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Explanations in logic

Abstract

To explain phenomena in the world is a central human activity and one of the main
goals of rational inquiry. There are several types of explanation: one can explain
by drawing an analogy, as one can explain by dwelling on the causes (see e.g. see
Woodward (2004)). Amongst these different kinds of explanation, in the last decade
philosophers have become receptive to those explanations which explain by providing
the reasons why a statement is true; these explanations are often called conceptual
explanations (e.g. see Betti (2010)). The main aim of the paper is to propose a logical
account of conceptual explanations. We will do so by using the resources of proof
theory, in particular the sequent calculus. The results we provide not only shed light
on conceptual explanations themselves, but also on the role that logic and logical tools
might play in the burgeoning field of inquiry concerning explanations.

1 Introduction

To explain phenomena in the world is a central human enterprise and one of the main goals
of rational inquiry; it is thus no surprise that the notion of explanation has been one of
the most intensely discussed topics in philosophy of science in the 20th century. In the
light of this vast literature, it is useful to start with some orientation. First of all, the word
explanation is an umbrella term to denote different types of activities, e.g. see Schurz (1999).
If one kind of explanation is that which shows how to construct an Ikea furniture, another
amounts to the clarification of the meaning of a symbol, and yet another type of explanation
corresponds to the explanation of a new concept to a child. In this paper we will not take
into account the world explanation in its generality, but just focus on the so-called deductive
explanations-why, namely those explanations which have a deductive form and aim to clarify
why a certain phenomenon occurs or why a certain proposition is true.

Amongst deductive explanations-why a central place is occupied by the so-called causal
explanations, e.g. see Woodward (2004). Causal explanations are those explanations that
track or can be identified with a causal relation. In other terms, causal explanations are
explanations that explain why a certain phenomenon occurs by displaying the cause(s)
that determine the phenomenon, which thus corresponds to the effect. Examples of causal
explanations range from toy examples to bona fide scientific explanations. The argument
which explains why there is a fire in the forest by evoking the cigarette lit in the forest
(as well as the law of combustion) is an example of causal explanation, in that it explains
by relying on the causal relation between the cigarette lit in the forest and the fire that
it provoked. However, also the explanation of current climate damages which evokes our
burning of fossil fuels (together with several physical and chemical laws linking burn of fossil
fuels with climate damages) is another example of causal explanation in that it explains why
climate change occurs by displaying one of its cause, namely the fact that we burn fossil
fuels.

Only in the past decade or so philosophers have became increasingly aware of plenty
of compelling examples of explanations-why that causal accounts cannot properly capture.
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In physics as well as in mathematics or in metaphysics, several types of explanations arose
that did not seem to rely on any causal mechanism: very naturally, the idea that causation
although certainly being a key ingredient of explanation, is probably not the full story,
started to spread; non-causal explanations, namely explanations that in one way or another
go beyond causation, have become a new thrilling and thriving subject of research.1

Amongst the wide set of non-causal explanations, one might focus on conceptual ex-
planations,2 namely those explanations that track or can be identified with a (conceptual)
grounding relation.3 In other terms, conceptual explanations are those explanations which
explain why a certain conclusion is true by displaying the reason(s) or ground(s)4 why it
is such, where the relation between such reasons and conclusion hold in virtue of the con-
cepts that they contain. Examples of conceptual explanations range from toy examples to
intricate ones. The argument which explains why a certain animal is a vixen by evoking
that animal being a female as well as that animal being a fox (together with the definition
of vixen), is an example of conceptual explanation. Indeed it displays the reasons, rather
than the causes, of why the animal is a vixen, and the relation between the reasons and
their conclusion hold in virtue of the concepts - female, fox and vixen - that they contain.
However, also the explanation of why Jane is the ideal candidate for the new professorship at
a prestigious European university, which evokes the several qualities of Jane - she is a hard
worker, she is talented, she has prestigious publications - (together with the stipulation of
what an ideal candidate for that position is) is another example of a conceptual explanation
in that it explains why a certain conclusion is true by dwelling on the reason(s) why it is
true.

Note that amongst conceptual explanations one should also count mathematical expla-
nations,5 namely those explanations that take the form of proofs in mathematics that not
only show a theorem to be true, but also seem to provide the reason(s) why it is true. These
mathematical explanations have been the object of several reflections by an illustrious tradi-
tion of scholars including Aristotle, Proclus, Leibniz, Arnauld and Nicole, Bolzano, Frege.6

For the sake of clarity, we sketch an example of this type of mathematical explanation that
comes from Bolzano (2014). Consider the theorem which states that given any two circles A
and B, one with center a and radius ab, and the other with center b and radius ab, then there
always exists a point c where they intersect such that lpacq “ lpcbq “ lpabq. There exists
a proof7 of this theorem that crucially relies on a property of points, namely the property
which states that for any two points a and b, there always exists a third point c such that
lpabq = lpbcq = lpacq. Following Bolzano, this proof is explanatory in that it relies on the
grounding relation between the property of the points - the reason - and the property of the

1E.g. see Lange (2017); Reutlinger and Saatsi (2018).
2E.g. see Betti (2010); Schnieder (2006).
3On the links between conceptual explanations and grounding as they are adopted in this paper, see

Poggiolesi and Genco (2023).
4In this paper, we use as synonymous the words “ground” and “reason.” However, we do not take

grounding to be a metaphysical relation as it is commonly assumed to be in the contemporary literature,
e.g. see Fine (2012). In this paper we rather think of the notion of conceptual ground, which has been
receiving an increasing attention recently, e.g., Betti (2010); Carrara and De Florio (2020); Smithson (2020).

5On the inclusion amongst conceptual explanations of mathematical explanations, see Betti (2010); Pog-
giolesi and Genco (2023).

