is a Stanford computer science graduate,” ICpxq:= “x is an ideal candidate

for a certain tech job,” Cpxq:= “x has coding competences,” T pxq:= “x has team-working skills.”

Detlefsen (1988); Hunmean (2010); Mancosu et al. (2023)). Recognition of such expla-
nations dates back millennia; as illustrated by the epigraph, a long tradition of scholars,
including Aristotle, Proclus, Leibniz, Arnauld and Nicole, Bolzano, Frege,3 has argued for
their importance for the scientific inquiry. Conceptual explanations bear a striking analogy
to causal explanations: where the latter seeks to explain by providing the causes, the former
explains why a proposition is true by identifying the reasons for its truth. Instances of con-
ceptual explanations range from stock, toy examples to more involved, real-life ones. The
argument which explains why (1.1.) it is not the case that it is raining or it is windy because
it is neither raining nor it is windy (together with the definition of the disjunction) is an
example of conceptual explanation. Indeed it displays the reasons, rather than the causes,
for the conclusion, with the relation between reasons and conclusion holding in virtue of the
concepts - not and or - that they contain. Similarly, the explanation of why (1.2.) a certain
animal is a vixen that evokes that animal being a female as well as it being a fox (together
with the definition of vixen), is an example of conceptual explanation. Indeed it displays
the reasons, rather than the causes, of why that animal is a vixen, with the relation between
reasons and conclusion holding in virtue of the concepts - vixen, female and fox - that they
contain. Finally, the explanation why (1.3.) all Stanford Computer Science graduates are
ideal candidates for a particular tech job in terms of their coding competences and team-
work skills (together with the stipulation of what an ideal candidate for that position is) is
another example of a conceptual explanation in that it explains why a certain conclusion is
true by bringing out the reason(s) for its truth.

Beyond simple examples, there are many instances of conceptual explanation with more
refined (logical) structure, in particular involving quantifiers. This is especially the case
for mathematical explanations – and more precisely those proofs in mathematics that not
only show a theorem to be true, but also seem to provide the reason(s) why it is true. As
frequently noted, this kind of mathematical explanation could be argued to count among
conceptual explanations (Betti, 2010; Mancosu et al., 2023). A simple example is the (el-
ementary) proof which explains why (1.4) zero or the successor of any natural number is
a natural number by emphasizing that zero is a natural number, and any successor of a
natural number is a natural number. The literature on mathematical explanations is replete
with less trivial examples (see e.g. Mancosu et al. (2023)). An old one dates back to Bolzano
(2014), who considers the theorem which states that (1.5.) given any two circles A and B,
one with center a and radius ab, and the other with center b and radius ab, then there always

3E.g. see Detlefsen (1988).
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Figure 2: Mathematical examples of (conceptual) explanations
Informal Example 1.4 Example 1.5. Example 1.6.
Formal @xpZpxq _ SNpxq Ñ Npxqq @x@ypDzpCircpz, x, xyqq ^

DwpCircpw, y, xyqq Ñ

Dk pPointpkq ^ k P z ^ k P

w ^ lpkxq “ lpkyq “ lpxyqqq

@x@y@z@wpRTrpxyz ´ xwz{{xwyq Ñ xz2 `

xy2 “ zy2q

because because because

@xpZpxq Ñ Npxqq and
@xpSNpxq Ñ Npxqq

@x@yppPointpxq^Pointpyqq Ñ

Dkp Pointpkq^ lpkxq “ lpkyq “

lpxyqq

@x@y@z@wpSimpxyz, xwzq Ñ xz2 “ zw.zyq

and @x@y@z@wpSimpxyz, xwyq Ñ xy2 “

wy.zyq

Zpxq:= “x is zero,” SNpxq:= “x is the successor of a natural number,” Npxq:= “x is a natural number,”

Circpx, z, zyq:= “x is a circle, with center z and radius zy,” Pointpxq:= “x is a point,” lpxyq:= “xy is the

length between point x and point y,” RTrpxyz ´ xwz{{xwyq:= “xyz is a right angle triangle divided into

two triangles xwz and xwy by the height,” Simpxyz, xwzq:= “the triangles xyz and xwz are similar.”

exists a point c where they intersect such that lpacq “ lpcbq “ lpabq. There exists a proof
of this theorem that crucially relies on the property that, for any two points a and b, there
always exists a third point c such that lpabq = lpbcq = lpacq. Bolzano argues that this proof
is explanatory insofar as it relies on the relation between the property of the points - the
reason - and the property of the circles - the conclusion. In its turn, this relation holds in
virtue of the concepts involved, namely the concepts of point, radius, circle.

Or, consider an example from one of the groundbreaking articles in the literature on
mathematical explanation (Steiner, 1973) concerning Pythagoras’ theorem. Out of the many
proofs of the theorem, one that is often argued to be explanatory crucially relies on a property
of similar triangles. Following Steiner (1973), but also a more recent and detailed analysis put
forward by Poggiolesi (2024), this proof is explanatory in that it relies on the relation between
the property of similar triangles - the reason - and the property of right-angled triangles
- the conclusion. In its turn, this relation holds in virtue of the concepts the sentences
it connects contain, namely the concepts of similarity, and right-angled triangle. These
mathematical explanatory proofs are paradigmatic examples of conceptual explanation, in
that they display the features of this type of explanation.

Despite their widespread relevance, to date conceptual explanations have received little
attention in logic. This absence of systematic study is all the more striking given the recent
interest in logic in non-causal explanations, be it in the field of XAI (e.g. see Darwiche
and Hirth, 2023; Shih et al., 2018), or for abductive reasoning (Arieli et al., 2022; Arieli and
Strasser, 2015; Piazza et al., 2023; Pulcini and Varzi, 2021). As a result, this is an important
gap in the logical literature and the main goal of the present paper is to fill it. In particular
our aim is to develop a logical theory of conceptual explanations, which is strong enough to
encompass the several different cases of conceptual explanations.

There are (at least) two main questions that a logical theory of (conceptual) explanations
need to address: (i) What is the structure of conceptual explanations? And (ii) what are the
reasons for a certain conclusion? By relying on previous research in Poggiolesi (2016b, 2018),
which is, as far as we know, the only one that have previously addressed analogous questions,
we provide an answer to both (i) and (ii). As for (i) we provide a modelization of conceptual
explanations in terms of proofs. In particular, we introduce explanatory rules which are
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such that not only is the conclusion inferable from the premisses, but also the premisses
represent the reasons why the conclusion is true. The concatenation of these rules represent
the logical structure behind conceptual explanations. Note that, as the examples above
show (see Figures 1 and 2), reasons are often linked to their conclusion by operating inside
formulas. Take for instance the example 1.4. (see Figure 2), where @xppZx_ SNxq Ñ Nxq
is explained by @xpZxÑ Nxq and @xpSNxÑ Nxq. The link between these formulas occurs
deep inside the formulas themselves: in particular, the connective _ inside the explanandum
is broken into two and thus give rise to @xpZx Ñ Nxq and @xpSNx Ñ Nxq. As a conse-
quence, explanatory rules will have the form of deep inferences, namely a recently introduced
variation of the sequents calculus (e.g. see Brünnler (2004); Guglielmi and Bruscoli (2009);
Pimentel et al. (2019)) where rules operate deep inside formulas. Although the literature
on deep inferences has been motivated by cornerstone results of structural proof theory, in
this context they reveal a profound philosophical significance.

As for (ii), we will set out features which establish when some formulas can be seen as
the reasons why another is true. In other terms, by relying on deep insights which can be
found in the philosophical litterature, we will set out those conditions which are necessary
and sufficient to ensure that some formulas can be seen as the reasons why another is true.
Moreover, we will show that the answer to this question is fully coherent with the answer
to question (i), by proving that our explanatory rules provide all and only those relations
from reasons to conclusion that satisfies the proposed features.

As already said, the present work relies on the research developed in Poggiolesi (2016b,
2018), which it extends in three related ways. First, it can deal with intricate examples of
conceptual explanations. Moreover, it has explanatory rules that go deep inside formulas.
Finally it relies on the sequent calculus rather than on natural deduction. As a result, the
present paper offers a very general theory of (conceptual) explanations which doesn’t have
any analogue in the literature. At the end of the paper, we discuss how our theory relates
to existing work on explanation, and how it opens up interesting paths of future research.

The paper is organized in the following way. In Section 2 we will formalize the notion of
conceptual explanation via the relation of formal explanation, that is defined via explanatory
rules, i.e. rules that provide the reasons why their conclusion is true and that are added to
the classical sequent calculus for first-order logic. In Section 3 we prove that explanatory
rules are admissible in the classical sequent calculus, i.e. explanatory rules serve to construct
derivations with an explanatory power, not to prove new theorems. Section 4 will serve to
set those features according to which which some formulas count as the reasons why another
is true, and in Section 5 we prove that the explanatory rules provide all, and only, relations
from reasons to conclusion. Whilst in Section 6 we will emphasize some interesting links
with other related works on explanations, in Section 7 we will draw some conclusions and
sketch directions of future research.

2 Formal explanations

In order to provide the formal structure which underlies conceptual explanation, we start
from an idea that is both ancient and central in the literature: explanations can be seen
as deductive arguments which, starting from true premisses - be they the causes or the
reasons - explain a certain conclusion.4 Of course not any deductive argument constitutes
an explanation, but some of them do, namely those which have an explanatory power. The
perspective that we will develop here consists in a formalization of this central idea along

4E.g. see Aristotle (1993); Hempel (1965, 1942).
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the following lines: explanations can be seen as proofs which, starting from true premisses,
the reasons, not only prove that a certain conclusion is true, but also explain why it is such.
This perspective naturally arises from the observation that proofs are deductive arguments;
moreover, it is supported by the fact that mathematical explanations, a notable subset of
conceptual explanations, actually are proofs of mathematical theorems, which show why
those theorems are true.