6E.g. see Detlefsen (1988).
7Proof. Consider the circle A with center a and radius ab. Since by definition a center is a point, then we

have that there exists a point a. For the same reasoning applied to the circle B, we have that there exists
a point b. But given a point a and a point b, there always exists a point c such that lpabq = lpbcq = lpacq
(where lpxyq stands for the length of the segment xy). Hence we have a point c such that lpabq = lpbcq =
lpacq. Since the distance between c and the centre of the circle A is the radius of A, and the same holds for
B, c is a point where the two circles A and B intersect.
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circles - the conclusion. In its turn, this grounding relation holds in virtue of the concepts
the sentences it connects contain, namely the concepts of point, radius, circle. Hence this
mathematical explanatory proof is a paradigmatic example of conceptual explanation in
that it enjoys the several features of this type of explanation.

In sum, when it comes to deductive explanations why, there is a stringent parallel between
the causal and the conceptual level: explanations belonging to these different frameworks
share a similar structure, analogous features, several common properties. Although causal
explanations are dominant in scientific inquiry and philosophy,8 logic has been argued to
have a problematic relationship with causality.9 As a result, as far as we know, the study of
(causal) explanation is a great absentee in the logic literature, a literature otherwise rich of
formalizations with other central notions such as knowledge, belief, time, obligation and so
on. Conceptual explanations, on the other hand, naturally invite a logical analysis, and this
is precisely the aim of this paper, namely to elaborate a logical theory of conceptual explana-
tions. Given the wide range of conceptual explanations, from toy examples to mathematical
explanations, the theory will need to be rich enough to shed light on all these different cases
of conceptual explanation. The elaboration of such a theory will have two consequences.
On the one hand, it will allow us to introduce the notion of explanation in logic, where it
has so far been absent; on the other hand, it will enlighten our understanding of conceptual
explanations themselves.

Note that, in the contemporary literature, the line of research, which is the closest to
that of this paper, is concerned with the logic of (metaphysical) grounding, e.g. see Correia
and Schnieder (2012); Fine (2012). Indeed, because of the strict relation between conceptual
explanations and grounding, there are several analogies between the two. However, three
main novelties characterize this paper: (i) the focus on the notion of (conceptual) explanation
rather than on the relation of grounding; (ii) the use of the sequent calculus for first-order
logic, rather than the use of the natural deduction calculus; (iii) the attention dedicated to
mathematical explanations that, being a quite elaborated type of conceptual explanation,
naturally lead to the construction of a broader framework.

In order to reach our goal, we will organize the paper in the following way. In Section
2 we will clarify the formal framework where we will develop our account along with some
characteristics of conceptual explanations as well as the related grounding relation. Whilst in
Section 3 we will set out the conditions under which some formulas are the formal grounds
of another, in Section 4 we will formalize the notion of conceptual explanation, via the
notion of formal explanation. Section 5 will serve to prove soundness and completeness
between formal grounding and formal explanation and in Section 6 we will prove some
results concerning our formal theory of explanation. In Section 7 we will draw conclusions
and sketch directions of future research.

2 Formal framework

In order to provide a formal account of conceptual explanation, let us start from an idea
that is both ancient and central in the literature on (deductive) explanations, and which
simply consists in seeing them as deductive arguments which, starting from true premisses
- be them the causes or the grounds - explain a certain conclusion.10 Of course not any
deductive argument amounts to an explanation, but some of them do, namely those which

8E.g. see Hempel (1965); Salmon (1989).
9E.g. Scriven (1971). Only more recently has this trend been inverted, e.g. see Bareinboim et al. (2022).

10E.g. see Aristotle (1993); Hempel (1965, 1942).
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Figure 1: General picture
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have an explanatory power. The perspective that we will develop in these pages consists
in a reformulation of this central idea along the following lines: explanations can be seen
as proofs which, starting from true premisses, the grounds, not only prove that a certain
conclusion is true, but also explain why it is such. This perspective not only naturally arises
from the observation that proofs are deductive arguments, but is also supported by the fact
that mathematical explanations, a notable subset of conceptual explanations, actually are
proofs of mathematical theorems that show why theorems are true.

Let us pursue this perspective further. Since proofs are standardly formalized in logic
by means of derivations, we will formalize conceptual explanations as a special type of
derivation. More precisely, we will introduce a metalinguistic relation that we will call formal
explanation,11 and which will represent the formal counterpart of conceptual explanation as
well as a special case of the standard notion of derivation. The first task of this paper is to
provide a definition of this new metalinguistic relation. However important this task might
be, if we limited ourselves to it, we wouldn’t be taking into account the general framework to
which conceptual explanations belong. Indeed, when it comes to (at least a certain type of)
explanations, these structures are strongly related to a relation: causal explanations with
causality and conceptual explanations with grounding. Even derivations come equipped
with a relation, namely the relation of logical consequence (to which, in several logics, they
are shown to be equivalent to). Hence, to capture the framework of conceptual explanations
in an adequate way, it is reasonable and relevant to also introduce the formal counterpart of
the relation of grounding, that we will call formal grounding, and which we will conceive as
a strengthening of the logical consequence relation (see Figure 1). The two metalinguistic
relations of formal explanation and formal grounding will be the main objects of this paper,
and we will denote them with the two symbols , and (, respectively. In order to better
understand what kind of features characterize these relations, let us introduce some further
specifications.

First of all, we will analyze both symbols , and ( in the language of classical first-order
logic, which we introduce in the following way.

Definition 2.1. The language of first-order logic, L, is composed by: variables (x0, x1, x2,
...), constants (c0, c1, c2, ...), predicates (P k0 , P k1 , P k2 , ...), logical connectives ( , ^, _),
quantifiers (@, D), and parentheses: (, ). We take the symbols J,K and Ñ to be defined
as usual. For the sake of simplicity we do not use the identity symbol nor the functional
symbols. Also we will use the symbols ˝ and d in the following way: ˝ = t^,_u and d =
t@, Du. The set of well-defined formulas, WF , is constructed in the standard way. A closed

11Here we follow Poggiolesi (2018).
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formula, or a sentence, is a formula where no free variable occurs. The set of closed formulas
of L will be denoted by CF .

Definition 2.2. Given, the multiset M Ď WF and formula A P WF , we use the standard
notation, M |ù A, to mean that A logically follows from M in first-order classical logic. The
notation M $ A means that there exists a derivation from M to A in first-order classical
logic.

Secondly, we introduce some notable distinctions that help identifying different types of
explanations and associated relations. Here we focus on two, namely the distinction between
total/partial explanations and grounding, and the distinction between immediate/mediate
explanations and grounding.12 A total explanation (grounding relation) is one which pro-
vides all the reasons why something is true. In other terms, the multiset of all, and only, those
formulas each of which contributes to explain (or ground) C is a total explanation (ground)
of C. On the other hand, each proper sub-multiset of the total explanation (ground) of C
is a partial explanation (ground) of C.

Let us now move to the distinction immediate/mediate. Whilst an immediate explanation
(grounding relation) is one that involves a single explanatory step, i.e. that does not seem to
be further reducible, a mediate explanation (grounding relation) includes several sequential
immediate steps. In this paper we will first deal with the notions of total and immediate
formal explanation, and total and immediate formal grounding,13 and then generalize them
both to the mediate case.

There exists a third distinction that is linked to the notion of total explanation (ground-
ing) and that, once more, arises both in the causal and conceptual framework. To illustrate
it, we start form the causal case, where it is most well-known and then move to the non-
causal one. Consider the following notorious example.14 Billy and Suzy throw rocks at a
bottle. The glass shatters. A causal explanation of why the glass shattered is that Suzy
threw her rock at it. Indeed since Suzy threw her rock first, her rock arrived first too and
shattered the glass; Billy’s rock sailed through the air. Billy’s throw is thus not a cause,
but only a potential cause of why the bottle shattered. Potential causes are central for total
explanations: if Billy’s rock hit the bottle at the same time as Suzy’s rock, it would have
been part of the total explanation of why the glass shattered.

A distinction analogous to that between causes and potential causes also arises in the
conceptual framework. Consider indeed the following situation. Billy is Jane’s brother and
Suzy is Jane’s sister. Jane has a niece. Thus the reason why Jane has a niece is that her
sister has a girl. Indeed a niece is the girl of someone’s brother or someone’s sister and Suzy,
Jane’s sister, has a girl. Jane’s brother could have had a girl, but he does not. Hence Jane’s
brother having a girl is merely a potential reason of why Jane has a niece. Potential reasons
are also central for total explanations: if Jane’s brother had a girl, his having a girl would
have been part of the total explanation of why Jane has a niece. We rephrase this distinction
between reasons and potential reasons as the one between reasons and conditions.15 So, for
example, we will say that under the condition that Jane’s brother does not have a girl, the
total reason why Jane has a niece is that her sister has a child.

12Note that the distinctions total/partial and immediate/mediate not only hold for the notions of concep-
tual explanation and grounding, but also for causal explanation and causality, see Lewis (1973); Fine (2012);
Schaffer (2016).

13Note that the notion of total and immediate formal grounding corresponds to what Poggiolesi (2016)
calls complete and immediate formal grounding.

14E.g. see Menzies and Beebee (2020).
15Here we borrow vocabulary from Genco (2021).
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3 Formal grounding relation

We start by considering the relation of formal grounding between a sentence A and a set of
sentences M , under certain conditions M 1. As we have already said, we see this relation as a
special case of the classical logical consequence relation, namely A is a logical consequence of
its reasons M . But what features distinguish a grounding relation from a logical consequence
relation? To answer this question, we will rely on and extend some previous results which
have been developed at the propositional level.16 Also we will first illustrate the main ideas
in an informal way and then move to the more formal definitions.

The first feature that we need to consider in order to model the grounding relation is
linked to the fact that grounding amounts to a dependence relation of the conclusion on its
grounds. This dependence, in its turn, can be conveyed by saying that if the grounds were
modified somehow (under certain conditions), then this change would affect the conclusion.
In other terms, in a grounding relation, not only does the conclusion logically follow from the
grounds, but also the negation of the conclusion needs to logically follow from the negation
of some (even all) the grounds (under certain conditions).17

The conclusion is thus dependent on its grounds; is dependence all there is to a grounding
relation? A glimpse at the explanatory literature is enough to answer negatively to this
question. Indeed, any explanatory relation, such as grounding, is asymmetric: there is a
direction from what explains to what is explained. The dependence does not provide such
a directionality. To see this clearly, one can consider the case of any unique ground, say
F ( A. In this type of case, dependence boils down to an equivalence between F and A and
thus we need an ingredient which establishes why it is the case that F is the ground of A,
and not viceversa.18 According to a long-standing and illustrious philosophical tradition, the
required ingredient is complexity: from Aristotle to Bolzano,19 passing through, amongst
others, Arnauld and Nicole,20 scholars tend to agree that the simplest premisses ground the
more complex conclusion, and it would be absurd to go the other way. Moreover, increase
in complexity from the grounds to their conclusion should be of a particular type: the
formulas by means of which a sentence is grounded should correspond to a decomposition
of the sentence itself.21 Although this insight is clear, deep, and supported by a brilliant
tradition, problems arise when we try to formalize it. The first notions that would seem
to naturally serve the purpose are logical complexity and associated relation of subformula;
however, as has been noticed in several papers,22 they turn out to be inadequate for an
explanatory framework. More precisely, there are two kinds of counterexample which can
be evoked to show that complexity and subformula are not adequate for explanation. The
first type of example - example (i) - concerns the use of negation. Consider the following
sentence: (a) “it is not the case that it rains or it is windy.” Suppose one aims at identifying
the (total and immediate) reasons why this sentence is true. These typically amount to the
sentences (b)“it is not the case that it rains,” and (c) “it is not the case that it is windy.”
Let us formalize (a)-(c), then we get (a)  pp_ qq, (b)  p, (c)  q. Although we would like

16E.g. see Poggiolesi (2016); Poggiolesi and Francez (2021).
17E.g. see Jansson (2017); Poggiolesi and Francez (2021).
18Note that this is precisely the case for mathematical example mentioned above, where a property of

circles is explained by an unique reason, namely a property of points. It turns out that these two properties
are equivalent, i.e. the property of the circles logically follows for the property of the points, as the property
of points logically follows from the property of circles.