Let us pursue this perspective further. Since proofs are standardly formalized in logic by
means of derivations, we will formalize conceptual explanations as a special type of deriva-
tions. More precisely, we will introduce a metalinguistic relation that we will call formal
explanation,5, denoted by the symbol ,, and which will represent the formal counterpart
of conceptual explanations as well as a special case of the standard notion of derivation.
As derivations are introduced via inferential rules, formal explanations will be introduced
via explanatory rules, namely rules where not only is the conclusion inferable from their
premise(s), but also such that the premisses are the reasons why the conclusion is true.
We will consider explanatory rules, and related formal explanation relation, in first-order
classical logic.

Definition 2.1. The language of first-order logic, L, is composed by: variables (x0, x1, x2,
...), constants (c0, c1, c2, ...), predicates (P k0 , P k1 , P k2 , ...), logical connectives ( , ^, _),
quantifiers (@, D), and parentheses: (, ). We take the symbols J,K and Ñ to be defined
as usual. For the sake of simplicity we do not use the identity symbol nor the functional
symbols. Also we will use the symbols ˝ and d in the following way: ˝ = t^,_u and d =
t@, Du. The set of well-defined formulas, WF , is constructed in the standard way. A closed
formula, or a sentence, is a formula where no free variable occurs. The set of closed formulas
of L will be denoted by CF .

Definition 2.2. Given, the multiset M Ď WF and formula A P WF , we use the standard
notation, M |ù A, to mean that A logically follows from M in first-order classical logic. The
notation M $ A means that there exists a derivation from M to A in (the standard sequent
calculus for) first-order classical logic.

In order to properly spell out the notion of (conceptual) explanation under considera-
tion, we introduce some notable distinctions that help identifying different types of deduc-
tive explanations. Here we start with the following two, namely the distinction between
total/partial explanations, and the distinction between immediate/mediate explanations.6

A total explanation is one that provides all the reasons why something is true. In other
terms, the multiset of all, and only, those formulas each of which contributes to explain
C is a total explanation of C. On the other hand, each proper sub-multiset of the total
explanation of C is a partial explanation of C.7

As concerns the other distinction, whilst an immediate explanation is one that involves
a single explanatory step, i.e.a step that does not seem to be further reducible, a mediate
explanation includes several sequential immediate steps. In this paper we will first deal with
the notion of total and immediate formal explanation and then generalize it to the mediate
case.

There exists a third distinction that is linked to the notion of total explanation and that
arises both in the causal and conceptual framework. To illustrate it, we start form the causal
case, where it is most well-known. Consider the following notorious example.8 Billy and

5This name has already been used in Poggiolesi (2018). Here we employ it in a broader sense.
6E.g. see Lewis (1973); Schaffer (2016).
7E.g. see also Poggiolesi (2020).
8E.g. see Menzies and Beebee (2020).
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Figure 3: The sequent calculus Gcl`.

p,M ñ N, p
M ñ N

P ñ Q |M ñ N
cw

M ñ N,F

 F,M ñ N
 L

F,M ñ N

M ñ N, F
 R

F,G,M ñ N

F ^G,M ñ N
^L

M ñ N,F M ñ N,G

M ñ N,F ^G
^R

@xF, F px{tq,M ñ N

@xF,M ñ N
@L

M ñ N,@xF px{yq

M ñ N,@xF
@R

where in @R y does not occur in M nor in N.

Suzy throw rocks at a bottle, which shatters. A causal explanation of why the glass shattered
is that Suzy threw her rock at it. Indeed since Suzy threw her rock first, her rock arrived
first and shattered the glass; Billy’s rock sailed past the already-broken bottle. Billy’s throw
is thus not a cause, but only a potential cause of why the bottle shattered. Potential causes
are central for total explanations: if Billy’s rock hit the bottle at the same time as Suzy’s
rock, it would have been part of the total explanation of why the glass shattered.

A distinction analogous to that between causes and potential causes also arises in the
conceptual framework. Consider indeed the following situation. Billy is Jane’s brother and
Suzy is Jane’s sister. Jane has a niece. Thus the reason why Jane has a niece is that her
sister has a girl. Indeed a niece is the girl of someone’s brother or sister and Suzy, Jane’s
sister, has a girl. Jane’s brother could have had a girl, but he does not. Hence Jane’s brother
having a girl is merely a potential reason of why Jane has a niece. Potential reasons are
also central for total explanations: if Jane’s brother had a girl, his having a girl would have
been part of the total explanation of why Jane has a niece. We rephrase this distinction
between reasons and potential reasons as the one between reasons and conditions.9 So, for
example, we will say that under the condition that Jane’s brother does not have a girl, the
total reason why Jane has a niece is that her sister has a girl.

In order to define the notion of formal explanation, we work with the classical sequent
calculus for first-order logic, implemented with the metalinguistic symbol “|”, for conveying
conditions, and the related rule cw which allows to introduce conditions beside standard
sequents. Conditions only play a role in explanatory rules - no inferential rule operates on
conditions - hence, the sequent calculus Gcl` (see Figure 3) is equivalent to the standard
classical sequent calculus for first-order logic Gcl (see Troelstra and Schwichtenberg (1996)).
The notion of sequent, its interpretation, and the interpretation of inferential rules are
standard (e.g. see again Troelstra and Schwichtenberg (1996)). We call c-sequent a sequent
that only contains closed formulas.

We will add to Gcl` explanatory rules. As already underlined, explanatory rules provide
the (total and immediate) reasons why their conclusion is true; but the link between reasons
and conclusion often require looking deep inside formulas (see examples in Figures 1 and
2). So in order to be able to introduce explanatory rules, we will first need to introduce the
notations necessary to work inside formulas. We will do so with the notions of context and
formula in a context. Roughly speaking, a context is the part of a formula that one does not
focus on, and is denoted with the notation C[.]. For example consider the first-order formula

9Here we borrow this terminology from Genco (2021).
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F “ DxpSx ^ Txq _ @x@ypPx Ñ Qx ^ Ryq and suppose we want to focus on a particular
part of F , say Qx ^ Ry. We denote this fact by rewriting F as CrQx ^ Rys, where Cr.s
is the context and Qx^ Ry is the formula in the context Cr.s. Note that when working in
an explanatory framework, negation needs to be taken into account with special attention.
This is also true for the notion of context, as can be clearly seen in the following example,
concerning the formulas  pp_qq and  p p_ qq. As discussed in Poggiolesi (2016a, 2022),
whilst the (total) reasons of  pp _ qq amount to the formulas  p, q, the (total) reasons
of  p p_ qq are p, q. However, if we take a negation (or any odd number of consecutive
negations) in front of a disjunction to be a context, and the reasons of a disjunction to
be its disjuncts, we would get that the reasons for  pp _ qq are indeed  p, q, whilst the
reasons for  p p _  qq are   p,  q, contrary to what has just been noted. To avoid
such undesirable cases, we define contexts only on an even consecutive number of negations,
and we will treat the negation of a disjunction with special rules that involve the notion of
converse of a formula, introduced below.

Definition 2.3. The converse of a formula A, written A˚, is defined as follows:

A˚ =

"

 n´1E, if A “  nE and n is odd
 n`1E, if A “  nE and n is even

where the main connective in E is not a negation, n ě 0 and 0 is taken to be an even
number. For any multiset M , pMq˚ := tB˚ : B PMu.

So, for instance, returning to our previous example, the converse of  p is p, not   p.

Definition 2.4. The set Co of contexts is inductively defined in the following way:

- r.s P Co,

- if Cr.s P Co, then   Cr.s, D ˝ Cr.s, Cr.s ˝D, dxCr.s P Co,

- if Cr.s P Co and Cr.s ‰
2n

hkkikkj

 ... r.s, where n ě 0, then  Cr.s P Co.

Definition 2.5. For all contexts Cr.s, and formulas F , we define CrF s, a formula in a
context, as follows:

- if Cr.s “ r.s, then CrF s “ F ,

- if Cr.s “   Dr.s, then CrF s “   DrF s,

- if Cr.s = D1 ˝ Dr.s, Dr.s ˝ D1, dxDr.s,  Dr.s, then CrF s = D1 ˝ DrF s, DrF s ˝ D1,
dxDrF s,  DrF s, respectively.

Once formulas are considered in contexts, they will naturally have a polarity which is
either positive or negative and that is defined as standard, e.g. see Troelstra and Schwicht-
enberg (1996).

Definition 2.6. We define the set of contexts with positive P and negative polarities N
simultaneously by an inductive definition given by the three clauses (i)-(iii) below.

- r.s P P;

if G` P P, G´ P N , and F is any formula, then:

7



Figure 4: Explanatory propositional rules.

M ñ N,CrF s

M ñ N,Cr  F s
  

M ñ N,CrF s M ñ N,CrGs

M ñ N,CrF ˝Gs
˝1

M ñ N,CrFjs | M ñ N,CrFis

M ñ N,CrF1 ˝ F2s
˝2

M ñ N,CrF˚s M ñ N,CrG˚s

M ñ N,Cr pF ˝Gqs
 ˝1

M ñ N,CrF˚j s | M ñ N,CrF˚i s

M ñ N,Cr pF1 ˝ F2qs
 ˝2

where i, j “ t1, 2u and j ‰ i.

(ii)  G´, F ^G`, G` ^ F , F _G`, G` _ F , @xG`, DxG` P P.