19E.g. see de Jong and Betti (2010); Betti (2010); Rumberg (2013).
20See Arnauld and Nicole (1993).
21See Roski and Rumberg (2016).
22See Arana (2009); Kahle and Pulcini (2017).
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 p and  q to be less complex23 and subformulas of  pp _ qq, according to the standard
notion of logical complexity and subformula, they are not. Hence this is the first type of
counterexample to logical complexity and subformula in an explanatory framework.

Let us move to the second type of counterexample - example (ii). Consider the sentence
(a) “for any x, if x is zero or it is the successor of natural number, then it is itself a
natural number.” Suppose one aims at identifying the (total and immediate) reasons why
this sentence is true. These seem to amount to the sentence (b) “for any x, if x is zero, then
it is a natural number” and (c)“for any x, if x is the successor of a natural number, then
it is a natural number.” Let us formalize (a)-(c), then we get (a) @xppZx _ SNxq Ñ Nxq,
(b) @xpZxÑ Nxq, (c) @xpSNxÑ Nxq. Although we would like (b) and (c) to be logically
less complex and subformulas of (a), according to the standard notion of logical complexity
and subformula, they are not. Hence this is the second type of counterexample to the use
of logical complexity and subformula in an explanatory framework.

Although the notions of logical complexity and subformula are central for many logical
results and cornerstones of proof theory, they mainly stand as technical devices which do not
necessarily reflect philosophical perspectives. The insight is thus to enrich them both so that
they become adequate for grounding and explanation. This will require several definitions
that we will introduce formally and then clarify.

Definition 3.1. Let A P WF , the g-complexity of A, gcmpAq, is defined in the following
way:

- gcmpPtq = gcmp Ptq = 0

- gcmp  Aq = gcmpAq ` 1

- gcmpA ˝Bq = gcmp pA ˝Bqq = gcmpAq + gcmpBq + 1

- gcmpdxAxq = gcmp d xAxq = gcmpAxq + 1

In Definition 3.1 we provide a novel way of counting the complexity of a formula that is
adequate for an explanatory framework and relies on the work of Poggiolesi (2016), extending
it at the first-order level. The main insight behind the notion of g-complexity is that it
tracks relationships among the truths expressed by the formulas if they were true. It does
that because it is a notion that aims to be apt for explanation and grounding, and both
these relations are mainly concerned with truths.24 Let us now see how g-complexity works.
Consider first conjunction, disjunction and quantifiers: in these cases, g-complexity coincides
with the standard notion of logical complexity. If, for example, A and B express truths, then
the truth expressed by A^B is obtained from the previous truths using a single operation.
Analogously, if Pc expresses a truth, then the truth expressed by @xPx is obtained from the
previous truths using a single operation. However, this is not so for the case of negation.
Since (at most) one of Pc and  Pc will express a truth, then only one of these formulas will
ever be an object of an explanatory hierarchy. Thus, there seems to be no reason to count
 Pc as more complex than Pc: in other terms,  Pc can no longer be seen as constructed
from Pc, since if one is true, the other is false. We should rather look at them as two
formulas on the same level and this is precisely what the g-complexity does. Analogous
reasoning can be applied to the g-complexity of more complex formulas like A ^ B and

23Here we mean that the sum of the logical complexity of  p and  q is lower than the logical complexity
of  pp_ qq.

24E.g. see Correia and Schnieder (2012).
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 pA^Bq, or @xAx and  p@xAxq. We can no longer count the complexity of  pA^Bq as
the complexity of A^B plus one, as standard logical complexity does, since if  pA^Bq is
true, then A^B is false and thus it cannot be constructed from it. We should rather think
of A^B and  pA^Bq as the two faces of the same medal, two formulas at the same level
and thus having the same g-complexity. Let us finally move to the case of double negation.
In this case, the negation counts since gcmp  Aq = gcmpAq ` 1. But this is in harmony
with what has been said up to now as   A and A may both express truths, and thus the
former can be seen as constructed from the latter by means of a single operation.

Related to the new notion of g-complexity, we introduce the notion of converse of a
formula.

Definition 3.2. The converse of a formula A, written A˚, is defined as follows:

A˚ =

"

 n´1E, if A “  nE and n is odd
 n`1E, if A “  nE and n is even

where the main connective in E is not a negation, n ě 0 and 0 is taken to be an even
number. For any multiset M , pMq˚ := tB˚|B PMu.

Consider a formula A. The converse of A, i.e. A˚, is a formula such that A^A˚ forms
a contradiction and A and A˚ have the same g-complexity.

Now that we have a new notion of g-complexity, we can move to the main ideas behind
the new related notion of subformula we aim at proposing, that will be called g-subformula.
To convey these ideas, consider the example of the formula B = DxpSx^Txq_@x@ypPxÑ
Qx ^ Ryq. The standard (immediate) subformulas of B are B1 “ DxpSx ^ Txq and B2 “
@x@ypPxÑ Qx^Ryq. According to the new measure of g-complexity both B1 and B2 are
still less g-complex than B and thus we still consider them as (immediate) g-subformulas
of B. However, they will no longer be the only (immediate) g-subformulas of B as we will
enrich the standard notion of subformula by incorporating the following three main ideas.

1. The first idea is linked to the notion of converse. A formula A, and its converse A˚,
are now the two faces of a same medal: they concern the same state of affairs and they
occupy the same place in the explanatory hierarchy, i.e., they have the same g-complexity.
As a result, whenever a formula B1 is a g-subformula of a formula B, also its converse will
be. Thus, in our example, pB1q˚ “  DxpSx ^ Txq and pB2q˚ “  @x@ypPx Ñ Qx ^ Ryq
will also be (immediate) g-subformulas of B.