(iii)  G`, F ^G´, G´ ^ F , F _G´, G´ _ F , @xG´, DxG´ P N

whenever these objects are in Co. We say that a formula F is positive (resp. negative) in a
context CrF s if Cr.s P P (resp. Cr.s P N ).

The last ingredient needed to introduce explanatory rules is obtained by defining the
scope, in terms of the quantifiers that formulas in contexts lie in. We can also classify these
scopes of quantifiers according to the kind of quantifiers they are and the polarity of the
formula in the context.

Definition 2.7. If Cr.s is a context, the scope of a context, SCpCq and the inverse scope
SCinvpCq are defined inductively in the following way:

- if Cr.s= r.s or Cr.s ‰
2n

hkkikkj

 ... r.s for n ě 0 then SCpCq “ SCinvpCq “ H,

- if Cr.s= D1 ˝Dr.s or Dr.s ˝D1, then SCpCq “ SCpDq and SCinvpCq “ SCinvpDq,

- if Cr.s= @xDr.s, then SCpCq “ @x.pSCpDqq and SCinvpCq “ Dx.pSCinvpDqq

- if Cr.s= DxDr.s, then SCpCq “ Dx.pSCpDqq and SCinvpCq “ @x.pSCinvpDqq

- if Cr.s=  Dr.s, then SCpCq “ SCinvpDq and SCinvpCq “ SCpDq.

Definition 2.8. We say that a context Cr.s has

a positive universal scope (PUS) if C P P and SCpCq “ H or SCpCq “ @x1, ...@xn,

a negative universal scope (NUS) if C P N and SCpCq “ H or SCpCq “ @x1, ...@xn,

a positive existential scope (PES) if C P P and SCpCq “ H or SCpCq “ Dx1, ...Dxn,

a negative existential scope (NES) if C P N and SCpCq “ H or SCpCq “ Dx1, ...Dxn.

We now have all the elements to introduce explanatory rules. In Figure 4 we present
explanatory rules for propositional connectives. We assume these rules not to distinguish
between formulas that are equivalent by associativity and commutativity of conjunction and
disjunction, substitution of variables, and change of orders of identical quantifiers,10 and to
only apply to c-sequents. Also their application is conditioned by the following restrictions.

10See, Genco (2024).
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Definition 2.9. We assume the application of explanatory propositional rules11 to obey
the following restrictions:

- rule ˝1 can be applied on a formula of the form CrF ˝Gs if:

$

’

’

&

’

’

%

C has PUS and ˝“^,or

C has NUS and ˝“_,or

C has PES and ˝“_,or

C has NES and ˝“^.

- rule ˝2 can be applied on a formula of the form CrF ˝Gs if:

"

C has PES and ˝“_,or

C has NES and ˝“^.

- rule ˝1 can be applied on a formula of the form Cr pF˝Gqs if:

$

’

’

&

’

’

%

C has PUS and ˝“_,or

C has NUS and ˝“^,or

C has PES and ˝“^,or

C has NES and ˝“_.

- rule ˝2 can be applied on a formula of the form Cr pF˝Gqs if:

"

C has PES and ˝“^,or

C has NES and ˝“_.

We now comment on these rules, which extend those presented in Poggiolesi (2018);
Genco (2021) inside contexts of the first-order level. Each of these rules is supposed to
capture cases where the premisses are the total and immediate reasons for the conclusions.
In Section 5, we prove that this is indeed the case. Here our remarks are at the more intuitive
level. Note first that some examples are clear: for instance p and q are clearly the reasons
for p ^ q; and rule ˝1 reflects this. Let us then dwell on the less obvious and more novel
cases. First of all, note that there is no rule for single negation. This is because explanations
notoriously go from (potentially) true formulas to (potentially) true formulas; there can thus
be no rule which acts, as in the case of the rule for negation in the standard sequent calculus,
by shifting formulas from one side of the sequent to another. In other words, one cannot
explain the truth of  F , from the falsity of F . Instead negation is spread over the other
connectives: either it is analyzed when it is double, or when it is in front of conjunction and
disjunction. Note that, for reasons mentioned above (when introducing contexts) and which
are discussed in Poggiolesi (2016b), the connective of negation must be carefully treated in
an explanatory context; this is why the converse of a formula (see Definition 2.3) is used in
the rules  ˝1 and  ˝2.

Let us now turn to those rules that does not involve conditions: i.e.   , ˝1 and  ˝1.
Each of them stands as a straightforward generalization of standard rules concerning classical
connectives, allowing them to apply deep inside formulas. This is so because these rules are
not merely intended to be simple inferential rules but explanatory rules, i.e. rules that
provide the (total) reason(s) why their conclusion is true. The relation between reason(s)
and conclusion might hold in virtue of elements that lie inside formulas, so the rules need to
reflect this possibility. Note however that application of rules deep inside formulas involves
some limitations to preserve an adequate notion of explanation. Let us illustrate this on
some paradigmatic examples. The following is an instance of rule  ˝1:

ñ  p ñ  q

ñ  pp_ qq
 ˝1

The rule can be applied since ˝ is a disjunction, the context is empty and thus the polarity
of the formula the rule acts on is positive. Thanks to the rule  ˝1, we can explain, totally

11Reading the rules bottom-up.
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and immediately, the formula  pp_ qq by means of the formulas  p and  q, which are its
reasons. The rule matches the example 1.1. in Figure 1, and thus stands as an adequate
instance of the rule. Let us now move to the following instance of the rule ˝1:

ñ @xpZxÑ Nxq ñ @xpSNxÑ Nxq

ñ @xppZx_ SNxq Ñ Nxq
˝1

The rule can be applied since ˝ is a disjunction with a negative polarity, in the scope of
universal quantifiers (see Definition 2.9). Thanks to the rule ˝1, we can explain, totally
and immediately, the formula @xppZx _ SNxq Ñ Nxq by the formulas @xpZx Ñ Nxq and
@xpSNxÑ Nxq, which represent the reasons why it is true. The rule matches example 1.4.
of Figure 2 and thus stands as a an adequate instance of the rule.

Finally, consider the following formula @xpNxÑ Ex_Oxq, which can be seen as formal-
izing the sentence “every natural number is either odd or even.” Suppose that one focuses on
the disjunction and would like to apply a rule on it. Since disjunction occurs with a positive
polarity inside an universal quantifier, none of the rules of the calculus can be applied to it.
But this again matches our intuitions, as it would be incorrect to claim that because every
natural number is even and that every natural number is odd, then every natural number
is either even or odd.

Let us now move to the rules which involves conditions, namely the rules ˝2,  ˝2. These
rules naturally emerge for total explanations, i.e. explanations where all the reasons why a
conclusion is true need to be evoked. In this setting, conditions need to be mentioned to
prevent equivocation between total and partial explanations (e.g. see Poggiolesi (2016b)).
Consider the example: John got into the University, and he is rich or he passed the entrance
exam. Suppose that in fact John got into the University, he is rich, but he did not pass
the entrance exam. In this example, the explanation why it is true that John got into the
University, and he is rich or he passed the entrance exam is that John got into University
and he is rich. However, if nothing is said about the passing exam, the explanation remains
ambiguous: it is indeed unclear whether the explanandum is true also because John got
into University and passed the entrance exam. Conditions allow disambiguation of the
explanation. Thus we say that, under the condition that it is not the case that John got
into University and passed the entrance exam, it is true that John got into the University,
and he is rich or he passed the entrance exam, because John got into University and he is
rich. On formal terms, let us denote the sentence “John gets into the University, and he is
either rich or it has passed the entrance exam,” with the formula p^ pq _ rq. Let us apply
on this formula, focussing on the disjunction, the following instance of the rule ˝2, we get:

ñ p^ q |ñ p^ r

ñ p^ pq _ rq

The rule can be applied since ˝ is a disjunction with a positive polarity, in the scope of no
quantifier (see Definition 2.9). Thanks to the rule ˝2, we can explain the formula p^pq_ rq
by the formula p ^ r, which represents the total reason why it is true under the condition
that the formula p^ q does not hold. The rule matches what we have just been discussing
and thus stands as a an adequate instance of the rule.

Finally note that explanatory rules do not distinguish between formulas that are equiv-
alent by associativity and commutativity of conjunction and disjunction, substitution of
variables, and change of orders of identical quantifiers. Consider for example the formulas
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Figure 5: Explanatory first-order rules.

M ñ N,CrFys

M ñ N,Crdx.Fxs
d1

M ñ N,Crdx.Fxs, CrFts

M ñ N,Crdx.Fxs
d2

M ñ N,CrF˚ys

M ñ N,Cr pdx.Fxqs
 d1

M ñ N,Cr pdx.Fxqs, CrF˚ts

M ñ N,Cr pdx.Fxqs
 d2

where in d1 and  d1 y does not occur free in M nor in N .

@x@yppPx _ Ryq Ñ pPx ^ Ryqq and @y@xppPx _ Ryq Ñ pRy ^ Pxqq, which are equiv-
alent by change of orders of identical quantifiers and commutativity of conjunction. We
can reasonably consider that these two formulas are explained by the same (multiset of)
total and immediate reasons, for example @x@ypPxÑ pPx^Ryqq,@x@ypRy Ñ pPx^Ryqq,
but also @y@xpPx Ñ pPx ^ Ryqq,@y@xpRy Ñ pPx ^ Ryqq, and also @y@xpPx Ñ pRy ^
Pxqq,@y@xpRy Ñ pRy ^ Pxqq, and so on. The explanatory rule takes into account this
feature. Note that it is precisely this feature that gives our explanatory rules a hyperinten-
sional flavor, which is in line with the fact that explanation is an hyperintensional notion,
e.g. see Berto and Nolan (2023); Leitgeb (2019).

In Figure 5, we propose explanatory rules for quantifiers. Since we are providing a
logical theory of conceptual explanations in first-order logic, we believe that we get a more
elegant and harmonious overall theory if explanatory rules for quantifiers are displayed.
However, it is worth emphasizing that in all the examples of conceptual explanations in
the literature (e.g. see examples 1.2.-1.6.) quantifiers are typically left untouched, the
explanation occurring inside them (hence motivating the use of contexts).

The explanatory rules of quantifiers are finitary rules, which we take to be a proof-
theoretical desirable feature. Explanatory rules for quantifiers, like the explanatory rules
for propositional connectives, extend inferential intuitions concerning the universal and the
existential quantifiers at the explanatory level. Roughly speaking, the rule for the universal
quantifier explains this quantifier by using the eigenvariable,12 i.e. it explains why any object
x has a property A via the fact that if one picks a random object y, y has the property
A. This seems what happens in mathematical contexts, where if a mathematician aims to
explain why all triangles have a certain property, she will not work with all triangles, rather
she will pick a triangle with no particular assumption on it - this is what the eigenvariable
stands for - and prove that that triangle enjoys the property at issue. Since no particular
assumption was engaged, she can generalize the explanation to all triangles. The rule for
the existential quantifier explains this quantifier via one of its instances; however, in order
for the premisses of this rule to be the reasons of its conclusion, the existential itself needs
to be repeated in the premisses. This move is analogous to that adopted in the rules
@L and DR of the classical sequent calculus for first-order logic, e.g. see Troelstra and
Schwichtenberg (1996). Note that we also assume explanatory rules for quantifiers not to
distinguish between formulas which are equivalent by associativity and commutativity of
conjunction and disjunction, substitution of variables, and change of orders of identical
quantifiers. Moreover, their application is conditioned by the following restrictions.

12See Troelstra and Schwichtenberg (1996).
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Definition 2.10. We assume the application of explanatory first-order rules13 to obey the
following restrictions:

- rule d1 can be applied on a formula of the form Crdx.Fxs if:

$

’

’

&

’

’

%

C has PUS and ˝“@,or

C has NUS and ˝“D,or

C has PES and ˝“D,or

C has NES and ˝“@.

- rule d2 can be applied on a formula of the form Crdx.Fxs if C P P and d “ D, or
C P N and d “ @.

- rule d1 can be applied on a formula of the form Cr pdx.Fxqs if:

$

’

’

&

’

’

%

C has PUS and ˝“D,or

C has NUS and ˝“@,or

C has PES and ˝“@,or

C has NES and ˝“D.

- rule  d2 can be applied on a formula of the form Crdx.Fxs if C P P and d “ @, or
C P N and d “ D.

We will call GclE the sequent calculus composed by the rules of Figures 3 and 4, whilst
we will call GclEQ the sequent calculus composed by the rules of Figures 3, 4 and 5. In
what follows, for us to keep on working with closed formulas, we will mainly deal with the
calculus GclE , leaving results concerning GclEQ for future research.

Definition 2.11. A (standard) derivation in GclE is a finite (upward-growing) tree with
a single root. The nodes of the tree are labelled by sequents and the sequents at the top
nodes which are not initial sequents form the multiset S (that may be empty). For each
non-terminal node, its label is connected with the labels of the immediate predecessor nodes
by one of the rules of Figure 3 (except rule cw). The root of the tree is the conclusion of
the whole derivation and in case its label is the sequent M ñ N , we say that there exists
a derivation of M ñ N from the hypothesis S, in symbols S $GclE M ñ N . In case S is
empty, we say that M ñ N is a theorem, in symbols $GclE M ñ N .

Let S, S1, ... be multisets of c-sequents. Then, pSq˚ “ tpM ñ Nq˚ : M ñ N P Su, where
the converse of a c-sequent, pM ñ Nq˚, corresponds to the formulas

Ź

M,
Ž

N˚.

Definition 2.12. A total and mediate formal explanation in GclE is a finite (upward-
growing) tree with a single root. The nodes of the tree are labelled by c-sequents or c-
sequents with a bar; the c-sequents at the top nodes on the right side of the bar form
the multiset S, whilst the c-sequents at the top nodes on the left side of the bar form the
multiset S1 (which could be empty). For each non-terminal node, its label is connected with
the labels of the immediate predecessor nodes by one of the rules of Figure 4. The root of
the tree is the conclusion of the explanation and is totally explained by the c-sequents S
under the conditions pS1q˚: in symbols S1 | S ,m M ñ N . A total and immediate formal
explanation from S to M ñ N , under conditions pS1q˚ (which might be empty), in symbols
S1 | S ,M ñ N , is any single step of a total and mediate formal explanation.

In the calculus GclE it is thus possible to construct standard derivations, that formalize
the notion of proof, but also formal explanations, which formalize the notion of explanatory
proof, or conceptual explanation. Finally, in the calculus GclE it is also possible to construct
mixed derivations, which are standard derivations that might contain explanatory steps.

13Reading the rules bottom-up.

12



Definition 2.13. A mixed derivation in GclE is a derivation where also explanatory rules,
as well as the rule cw, might have been applied. We use the notation S1 | S $‹

GclE
M ñ N ,

where both S and S1 might be empty, to denote a mixed derivation in the calculus GclE .

3 Eliminability of the explanatory rules in the calculus
GclE

In the previous section, we have introduced the calculus GclE which is a calculus composed
by the sequent calculus Gcl` plus explanatory rules for the classical propositional connec-
tives. In GclE not only one can construct standard derivations (denoted by the symbol
$), but also derivations with explanatory steps (denoted by the symbol $‹), as well as
formal explanations (denoted by the symbol ,m). As concerns standard derivations, GclE

is equivalent to Gcl and it keeps the same properties as Gcl.14

Lemma 3.1. For any sequent M ñ N , $Gcl M ñ N if, and only if, $GclE M ñ N .

Proof. Straightforward.

Lemma 3.2. The structural rules of weakening and contraction are height-preserving ad-
missible in GclE. The logical rules of GclE are height-preserving invertible (and given a
logical rule R, we will call R its inverse).

Proof. The proof is the same as that developed in Gcl, see (Troelstra and Schwichtenberg,
1996, Ch. 3.5).

As concerns explanations, we need to show that nothing can be explained that cannot be
derived, i.e. explanatory rules serve to build derivations with an explanatory power, not to
prove new theorems. To this end, we show that any explanatory rule can also be performed
by several applications of the standard inferential rules.

Lemma 3.3. For any multiset of sequents S and S1, any sequent M ñ N , and for any
mixed derivation d of M ñ N from S and S1, namely S1 | S $‹ M ñ N which contains
only one application of an explanatory rule, one can construct a derivation d1 with the same
end-sequent from the same multiset of hypothesis, namely S $M ñ N .

Proof. We reason by induction on the height of the derivation. We divide the explanatory
rules into two groups: explanatory rules without conditions, namely   , ˝1, ˝1 and ex-
planatory rules with conditions, namely ˝2, ˝2. We start analyzing the rules of the first
group. Suppose that the main formula of the premise of the explanatory rule is of the form
F rBs. We apply on the context F as many rules R as necessary to unfold the context
itself and reach the formula B.15 Once arrived to B, given that explanatory rules do not
distinguish between formulas which are FOL-equiv, we might need to further apply R-rules
to further decompose the formulas composing F . We then apply the standard logic rules
to get from B, or any formula FOL-equivalent to B, to the desired conclusion, and then
we also use the logical rules to reconstruct the context F . Here is a simple example of the
procedure. Consider the following instance of the explanatory rule   :

M ñ N,@xpQx^ PxÑ Rxq

M ñ N,@xpPx^QxÑ   Rxq
  

14Note that this also straightforwardly holds for GclEQ.
15If F is empty, this first step of the procedure can be skipped.
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We obtain the desired result in the following way:

M ñ N,@xpQx^ PxÑ Rxq

M ñ N,Qc^ PcÑ Rc
@R

Qc^ Pc,M ñ N,Rc
ÑR

Pc,Qc,M ñ N,Rc
^L

 Rc, Pc,Qc,M ñ N
 L

Pc,Qc,M ñ N,  Rc
 R

Pc^Qc,M ñ N,  Rc
^L

M ñ N,Pc^QcÑ   Rc
ÑR

M ñ N,@xpPx^QxÑ   Rxq
@R

As for the rules of the second group, namely those explanatory rules with conditions,
one needs to consider the mixed derivation d, which will necessarily contain an application
of the rule cw. We substitute the derivation d with a derivation d1 with no application of
the rule cw. Then we continue the procedure as above.

Lemma 3.4. For any multiset of sequents S and S1, any sequent M ñ N , and for any
mixed derivation d of the form S1 | S $‹ M ñ N , one can construct a derivation d1 from S
to M ñ N , namely S $M ñ N .

Proof. By several applications of Lemma 3.3.

Corollary 3.5. For any multiset of sequents S and S1, any sequent M ñ N , and for any
formal explanation f of the form S1 | S ,m M ñ N , one can construct a derivation d from
S to M ñ N , namely S $M ñ N .

Proof. From Lemma 3.3.

4 From reasons to conclusions

The main aim of this paper is to develop a logical theory of conceptual explanations. As
noted, this involves addressing two central questions. The first - what kind of structure
underlies conceptual explanations? - has been answered in Section 2 with the introduction
of explanatory rules in the sequent calculus defining (formal) explanations. We use this
section to answer the second question: what kind of features need to be satisfied for some
formulas to count as the (total and immediate) reasons of another? As we have done for
the first question, in order to answer this question, we will extend Poggiolesi’s work; in
particular, whilst Poggiolesi (2016b) proposes sufficient and necessary conditions to identify
the reasons for a truth by only considering toy examples, here we will generalize her results
to also encompass more refined cases (see Figures 1 and 2). In particular, working in first-
order logic, we will put out those features that are sufficient and necessary to establish that,
under certain conditions N , M are the total and immediate reasons of why A is true. The
discussion will proceed into two main stages. First, we will introduce the features informally,
and then move to the formal definitions.