2. The second idea is linked to the fact that, standardly, in order to obtain subformulas,
we break the formula in question along its main connective. However, in an explanatory
framework, where the focus often goes on parts of formulas that do not correspond to the
main connective,25 this operation is restrictive. We thus enrich it in the following way.
Consider again the example of the formula B “ DxpSx ^ Txq _ @x@ypPx Ñ Qx ^ Ryq.
Suppose we want to focus on the part of B that corresponds to Qx ^ Ry. We denote this
fact by rewriting B as DrQx^Rys; in other words, Drs denotes the part of the formula B
which corresponds to DxpSx ^ Txq _ @x@ypPx Ñ. Having switched the focus on this new
part of the formula, we will break it at that point.26 More precisely, we will have that the

25To see this consider the mathematical example of Section 1., or the counterexample concerning the
formula @xppZx_ SNxq Ñ Nxq examined above.

26A very similar idea, although motivated by different insights, has been put forward
by, e.g. Guglielmi and Bruscoli (2009) and their extensive work on deep inferences, e.g.
http://alessio.guglielmi.name/res/cos/index.html.
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g-subformulas of Qx ^ Ry will remain so even inserted in Drs. Hence, DrQxs and DrRys
are g-subformulas of DrQx^Rys, where

DrQxs “ DxpSx^ Txq _ @x@ypPxÑ Qxq

DrRys “ DxpSx^ Txq _ @x@ypPxÑ Ryq

But also, because of what has been said at point 1, DrQx˚s, DrRy˚s, pDrQxsq˚, pDrRysq˚,
pDrQx˚sq˚ and pDrRy˚sq˚ will be g-subformulas of DrQx^ Rys, which is nothing but the
formula B.

3. The third and last idea consists in closing the relation of g-subformula under asso-
ciativity and commutativity of conjunction and disjunction, change of orders of identical
quantifiers, and substitution of variables. This means that if B1 is a g-subformula of B, then
any formula C, which is equivalent to B1 by associativity and commutativity of conjunction
and disjunction, change of orders of identical quantifiers, and substitution of variables, is
also a g-subformula of B. The idea is motivated by noticing that B1 and C are interchange-
able from an explanatory perspective and thus the g-subformula relation should account for
such a fact.27

Now that we have clarified the main insights behind the new notion of g-subformula, we
introduce it in a formal way via the following definitions.

Definition 3.3. The set Co of contexts is inductively defined in the following way:

- r.s P Co,

- if F r.s P Co, then   F r.s, E ˝ F r.s, F r.s ˝ E, dxF r.s P Co,

- if F r.s P Co and F r.s ‰
2n

hkkikkj

 ... r.s, where n ě 0, then  F r.s P Co.

Definition 3.4. For all contexts F r.s, and formulas C, we define F rCs, a formula in a
context, as follows:

- if F r.s “ r.s, then F rCs “ C,

- if F r.s “   Er.s, then F rCs “   ErCs,

- if F r.s = G ˝Er.s, Er.s ˝G, dxEr.s,  Er.s, then F rCs = G ˝ErCs, ErCs ˝G, dxErCs,
 ErCs, respectively.

Definition 3.5. We define the g-complexity of a context gcmpF r.sq “ gcmpF rPcsq for any
predicate P and constant c in L.

Definition 3.6. We define the g-complexity of a formula in context, gcmpF rCsq as a pair of
numbers pm,nq such that m “ gcmpF r.sq and n “ gcmpCq. Accordingly, given the formulas
in a context F1rC1s, ..., FkrCks and GrDs, such that gcmpF1rC1sq = pm,n1q, ..., gcmpFkrCksq
= pm,nkq and gcmpGrDsq = pm,nq, where n “ n1 ` ...` nk ` 1, F1rC1s, ..., FkrCks will be
said to be immediately less g-complex than GrDs.

27This feature is known in the literature as ground-theoretic or factual equivalence, e.g. see Correia (2016,
2017).
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Definition 3.7. Given a formula A of L, we say that A is FOL-equiv to B if, and only if, A
can be obtained from B by associativity and commutativity of conjunction and disjunction,
substitution of variables, and change of orders of identical quantifiers.

Definition 3.8. Given a context F r.s of L, we say that F r.s is FOL-equiv to Gr.s if, and
only if, for any predicate P and any constant c P L, F rPcs is FOL-equiv to GrPcs.

Definition 3.9. For any pair of formulas of L A and B, we say that A – B if, and only if,
A is FOL-equiv to B or A is FOL-equiv to B˚.

Definition 3.10. For any pair of contexts of L F r.s and Gr.s, we say that F r.s – Gr.s if,
and only if, for any predicate P and any constant c in L, F rPcs is FOL-equiv to GrPcs or
F rPcs is FOL-equiv to pGrPcsq˚.

Definition 3.11. For any pair of multisets of LM and N , such that M “ tArC1s, ..., AnrCnsu
and N “ tB1rD1s, ..., BnrDnsu, we say that M – N , if, and only if, A1 – B1, ...., An – Bn
and C1 – D1, ...., Cn – Dn.

Definition 3.12. For any pair of formulas in contexts of L F rBs and GrAs, we say that
F rBs is a g-subformula of GrAs if, and only if, F r.s – Gr.s, and:

- A – B,

- A –   C and B is a g-subformula of C,

- A – C ˝D and B is a g-subformula of C or B is a g-subformula of D,

- A – dxC and B is a g-subformula of Cpt{xq for all t free for x in C.

The notion of immediate g-subformula is analogous to that of immediate subformula.

Definition 3.13. M is a multiset of distinguished immediate g-subformulas of GrAs, if, and
only if:

- M – tGrBsu and A –   B,

- M – tGrBs, GrDsu and A – pB ˝Dq,

- M – tGrdxBu and A – Bpt{xq, for all t free for x in B.

Note that the distinguished immediate g-subformulas of GrAs are always immediately less
g-complex than GrAs according to Definition 3.6, so that the notion of g-complexity and
g-subformula go hand in hand.

We now have almost all the elements required to properly define the relation of formal
grounding. We only need to introduce the last two, which will have a central role for what
follows. The first stems from the observation that contexts, as well as formulas in contexts,
can be assigned a related (positive or negative) polarity, which is defined in a standard way
as follows.28

Definition 3.14. We define positive P and negative (formula-)polarities N simultaneously
by an inductive definition given by the three clauses (i)-(iii) below.

- r.s P P;

28See Troelstra and Schwichtenberg (1996).
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if B` P P, B´ P N , and A is any formula, then:

(ii)  B´, A^B`, B` ^A, A_B`, B` _A, @xB`, DxB` P P.

(iii)  B`, A^B´, B´ ^A, A_B´, B´ _A, @xB´, DxB´ P N

whenever these objects are in Co. We say that a formula C is positive (resp. negative) in a
context F rCs if F r.s P P (resp. F r.s P N ).

We can now introduce the notion of scope of a context (and the inverse scope), which,
given a context F r.s, corresponds to the list of consecutive quantifiers in F (selected also
according to their polarities) B is in the scope of.

Definition 3.15. If F r.s is a context, the scope of a context, SCpF q and the inverse scope
SCinvpF q are defined inductively in the following way:

- if F r.s= r.s or F r.s ‰
2n

hkkikkj

 ... r.s for n ě 0 then SCpF q “ SCinvpF q “ H,

- if F r.s= G ˝ Er.s or Er.s ˝G, then SCpF q “ SCpEq and SCinvpF q “ SCinvpEq,

- if F r.s= @xEr.s, then SCpF q “ @x.pSCpEqq and SCinvpF q “ Dx.SCinvpEq

- if F r.s= DxEr.s, then SCpF q “ Dx.pSCpEqq and SCinvpF q “ @x.SCinvpEq

- if F r.s=  Er.s, then SCpF q “ SCinvpEq and SCinvpF q “ SCpEq.

Definition 3.16. For any finite multisets of CF M = tA1rD1s, ..., AmrDmsu and N “

tA11rC1s, ..., A
1
nrCnsu(which could be empty), and for any CF F rBs, under the condition

that N˚, M is a total and immediate formal ground of F rBs, in symbols N |M ( F rBs, if,
and only if, for any E such that SCpEq “ SCpF q and E P P if, and only if, F P P, we have:

1. ErD1s, ..., ErDms |ù ErBs,

2. for some non empty (possibly non proper) submultiset M 1 of M , such that M 1 “

tAk1rDk1s, ..., AkrrDkrsu, we have that pErC1sq
˚, ..., pErCnsq

˚, pErDk1sq
˚, ..., pErDkrsq

˚,M´{E |ù
pErBsq˚.

3. N YM is a multiset of immediate and distinguished g-subformulas of F rBs.

where M´ = M ´M 1 and M´{E =tErDzs | AzrDzs PM
´u.

Definition 3.16 represents the formal counterpart of the features discussed in this section.
Conditions 1. and 2. are meant to capture grounding as a dependence relation. Obviously
this dependence holds amongst the formulas (in contexts) at issue, independently from the
contexts these formulas belong to. For this reason, universal quantification over any context
Er.s, whose scope and polarity are the same as that of the formula to be grounded, needs
to be added. Condition 3. amounts to the directionality or asymmetry of the grounding
relation: this is conveyed via the new notion of g-subformula.

Let us evaluate some grounding principles which emerge from this definition. Consider
the formula  pp _ qq that we have discussed in the example (i) above; as we have already
said, standardly  p, q are taken to be the total and immediate grounds for this formula.
Definition 3.16 confirms this intuition: indeed  pp_ qq is a classical logical consequence of
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 p and  q. However, it is also the case that if we modify the grounds and we consider, say,
p and  q, instead of  p,  q, it logically follows that p_ q. Finally, t p, qu is the multiset
of immediate and distinguished g-subformulas of  pp_ qq.

Let us now move to the formula @xppZx _ SNxq Ñ Nxq that we have discussed in
the example (ii) above. In particular we have said that it is intuitive to take the formulas
@xpZx Ñ Nxq and @xpSNx Ñ Nxq to be its total and immediate ground. Definition 3.16
confirms this intuition: indeed for any context Er.s, such that SCpEq “ @x and E P N ,
we have that ErZx _ SNxs logically follows from ErZxs and ErSNxs. However, it is also
the case, that if we modify the grounds, so we consider, say ErZxs and pErSNxsq˚, then
it logically follows that pErZx _ SNxsq˚. Finally, t@xpZx Ñ Nxq,@xpSNx Ñ Nxqu is a
multiset of immediate and distinguished g-subformulas of @xppZx_ SNxq Ñ Nxq.

Finally, consider the sentence “for any x, if x is a natural number, then it is an odd
or an even number,” that we formalize with @xpNx Ñ Ex _ Oxq. Although the formulas
@xpNxÑ Exq - for any x if x is a natural number, then it is even - and @xpNxÑ Oxq - for
any x if x is a natural number, then it is odd - are both g-subformulas of @xpNxÑ Ex_Oxq,
it would be rather weird to think of them as its grounds, if only because they are false. Our
model confirms this intuition in that it can be easily checked that condition 2. of Definition
3.16 does not hold between the well-formed closed formula @xpNx Ñ Ex _ Oxq and the
formulas @xpNxÑ Exq and @xpNxÑ Oxq. Hence, even for the negative cases, our model
seems to go hand in hand with our intuitions.

We can extend the definition of total and immediate formal grounding to total and
mediate formal grounding in the following way.

Definition 3.17. For any multisets of CF M and N (which could be empty), and for
any CF B, under the condition that N˚, M is a total and mediate formal ground of B,
N |M (m B, if, an only if:

- N |M ( B, or

- N 1 |M 1 ( D and N2 | D,M2 (m B, where M 1 YM2 “M , and N 1 YN2 “ N .