The first feature that we need to consider in order to model the relation which links
(total) reasons to their conclusion amounts to the widespread observation (e.g. see Jansson
(2017); Kim (1994), Woodward (2004)), that this is a dependence relation. This dependence
can, in its turn, be conveyed in the following terms. In a relation that goes from the (total)
reasons to their conclusion not only does the conclusion follows from its reasons, but it is
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also the case that if the reasons were modified somehow (under certain conditions), then
this change would affect the conclusion. Translated into logical terms this becomes: not
only it is the case that the conclusion logically follows from the (total) reasons, but also the
negation of the conclusion needs to logically follow from the negation of some (even all) the
(total) reasons (under certain conditions).

Let us consider this idea of dependency expressed in logical terms on the background
of the example 1.3. (Figure 1) from the Introduction. It logically follows from their cod-
ing competences and teamwork skills that Stanford Computer Science graduates are ideal
candidates for a particular tech job. However there seems to be more than just a logical
consequence relation between these relata: indeed, if one of the premisses (or even both)
were modified, this change would affect the conclusion. Suppose for example that Stanford
Computer Science graduates do not have teamwork skills, then it follows that they no longer
are ideal candidates for the tech job.

The conclusion is thus dependent on its reasons; however, this is not all. Indeed, any
explanatory relation is asymmetric: there is a direction from what explains to what is ex-
plained. The dependency does not provide such a directionality. To see this clearly, one can
consider any case with a single reason. Example 1.5. above (see Figure 2) perfectly fits this
type of scenario: we indeed have that a property of circles is explained by an unique reason,
namely a property of points. Note that these two properties can be proved to be equivalent,
in line with our formulation of dependency. Yet, despite their equivalence and following
Bolzano’s intuitions, it is the property of points that explains the property of circles and
not vice versa. We need to find an ingredient that determines this directionality or asymme-
try. Poggiolesi16 relies on an old and illustrious philosophical tradition17 in identifying the
missing ingredient as complexity : the simpler reasons explain the more complex conclusion,
not the other way. Moreover, the increase in complexity from the reasons to the conclusion
should be of a particular type:18 the formulas by means of which a sentence is explained
should correspond to a decomposition of the sentence itself. Although this insight is clear,
deep as well as supported in the philosophical tradition, problems arise when we try to for-
malize it. The first notions that would seem to naturally serve the purpose are the standard
notions of logical complexity and subformula; however, they turn out to be inadequate for
explanations. Indeed, they face two main kinds of counterexample.19 The first, concerning
negation, can be illustrated by returning to example 1.1. (Figure 1). As already discussed,
the (total and immediate) reasons of the formula  pp _ qq are  p and  q. However  p
and  q taken together are neither less complex20 nor subformulas of  pp _ qq, according
to the standard notions. The second type of counterexample arises when considering cases
like 1.2-1.6, namely cases where, as already underlined, one needs to look deep inside a
formula. Consider in particular the case 1.4. (Figure 2.).21 In this case the (total and
immediate) reasons of the formula @xppZx_ SNxq Ñ Nxq are the formulas @xpZxÑ Nxq
and @xpSNx Ñ Nxq. Again, these two latter formulas are not logically less complex nor
subformulas of the conclusion, according to the standard notions. In particular, whilst the

16On this point, see further work in Poggiolesi (2018, 2024).
17E.g. see Betti (2010); Detlefsen (1988).
18See Rumberg (2013).
19Other features of logical complexity and subformulas that are not adequate for an explanatory framework

will naturally emerge during the discussion.
20Here we mean that the sum of the logical complexity of  p and  q is lower than the logical complexity

of  pp_ qq.
21Although examples 1.2., 1.3. as well as 1.5. and 1.6., all display an analogous logical form, their

explanatory power rely on the use of concepts the analysis of which goes beyond the purpose of the present
paper. Such an analysis can be however found in Poggiolesi (2024).
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standard notion of subformula only allows to break a formula along its main connective, the
present example vividly shows that the possibility of breaking a formula from the inside,
i.e. by breaking a connective that is not the main one and leaving the rest of the formula
untouched, should also be taken into account.

We take these examples not as challenges to the idea that explanation involves an increase
in complexity, but rather as a demonstration that standard notions of logical complexity
and subformula are not fit for this purpose. We will thus enrich the notions of complexity
and subformula to adapt them for an explanatory framework. In particular, we will first
introduce the notion of e-complexity, that extends the standard notion of logical complexity
by providing a more explanatory compelling way of counting connectives. Consequently,
and in accordance with the new notion of e-complexity, we will define another relation of
subformula, called e-subformula, that extends the standard notion of subformula in a way
which is adequate for an explanatory framework.

Definition 4.1. Let A P WF , the e-complexity of A, ecmpAq, is defined in the following
way:

- ecmpPtq = ecmp Ptq = 0

- ecmp  Aq = ecmpAq ` 1

- ecmpA ˝Bq = ecmp pA ˝Bqq = ecmpAq + ecmpBq + 1

- ecmpdxAxq = ecmp d xAxq = ecmpAxq + 1

Definition 4.1 relies on a previous definition of complexity for an explanatory framework
provided in Poggiolesi (2016b) and extends it to the first-order level. Let us briefly illus-
trate the main insight behind it. It is a notion that basically aims at depicting a hierarchy
of first-order formulas that lies in the background of the explanatory framework. Since in
an explanatory framework, one goes from truth to truths, e-complexity tracks relationships
among the truths expressed by the formulas, if they were true. In the cases of conjunc-
tion, disjunction and quantifiers, e-complexity coincides with the standard notion of logical
complexity. If, for example, A and B express truths, then the truth expressed by A^ B is
obtained from the previous truths using a single operation. Thus conjunction increases by
the sum of the e-complexity of A and that of B. Analogously, if A expresses a truth, then
the truth expressed by @xAx is obtained from the previous truth using a single operation.
Thus the universal quantifier increases by one the e-complexity of the formula it is applied
to. Things are more subtle for the case of negation. Let us see this first with the case of
literals. Since (at most) one of Pc and  Pc will express a truth, then only one of these for-
mulas will ever be an object of an explanatory hierarchy. Thus, there seems to be no reason
to count  Pc as more complex than Pc:  Pc can no longer be seen as constructed from
Pc, since if one is true, the other is false. We should rather consider them as two formulas
on the same level and this is precisely what the e-complexity does. Analogous reasoning
can be applied to the e-complexity of more complex formulas like A^B and  pA^Bq, or
@xAx and  p@xAxq. We can no longer count the complexity of  pA^Bq as the complexity
of A ^ B plus one, as standard logical complexity does, since if  pA ^ Bq is true, then
A^B is false and thus it cannot be constructed from it. We should rather think of A^B
and  pA ^ Bq as two formulas that lie at the same level of an explanatory hierarchy and
thus have the same e-complexity. The exception is the case of double negation, where the
negation counts since ecmp  Aq = ecmpAq`1. But this is in harmony with what has been
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said up to now:   A and A may both express truths, and thus the former can be seen as
constructed from the latter by means of a single operation.

Note also that thanks to the notion of e-complexity, we can look at the relation between
a formula A, and its converse A˚ (see Definition 2.3), under a novel light. Indeed each
formula and its converse are such that their conjunction corresponds to a contradiction and
they have the same e-complexity.22 Note also that in an explanatory framework one may
work with contexts (see Definitions 2.4) and formulas in contexts (see Definitions 2.5). The
e-complexity of contexts, and formulas in contexts can be defined as follows.

Definition 4.2. We define the e-complexity of a context ecmpCr.sq “ ecmpCrPcsq for any
predicate P and constant c in L.

Definition 4.3. We define the e-complexity of a formula in context, ecmpCrF sq as a pair of
numbers pm,nq such that m “ ecmpCr.sq and n “ ecmpF q. Accordingly, given the formulas
in a context C1rF1s, ..., CkrFks and DrGs, if ecmpC1rF1sq = pm,n1q, ..., ecmpCkrFksq =
pm,nkq and ecmpDrGsq = pm,nq, where n “ n1 ` ... ` nk ` 1, then C1rF1s, ..., CkrFks will
be said to be immediately less g-complex than DrGs.

We now move to our new notion of subformula, that will be called e-subformula, and
that will work in parallel with the notion of e-complexity (just as logical complexity and
subformula do). There are three main ideas that motivate the new notion of e-subformula.
The first idea is related to the aforementioned fact that in an explanatory framework relations
amongst formulas might involve connections that go deep inside formulas themselves. The
standard subformula only connects formulas by looking at the main connective; we will
enrich it by also allowing to look at connectives inside the formulas. As a consequence, we
will use again the notions of context, and formula in a context. The second and third ideas
are linked to the novel way of counting the complexity of a formula. Consider formulas F and
E which are equivalent by associativity and commutativity of conjunction and disjunction,
change of orders of identical quantifiers, and substitution of variables. Not only are F and
E logically equivalent, they also are equivalent from an explanatory point of view. Indeed,
E and F convey the same“state of affairs,” and occupy the same place in the explanatory
hierarchy, i.e. they have the same e-complexity. Hence if F is a subformula of F 1, then E
should be as well. We will render this feature by closing the relation of e-subformula under
associativity and commutativity of conjunction and disjunction, change of orders of identical
quantifiers, and substitution of variables.23

Note that this sort of reasoning also applies to any formula F and its converse F˚.
Although F and F˚ are of course not equivalent, yet they share a deep relation: they convey
the same“state of affairs” and they occupy the same place in the explanatory hierarchy, i.e.
they have the same e-complexity. Either F is true or F˚ is, yet they represent the two sides
of the same coin. As a result, whenever a formula F 1 is a e-subformula of a formula F , its
converse will be too.

Now that we have clarified the main insights behind the new notion of e-subformula, we
introduce it formally via the following definitions.

Definition 4.4. Given the formulas F and G of L, we say that F is FOL-equiv to G if, and
only if, F can be obtained from G by associativity and commutativity of conjunction and
disjunction, substitution of variables, and change of orders of identical quantifiers.

22Whilst a formula and its negation are such that their conjunction corresponds to a contradiction, they
do not necessarily have the same e-complexity.

23As also noted for explanatory rules, this is the feature that provides our logical theory of conceptual
explanations with an hyperintensional feature, e.g. see Berto and Nolan (2023); Leitgeb (2019).
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Definition 4.5. Given a context Cr.s of L, we say that Cr.s is FOL-equiv to Dr.s if, and
only if, for any predicate P and any constant c P L, CrPcs is FOL-equiv to DrPcs.

Definition 4.6. For any pair of formulas F and G of L, we say that F – G if, and only if,
F is FOL-equiv to G or F is FOL-equiv to G˚.

Definition 4.7. For any pair of contexts Cr.s and Dr.s of L, we say that Cr.s – Dr.s if,
and only if, for any predicate P and any constant c in L, CrPcs is FOL-equiv to DrPcs or
CrPcs is FOL-equiv to pDrPcsq˚.

Definition 4.8. For any pair of multisets M and N of formulas of L, such that M “

tC1rF1s, ..., CnrFnsu and N “ tD1rG1s, ..., DnrGnsu, we say that M – N , if, and only if,
F1 – G1, ...., Fn – Gn and C1 – D1, ...., Cn – Dn.

Definition 4.9. For any pair of formulas in contexts CrF s and DrGs of L, we say that
DrGs is a e-subformula of CrF s if, and only if, Cr.s – Dr.s, and:

- F – G,

- F –   F 1 and G is a e-subformula of F 1,

- F – F 1 ˝ F 2 and G is a e-subformula of F 1 or G is a e-subformula of F 2,

- F – dxF 1 and G is a e-subformula of F 1pt{xq for all t free for x in F 1.

The notion of immediate e-subformula is analogous to that of immediate subformula.

Definition 4.10. M is a multiset of distinguished immediate e-subformulas of CrF s, if, and
only if:

- M – tCrF 1su and F –   F 1,

- M – tCrF 1s, CrF 2su and F – pF 1 ˝ F 2q,

- M – tCrdxF 1u and F – F 1pt{xq, for all t free for x in F 1.

Note that the distinguished immediate e-subformulas of CrF s are always immediately less
g-complex than CrF s according to Definition 4.3, so that the notion of e-complexity and
e-subformula go hand in hand.

We finally have all the ingredients to formally define the necessary and sufficient condi-
tions which establish when, under certain conditions N , some formulas M are to be count
as the total and immediate reasons of a formula A.

Definition 4.11. For any finite multisets of CF M = tD1rG1s, ..., DmrGmsu and N “

tC1rF1s, ..., CnrFnsu(which could be empty), and for any CF CrF s, M is a total and imme-
diate formal reason of CrF s under the condition that N˚, in symbols N | M ( CrF s, if,
and only if, for any E such that SCpEq “ SCpCq and E P P if, and only if, C P P, we have:

1. ErG1s, ..., ErGms |ù ErF s,

2. for some non empty (possibly non proper) submultiset M 1 of M , such that M 1 “

tDk1rGk1s, ..., DkrrGkrsu, we have that pErF1sq
˚, ..., pErFnsq

˚, pErGk1sq
˚, ..., pErGkrsq

˚,M´{E |ù
pErF sq˚.
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3. N YM is a multiset of distinguished immediate e-subformulas of CrF s.

where M´ = M ´M 1 and M´{E =tErGzs : DzrGzs PM
´u.

Definition 4.11 represents the formal counterpart of the features discussed in this section.
Conditions 1. and 2. are meant to capture the dependency of the relation. Obviously
this dependence holds amongst the formulas (in contexts) at issue, independently from the
contexts these formulas belong to. For this reason, it is relevant to demand the dependency
for any context Er.s whose scope and polarity are the same as that of the formula to be
explained.24 Condition 3. amounts to the directionality or asymmetry of the explanatory
relation at issue: this is conveyed via the new notion of e-subformula.

Let us evaluate some relations of reasons to related conclusions which emerge from this
definition. Consider the formula  pp_ qq that we have discussed in the example 1.1. above
(see Figure 1), for which, as noted  p, q are the total and immediate reasons. Definition
4.11 matches this intuition. Indeed  pp_ qq is a classical logical consequence of  p and  q,
but it is also the case that if we modify a subset of the reasons and we consider, say, p and
 q, instead of  p,  q, it logically follows that p _ q. Finally, t p, qu is the multiset of
distinguished immediate e-subformulas of  pp_ qq.

Let us now turn to the formula @xppZx_SNxq Ñ Nxq from the example 1.4 (see Figure
2), whose total and immediate reasons are the formulas @xpZxÑ Nxq and @xpSNxÑ Nxq.
Definition 4.11 again agrees with this intuition. For any context Er.s, such that SCpEq “ @x
and E P N , we have that ErZx _ SNxs logically follows from ErZxs and ErSNxs; but it
is also the case that if we modify the reasons, so we consider, say ErZxs and pErSNxsq˚,
then it logically follows that pErZx _ SNxsq˚. Finally, t@xpZx Ñ Nxq,@xpSNx Ñ Nxqu
is a multiset of distinguished immediate e-subformulas of @xppZx_ SNxq Ñ Nxq.

Finally, consider the formula @xpNxÑ Ex_Oxq mentioned in Section 2, that could be
seen as formalizing the sentence “for any x, if x is a natural number, then it is an odd or an
even number.” Although the formulas @xpNx Ñ Exq - for any x if x is a natural number,
then it is even - and @xpNx Ñ Oxq - for any x if x is a natural number, then it is odd -
are both e-subformulas of @xpNxÑ Ex_Oxq, it would be rather strange to think of them
as its reasons, if only because they are false. Definition 4.11 confirms this intuition: it can
be easily checked that condition 2. does not hold between the well-formed closed formula
@xpNxÑ Ex_Oxq and the formulas @xpNxÑ Exq and @xpNxÑ Oxq.

We can extend the definition of total and immediate formal reasons-conclusion to total
and mediate formal reasons-conclusion in the following way.

Definition 4.12. For any multisets of CF M and N (which could be empty), and for
any CF F , under the condition that N˚, M is a total and mediate formal reason of F ,
N |M (m F , if, an only if:

- N |M ( F , or

- N 1 |M 1 ( G and N2 | G,M2 (m F , where M 1 YM2 “M , and N 1 YN2 “ N .

24Although it arose in a different framework, a similar dependence relation has been investigated in
Humberstone (2013).
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5 Explanatory rules provide all, and only, relations from
(total) reasons to conclusion

In this section we prove that the answers offered to our two motivating questions – concerning
the structure of explanations and the relationship between reasons and conclusions – are
consistent. More specifically we show that a conclusion follows from reasons (in the sense
of () if, and only if, there is an explanation from the former to the latter (i.e. , holds). In
particular, Theorem 5.7 establishes that if a rule is explanatory then its premisses represent
the total and immediate reasons of it conclusion, according to Definition 4.11. Theorem
5.14 will prove that if some formulas count as the total and immediate reasons of a certain
conclusion (according to Definition 4.11), then there exists an explanatory rule which convey
this relation. Other lemmas and definitions serve to prove these main theorems.

Lemma 5.1. The following rules are admissible in the calculus Gcl:

when C P P: when C P N :

CrFis,M ñ N

CrF1 ^ F2s,M ñ N
^1

M ñ N,CrFis

M ñ N,CrF1 _ F2s
_1

M ñ N,CrFis

M ñ N,CrF1 ^ F2s
^2

CrFis,M ñ N

CrF1 _ F2s,M ñ N
_2

CrF˚i s,M ñ N

Cr pF1 _ F2qs,M ñ N
 _1

M ñ N,CrF˚i s

M ñ N,Cr pF1 ^ F2qs
 ^1

M ñ N,CrF˚i s

M ñ N,Cr pF1 _ F2qs
 ^2

CrF˚i s,M ñ N

Cr pF1 ^ F2qs,M ñ N
 _2

where i “ t1, 2u.

Proof. We prove in detail the admissibility of the rules ^1 and ^2 by induction on the
construction of the context Cr.s, and subinduction on the height of the derivation of the
premise of the rule. The admissibility of any other rule can be proved analogously.

We distinguish cases according to the form of Cr.s. If Cr.s “ r.s, then from the premise
Fi,M ñ N we obtain the desired result thanks to the rule ^L. As for the rule ^2, since
Fi has a negative polarity in Cr.s, it can be thought of as  pFiq. Thus we first apply the
inverse of the rule  R25 obtaining Fi,M ñ N . We then apply the rules ^L and  R to get
the desired result.

If Cr.s ‰ r.s, then we distinguish cases according to the last applied rule R on CrFis,M ñ

N and on M ñ N,CrFis. (i) A rule R has been applied on either M or N . In this case we
apply the inductive hypothesis on the height of the derivation, and then by re-applying R we
get the desired result. (ii) A rule R has been applied on CrFis in the sequent CrFis,M ñ N
(the case where R has been applied on CrFis in the sequent M ñ N,CrFis is analogous).
We distinguish the following subcases according to the form of C.