4 Formal explanation

In this section we move to consider the relation of formal explanation, which we see as a
strenghtening of the classical logical derivability relation. Hence, we will construct formal
explanations as we construct derivations, namely by firstly introducing rules and then by
formally defining the notion via the rules. Note that we want formal explanations to go
hand in hand with formal grounding; namely, we want a notion of formal explanation such
that there exists a formal explanation of A from M , under conditions N˚ if, and only if, M
are the reasons why A is true, under conditions N˚. Not only will we shape our notion of
formal explanation around this desideratum, in Section 5 we will prove that the desideratum
has been met.

In order to introduce the notion of formal explanation, we work with the classical sequent
calculus for first-order logic, implemented with the metalinguistic symbol “|”, for conveying
conditions, and the related rule cw which allows to introduce conditions beside standard
sequents. Conditions only play a role in explanatory rules - no inferential rule operates on
conditions - hence, the sequent calculus Gcl` (see Figure 2) is equivalent to the classical
sequent calculus for first-order logic Gcl. The notion of sequent, its interpretation, and
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Figure 2: The sequent calculus Gcl`.

p,M ñ N, p
M ñ N

P ñ Q |M ñ N
cw

M ñ N,A

 A,M ñ N
 L

A,M ñ N

M ñ N, A
 R

A,B,M ñ N

A^B,M ñ N
^L

M ñ N,A M ñ N,B

M ñ N,A^B
^R

@xA,Apx{tq,M ñ N

@xA,M ñ N
@L

M ñ N,@xApx{yq

M ñ N,@xA
@R

where in @R y does not occur in M nor in N.

the interpretation of inferential rules are standard (e.g. see Troelstra and Schwichtenberg
(1996)). We call c-sequent a sequent that only contains closed formulas.

Definition 4.1. Explanatory rules will have one of the following three forms, together with
their associated interpretations:

-
M 1

ñ N 1

M ñ N : =
Ź

M 1
Ñ

Ž

N 1
(

Ź

M Ñ
Ž

N

-
M 1

ñ N 1 M2
ñ N2

M ñ N : =
Ź

M 1
Ñ

Ž

N 1,
Ź

M2
Ñ

Ž

N2
(

Ź

M Ñ
Ž

N

-

M 1
ñ N 1

|M2
ñ N2

M ñ N : =
Ź

M 1
Ñ

Ž

N 1
|

Ź

M2
Ñ

Ž

N2
(

Ź

M Ñ
Ž

N

Definition 4.2. We say that a context F r.s has

a positive universal scope (PUS) if F P P and SCpF q “ H or SCpF q “ @x1, ...@xn,

a negative universal scope (NUS) if F P N and SCpF q “ H or SCpF q “ @x1, ...@xn,

a positive existential scope (PES) if F P P and SCpF q “ H or SCpF q “ Dx1, ...Dxn,

a negative existential scope (NES) if F P N and SCpF q “ H or SCpF q “ Dx1, ...Dxn.

Definition 4.3. We assume the application of explanatory propositional rules30 to obey
the following restrictions:

- rule ˝1 can be applied on a formula of the form F rB ˝Cs if:

$

’

’

&

’

’

%

F has PUS and ˝“^,or

F has NUS and ˝“_,or

F has PES and ˝“_,or

F has NES and ˝“^.

- rule ˝2 can be applied on a formula of the form F rB ˝ Cs if:

"

F has PES and ˝“_,or

F has NES and ˝“^.

- rule ˝1 can be applied on a formula of the form F r pB˝Cqs if:

$

’

’

&

’

’

%

F has PUS and ˝“_,or

F has NUS and ˝“^,or

F has PES and ˝“^,or

F has NES and ˝“_.

30Reading the rules bottom-up.
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Figure 3: Explanatory propositional rules.

M ñ N,F rBs

M ñ N,F r  Bs
  

M ñ N,F rBs M ñ N,F rCs

M ñ N,F rB ˝ Cs
˝1

M ñ N,F rBjs | M ñ N,F rBis

M ñ N,F rB1 ˝B2s
˝2

M ñ N,F rB˚s M ñ N,F rC˚s

M ñ N,F r pB ˝ Cqs
 ˝1

M ñ N,F rB˚j s | M ñ N,F rB˚i s

M ñ N,F r pB1 ˝B2qs
 ˝2

where both i and j “ t1, 2u and j ‰ i.

We assume explanatory propositional rules not to distinguish between formulas which are FOL-equiv,29

and to only apply to c-sequents. Their application is conditioned by Definition 4.3.

- rule ˝2 can be applied on a formula of the form F r pB˝Cqs if:

"

F has PES and ˝“^,or

F has NES and ˝“_.

Explanatory rules are such that not only is the conclusion derivable from the premise(s),
but also the premisses are the total and immediate reasons why the conclusion is true.
Differently from the inferential rules which only operate on the main connective of a formula,
explanatory rules can modify a formula from the inside, i.e., along connectives different from
the main ones. In explanatory rules it is thus very important to check the polarity of the
formula in a context, as well as the type of scope of the context, one is dealing with. Let
us provide some examples of application of explanatory propositional rules (see Figure 3).
The first one is the following, which corresponds to our previous case (i):

ñ  p ñ  q

ñ  pp_ qq
 ˝1

Thanks to the rule  ˝1, we can explain, totally and immediately, the formula  pp _ qq by
the formulas  p and  q, which are its ground. The rule is applicable because  pp_ qq lies
in the scope of no quantifier. Let us now move to another example, which corresponds to
our previous case (ii):

ñ @xpZxÑ Nxq ñ @xpSNxÑ Nxq

ñ @xppZx_ SNxq Ñ Nxq
˝1

Thanks to the rule ˝1, we can explain, totally and immediately, the formula @xppZx _
SNxq Ñ Nxq by the formulas @xpZx Ñ Nxq and @xpSNx Ñ Nxq, which represent the
reasons why it is true. The rule ˝1 can be applied on a formula of the form Zx _ SNx in
a context F , since F has NUS (see Definition 4.3). Hence the rule matches our previous
intuitions. Finally, one can easily check that no rule provides the grounds of the formula
F rEx_Oxs “ @xpNxÑ Ex_Oxq. Indeed no rule is applicable on a formula in a context
whose main connective is _, and such that the context F has PUS (see again Definition
4.3).