E,DrFis,M ñ N

E ^DrFis,M ñ N ù26

E,DrF1 ^ F2s,M ñ N

E ^DrF1 ^ F2s,M ñ N

E,M ñ N DrFis,M ñ N

E _DrFis,M ñ N ù

E,M ñ N DrF1 ^ F2s,M ñ N

E _DrF1 ^ F2s,M ñ N

25All logical rules are invertible in Gcl, see Troelstra and Schwichtenberg (1996)).
26The symbol ù means: the premise of the right side is obtained by induction hypothesis on the premise

of the left side.
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@xDrFis, DrFis,M ñ N

@xDrFis,M ñ N ù

@xDrF1 ^ F2s, DrFis,M ñ N

@xDrF1 ^ F2s, DrF1 ^ F2s,M ñ N
i.h.

@xDrF1 ^ F2s,M ñ N

Suppose finally that CrFis is of the form  DrFis
27 and that the sequent  DrFis,M ñ N

has been obtained from the sequent M ñ N,DrFis by means of the rule  L. Then we
consider the sequent M ñ N,DrFis and we apply (since now D P N ) the rule ^2 obtaining
the desired result.

Lemma 5.2. For any pair of formulas F,  F P CF , it holds that:

CrF s ( Cr  F s

Proof. By induction on the construction of Cr.s. If Cr.s=r.s, then it is trivial. If Cr.s ‰ r.s,
then we need to distinguish cases. However, since F and   F are logically equivalent, it is
straightforward to check that it holds for any case.

Definition 5.3. Given G,G1, F P CF , by

G,G1 „ F we denote G,G1 |ù F and G˚, G1˚ |ù F˚.

G | G1 „ F we denote G1 |ù F and G˚, G1˚ |ù F˚.

ă G ą G1 „ F we denote G1˚ |ù F˚ and G,G1 |ù F .

Lemma 5.4. For any G,G1, F P CF :

G | G1 „ F if, and only if, ă G˚ ą G1˚ „ F˚

Proof. Straightforward.

Lemma 5.5. For any context Cr.s that has PUS (see Definition 5.12) and for any formula
G,G1, F P CF , such that F P tG^G1, pG_G1qu, then it holds that:

(a) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

(b) if ă G ą G1 „ F , then ă CrGs ą CrG1s „ CrF s.

For any context Cr.s that has NES (see Definition 5.12) and for any formula G,G1, F P CF ,
such that F P tG^G1, pG_G1qu, then it holds that:

(c) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

(d) if ă G ą G1 „ F , then CrGs | CrG1s „ CrF s.

27The case where ArBis is of the form   F rBis is clearly analogous.
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Proof. We prove (a)-(d) by (a common) induction on the the construction of Cr.s. We
start from (a). If Cr.s “ r.s, then it is trivial. Suppose Cr.s ‰ r.s, then we distinguish
cases according to the form of C. We have (i) C =   Dr.s, (ii) C = E ^Dr.s,28 (iii) C =
E _Dr.s,29 (iv) C = @xDr.s, (v) C =  Dr.s.

(i). It is straightforward.

(ii). Suppose G,G1 „ F (the other option is to have G˚, G1˚ „ F . This can be treated
analogously). By i.h., one obtains DrGs, DrG1s „ DrF s. In order to get the desired result,
we exploit the sequent calculus Gcl in the following way:30

DrGs, DrG1s ñ DrF s E,E ñ E

E,DrGs, E,DrG1s ñ E ^DrF s
^R1

E,DrGs, E ^DrG1s ñ E ^DrF s
^L

E ^DrGs, E ^DrG1s ñ E ^DrF s
^L

DrF s ñ DrGs, DrG1s E ñ E

E,DrF s ñ DrGs, E ^DrG1s
^R1

E ñ E

E,E,DrF s ñ E ^DrGs, E ^DrG1s
^R1

E,DrF s ñ E ^DrGs, E ^DrG1s
CL

E ^DrF s ñ E ^DrGs, E ^DrG1s
^L

From E ^DrGs, E ^DrG1s $ E ^DrF s by completeness of Gcl, one gets E ^DrGs, E ^
DrG1s |ù E^DrF s. From E^DrF s $ E^DrGs_E^DrG1s by completeness of Gcl, and the
symbol of converse (see Definition 2.3), one gets pE^DrGsq˚, pE^DrG1sq˚ |ù pE^DrF sq˚.
Thus we have E ^DrGs, E ^DrG1s „ E ^DrF s.

(iii). Analogously to (ii).

(iv) In this case we further distinguish sub-cases according to the form of F . We thus have
(iva) F “ G^G1, and (ivb) F “  pG_G1q.

(iva). By i.h., one obtains DrGs, DrG1s „ DrG ^ G1s. One gets the desired result,
exploiting rule ^1 of Lemma 5.1, as well as the sequent calculus Gcl, in the following
way:31

DrGys, DrG1ys ñ DrGy ^G1ys

@xDrGxs, DrG1ys ñ DrGy ^G1ys
@L1

@xDrGxs,@xDrG1xs ñ DrGy ^G1ys
@L1

@xDrGxs,@xDrG1xs ñ @xDrGx^G1xs
@R

@xDrGxs ñ @xDrGxs

@xDrGx^G1xs ñ @xDrGxs
^1

@xDrGx^G1xs ñ @xDrGxs,@xDrG1xs
WR

From @xDrGxs,@xDrG1xs $ @xDrGx^G1xs by completness of Gcl one gets @xDrGxs,@xDrG1xs |ù
@xDrGx ^ G1xs. From @xDrGx ^ G1xs $ @xDrGxs _ @xDrG1xs by completeness of Gcl,
and the symbol of converse (see Definition 2.3), one gets p@xDrGxsq˚, p@xDrG1xsq˚ |ù
p@xDrGx^G1xsq˚. Thus we have @xDrGxs,@xDrG1xs „ @xDrGx^G1xs.

(ivb). Analogously to (iiia) by using the rule  _ 1, whose admissibility has been shown
in Lemma 5.1.

28The case C = Dr.s ^ E is analogous.
29The case C = Dr.s _ E is analogous.
30For the sake of simplicity, we use the multiplicative version of the rule ^R, as well as the rule of

contraction on the left side of the sequent, which are both admissible rules in the calculus Gcl.
31For the sake of simplicity, we use the version of the rule @L without the repetition of the quantifier, as

well as the weakening on the right. These rules are admissible in the calculus Gcl.
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(v) Assuming G,G1 „ F , we apply (c) getting DrGs, DrG1s „ DrF s, where F has a negative
polarity. However, by logic, this is equivalent to  DrGs, DrG1s „  DrF s, which is the
desired result and where D has a positive polarity.

The cases (b)-(d) can be treated analogously to case (a).

Lemma 5.6. For any context Cr.s that has PES (see Definition 5.12) and for any formula
G,G1, F P CF , such that F P tG_G1, pG^G1qu, then it holds that:

(a) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

(b) if G | G1 „ F , then CrGs | CrG1s „ CrF s.

For any context Cr.s that has NUS (see Definition 5.12) and for any formula G,G1, F P CF ,
such that F P tG_G1, pG^G1qu, then it holds that:

(c) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

(d) if G | G1 „ F , then ă CrGs ą CrG1s „ CrF s,

Proof. The proof is analogous to the proof of Lemma 5.5.

Theorem 5.7. (Soundness) For any multisets of sequents S1, S (where S1 is possibly empty),
and sequent M ñ N ,

if S1 | S ,M ñ N, then pS1qτ | pSqτ (
ľ

M Ñ
ł

N

where pS1qτ , pSqτ are the standard translation of the multisets of sequents into multisets of
formulas.

Proof. In order to prove the theorem, we should check the validity of each explanatory rule
of Figure 4. The validity of the rule   follows from Lemma 5.2. We prove the validity of
rule ˝1. The validity of the other rules can be proved analogously.

Consider the rule ˝1 applied on a formula of the form CrF^Gs such that C has PUS. Clearly,
it holds that F,G „ F^G. But, then by Lemma 5.5, we have

Ź

M Ñ
Ž

N_CrF s,
Ź

M Ñ
Ž

N _CrGs „
Ź

M Ñ
Ž

N _CrF ^Gs, where the context
Ź

M Ñ
Ž

N _Cr.s has PUS.
Actually for Lemma 5.5 again, we have that, for any context Er.s that has PUS, it holds that
ErF s, ErGs „ ErF ^Gs. Finally, t

Ź

M Ñ
Ž

N_CrF s,
Ź

M Ñ
Ž

N_CrGsu is a multiset
of immediate distinguished e-subformulas of

Ź

M Ñ
Ž

N _ CrF ^ Gs (also thinking of
FOL-equivalent formulas). Hence we have the desired result.

Consider the rule ˝1 applied on a formula of the form CrF ^Gs such that C has NES. Then
the reasoning is the same as above and it thus crucially relies on Lemma 5.5.

Consider the rule ˝1 applied on a formula of the form CrF _Gs such that C has PES. Then
the reasoning is the same as above, except that one needs to use Lemma 5.6.

Consider the rule ˝1 applied on a formula of the form CrF _ Gs such that DC has NUS.
Then the reasoning is the same as above, except that one needs to use Lemma 5.6.
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Corollary 5.8. For any multisets of sequents S1, S (where S1 is possibly empty), and sequent
M ñ N ,

if S1 | S ,m M ñ N, then pS1qτ | pSqτ (m

ľ

M Ñ
ł

N

where pS1qτ , pSqτ are the standard translation of the multisets of sequents into multisets of
formulas.

Proof. From Theorem 5.7.

Definition 5.9. For any context Cr.s, we define the related quantifiers-only-context QopCqr.s,
in the following way:

- if C P P, then QopCqr.s “ SCpCqr.s

- if C P N , then QopCqr.s “ SCpCqr.s˚

where r.s˚ stands for  p.^Jq.

Lemma 5.10. Let QopCqr.s be the quantifiers-only-context related to Cr.s, then:

SCpQopCqq “ SCpCq

Proof. Straightforward from Definition 5.9.

Lemma 5.11. For any multisets of CF M and N (which could be empty), and for any CF
CrF s,

if N |M ( CrF s, then QopNq | QopMq ( QopCqrF s

where for any multiset of closed formulas P , QopP q “ tQopEqrGs | ErGs P P u.

Proof. By Definition 4.11.

Definition 5.12. For any quantifier-only-context QopCqr.s, we say that QopCqr.s is:

a positive universal if, and only if, QopCqr.s “ @x1, ...@xnr.s, where n ě 0.

a negative universal if, and only if, QopCqr.s “ @x1, ...@xnr.s
˚, where n ě 0.

a positive existential if, and only if, QopCqr.s “ Dx1, ...Dxnr.s, where n ě 0.

a negative existential if, and only if, QopCqr.s “ Dx1, ...Dxnr.s
˚, where n ě 0.

Lemma 5.13. For any multisets of CF M and N (which could be empty), and for any CF
CrF s,

if QopNq | QopMq ( QopCqrF s then pNqδ | pMqδ , ñ CrF s

where for any multiset of CF M , Mδ = tñ ErCs | ErCs PMu.

Proof. We proceed by distinguishing cases based on the form of QopCqr.s and F .

[-] QopCqr.s might be such that: (i) it is a positive universal; (ii) it is a positive existential;
(iii) it is a negative universal; (iv) it is a negative existential; (v) QopCqr.s= SCpCqr.s,
where SCpCq corresponds to any finite sequence of universal and existential quantifiers
that is not empty and is neither of the type @x1, ...,@xn, nor of the type Dx1, ..., Dxn; (vi)
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QopCqr.s= SCpCqr.s˚, where SCpCq corresponds to any finite sequence of universal and
existential quantifiers that is not empty and is neither of the type @x1, ...,@xn, nor of the
type Dx1, ..., Dxn.

[-] F can be of the following form: (a)   G; (b) G ^ G1; (c) G _ G1; (d)  pG ^ G1q; (d)
 pG_G1q; (e) @xGx; (f)  @xGx; (g) DxGx; (h)  DxGx .

We check in detail the combination of (i)-(vi) with (a), (b) and (e). The other combina-
tions can be treated analogously.

1. We combine (i)-(vi) with (a). In each case, we have that QopCqrGs ( QopCqr  Gs; at
the syntactic level the explanatory rule   gives us what desired, namely ñ CrGs ,
ñ Cr  Gs.

2. We combine (i) with (b). We have that QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s. At
the syntactic level, thanks to the explanatory rule ˝1, we get what desired, namely
ñ CrGs,ñ CrG1s , ñ CrG^G1s .

3. We combine (iv) with (b). We have that QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s,
QopCqrGs | QopCqrG1s ( QopCqrG^G1s and QopCqrGs | QopCqrG1s ( QopCqrG^G1s.
At the syntactic level, thanks to the explanatory rules ˝1, ˝2, we get what desired,
namely ñ CrGs,ñ CrG1s , ñ CrG ^ G1s, ñ CrGs |ñ CrG1s , ñ CrG ^ G1s and
ñ CrGs |ñ CrG1s ,ñ CrG^G1s.

4. It is straightforward to check that the combination of (ii), (iii), (v), and (vi) with (b)
does not give rise to any relation from reasons to conclusion.

5. We combine (i)-(vi) with (e), hence with a formula of the type QopCqr@xAxs It is easy
to check that there is no closed e-subformula of QopCqr@xAxs such that it stands with
QopCqr@xAxs in a relation of total and immediate reasons-conclusion. Hence, this case
does not need to be further analyzed.

Theorem 5.14. (Completeness) For any multisets of closed formulas N , N 1 (possibly
empty), and formula CrF s,

if N 1 | N ( CrF s, then pN 1qδ | pNqδ , ñ CrF s

Proof. From Lemmas 5.11 and 5.13.

Corollary 5.15. For any multisets of closed formulas N , N 1 (possibly empty), and formula
CrF s,

if N 1 | N (m CrF s, then pN 1qδ | pNqδ ,m ñ CrF s

Proof. From Theorem 5.14.
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6 Related work

Recent years have witnessed an increasing interest in the notion of explanation from a
logical point of view. Here we mention some trends (the list is not exhaustive) that could
be seen as related to the present work. A first trend is that which is taking place with some
common machine learning classifiers, where recent research has aimed at identifying the
reasons behind the classification of instances, and thus has proposed explanations for this
type of decision, e.g. see Darwiche and Hirth (2023); Shih et al. (2018). By considering the
examples taken into account in this wide and still flourishing literature, and in particular by
dwelling on the crucial notion of sufficient reason, we are led to believe that there are strong
analogies with our approach. If this analogy is well-founded, then it could prove fruitful in
(at least) two ways. On the one hand, the semantics put forward by Darwiche and Hirth
(2023) - which is mainly in terms of prime implicants - can be profitably employed to develop
a semantic-approach for the present proposal that is for now mainly syntactic. On the other
hand, the power of the explanatory sequent calculus introduced here could be implemented
to enrich the computational part of the work developed in, e.g. Shih et al. (2018); it could
also be used to extend their perspective at the first-order level, as for now it has only been
developed at the propositional level.

Note that related to the work Darwiche and Hirth (2023); Shih et al. (2018) is the work
of Liu and Lorini (2023, 2022). In a nutshell, Liu and Lorini introduce the reasons behind
the classification of instances in the (modal) language, then developing an axiomatic system
as well as a semantics for the new connective. Since the approach we propose only lies at the
metalinguistic level, but is lacking for its linguistic counterpart, the work of Liu and Lorini
(2023, 2022) can be seen as a useful source of inspiration.

A third trend that one might be tempted to consider lies within metaphysics, where there
is a growing interest towards the notion of (metaphysical) grounding (e.g. see Fine (2012)),
namely a relation which shares some characteristics with our relation of reasons-conclusion.
Despite this first similarity, there also are deep differences that separate these approaches.
We mention the following two: on the one hand, the intrinsic metaphysical character of the
study of the notion of grounding, which is absent from the present discussion; on the other
hand, the fact that in this literature only toy examples are taken into account, while one
of the main interest of our theory precisely relies in his capability of encompassing intricate
examples as well. Hence, comparison and links with the metaphysical grounding literature
can be developed only once these two main differences have previously been investigated
and clarified.

Last, but not least, another recent trend in the current literature concerns those ex-
planations that are characterized by abductive reasoning, namely an inference to the best
explanation. In this framework there are (at least) two recent lines of work, one developed
by Arieli et al. (2022); Millson and Strasser (2019), whilst the other by Piazza et al. (2023);
Pulcini and Varzi (2021). Despite their difference, these works have a strong common fea-
ture, namely they both develop new sequent calculi were several different rules are proposed
to account for abductive reasoning. We thus have three proof-theoretical formal frameworks
dealing with different notions of explanations. As a consequence, the study of their relations
could open up for a novel and interesting connection between conceptual and abductive
explanations, both at the conceptual and at the logical level.
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7 Conclusions

The word explanation is an umbrella term which covers several different notions, such as
causal, non-causal or abductive explanations. In this paper we have focussed on concep-
tual explanations, namely some deductive explanations-why, which come from a long and
illustrious tradition in philosophy, bear several analogies with causal explanations, but still
deserve a thorough formal study. The main aim of this paper has been to take some first
steps towards filling this gap, by the introduction of a logical theory of the notion of (concep-
tual) explanation and related relation of reasons to conclusion. We have accomplished this
task by using and enriching the standard tools of proof theory, namely the sequent calculus
for classical first-order logic. In particular we have added to the standard inferential rules
explanatory rules, i.e., rules whose premisses represent the (total and immediate) reasons
why their conclusion is true. By means of these rules we can construct formal explanations,
which represent the formalization of the notion of (conceptual) explanation. Not only do we
believe that this research provides a valuable contribution per se, in that it fills an impor-
tant gap in the logical literature, but it also naturally opens up several directions for future
research, such as the formalization of the notion of explanation in logics other than classical
logic, the applications of conceptual explanations to related fields such as explainable AI, or
to related notions of explanation. Finally, it also open up to the investigation of the value
of explanatory rules in proof-theoretic semantics, e.g. see Francez (2015).

References

Arieli, O., Borg, A., Hesse, M., and Strasser, C. (2022). Explainable logic-based argumen-
tation. Computational Models of Argument, 353:32–43.

Arieli, O. and Strasser, C. (2015). Sequent-based logical argumentation. Argument and
computation, 6:73–99.

Aristotle (1993). Posterior Analytics. Oxford University Press, Oxford.

Berto, F. and Nolan, D. (2023). Hyperintensionality. In Zalta, E. and Nodelman, U., editors,
The Stanford Encyclopedia of Philosophy, pages 1–45. Stanford.

Betti, A. (2010). Explanation in metaphysics and Bolzano’s theory of ground and conse-
quence. Logique et analyse, 211:281–316.

Bolzano, B. (2014). Theory of Science. Oxford University Press, Oxford.
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