As for explanatory rules for quantifiers (see Figure 4), we had a choice: we could either
go towards infinitary rules, or remain in the finite. The choice of infinitary rules, which is
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Figure 4: Explanatory first-order rules.

M ñ N,F rBys

M ñ N,F rdx.Bxs
d1

M ñ N,F rdx.Bxs, F rBts

M ñ N,F rdx.Bxs, F rdx.Bxs
d2

M ñ N,F rB˚ys

M ñ N,F r pdx.Bxqs
 d1

M ñ N,F r pdx.Bxqs, F rB˚ts

M ñ N,F r pdx.Bxqs, F r pdx.Bxqs
 d2

where in d1 and  d1 y does not occur free in M nor in N .

We assume explanatory first-order rules not to distinguish between formulas which are FOL-equiv.

Their application is conditioned by Definition 4.4.

the most followed in the literature,31 involves an enriched language - with one constant for
each element of the domain - thus an enriched sequent calculus as well. Although infinitary
rules provide a reasonable intuition of how explanation in logic might work, their main
disadvantage is that they are proof-theoretically unsatisfactory. The finitary rules, on the
other hand, require a change in the formulas involved in explanations - we move from closed
formulas to open formulas - but they are proof-theoretically satisfactory. In this paper,
following the work of Genco et al. (2021), we choose to deal with finitary rules (see Figure
4). Roughly speaking, the rule for the universal quantifier explains this quantifier by using
the eigenvariable,32 i.e. it explains why any object x has a property B via the fact that if
one picks a random object y, y has the property B. The rule for the existential quantifier
explains this quantifier via one of its instances; however, in order for the premisses of this
rule to be the grounds of its conclusion, the existential itself needs to be repeated in the
premisses and doubled in the conclusion.33 Thus, whilst the rule for the universal quantifier
is adequate both at the proof-theoretical and intuitive level, the rule for the existential
quantifier although proof-theoretically acceptable, is less satisfactory as long as intuitions
are concerned.

Definition 4.4. We assume the application of explanatory first-order rules34 to obey the
following restrictions:

- rule d1 can be applied on a formula of the form F rdx.Bxs if:

$

’

’

&

’

’

%

F has PUS and ˝“@,or

F has NUS and ˝“D,or

F has PES and ˝“D,or

F has NES and ˝“@.

- rule d2 can be applied on a formula of the form F rdx.Bxs if F P P and d “ D, or
F P N and d “ @.

- rule d1 can be applied on a formula of the form F r pdx.Bxqs if:

$

’

’

&

’

’

%

F has PUS and ˝“D,or

F has NUS and ˝“@,or

F has PES and ˝“@,or

F has NES and ˝“D.

31E.g. see Correia (2017); Fine (2012).
32See Troelstra and Schwichtenberg (1996).
33This move is analogous to that adopted in the rules @L and DR of the classical sequent calculus for

first-order logic, e.g. see Troelstra and Schwichtenberg (1996).
34Reading the rules bottom-up.

15



- rule  d2 can be applied on a formula of the form F rdx.Bxs if F P P and d “ @, or
F P P and d “ D.

We will call GclE the sequent calculus composed by the rules of Figures 2 and 3, whilst
we will call GclEQ the sequent calculus composed by the rules of Figures 2, 3 and 4. In
what follows, for us to keep on working with closed formulas, we will mainly deal with the
calculus GclE , leaving results concerning GclEQ for future research.

Definition 4.5. A mixed derivation in GclE is a finite (upwardgrowing) tree with a single
root. The nodes of the tree are labelled by sequents or sequents with a bar and the top nodes
are labelled by initial sequents. For each non-terminal node, its label is connected with the
labels of the immediate predecessor nodes according with one of the logical rules or one of
the explanatory rules, or the rule cw. The root of the tree is the conclusion of the whole
derivation and its label is a theorem of the sequent calculus, in symbol $‹

GclE
M ñ N .

A derivation in GclE is a mixed derivation where only logical rules have been applied; we
denote it as usual with the symbol $GclE .

In the calculus GclE it is thus possible to construct standard derivations, but also
derivations which contain explanatory steps that we call mixed derivations.

Let S, S1, ... be multisets of c-sequents. Then, pSq˚ “ tpM ñ Nq˚ |M ñ N P Su, where
the converse of a c-sequent, pM ñ Nq˚, corresponds to the formulas

Ź

M,
Ž

N˚.

Definition 4.6. For any multisets of c-sequents S and S1 (which might be empty), and
for any c-sequent M ñ N , we say that under the condition pS1q˚, there exists a total and
immediate formal explanation from S to M ñ N , in symbols S1 | S ,M ñ N if, and only
if, one of the explanatory rules of Figure 3 links S1, S and M ñ N .

Definition 4.7. For any multisets of c-sequents S and S1 (which might be empty), and
for any c-sequent M ñ N , we say that under the condition pS1q˚, there exists a total and
mediate formal explanation from S to M ñ N , in symbols S1 | S ,m M ñ N if, and only
if:

- S1 | S ,M ñ N ,

- S2 | S3 , M 1 ñ N 1 and S4 | S41, M 1 ñ N 1 ,m M ñ N , and S2 Y S4 “ S1 and
S3 Y S41 “ S.

5 Soundness and completeness

We use this section to prove soundness and completeness between the notions of formal
grounding and formal explanation. We will start by soundness, and for that, we will first
prove some preliminary lemmas.

Lemma 5.1. The following rules are admissible in the calculus Gcl:
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when A P P: when A P N :

ArBis,M ñ N

ArB1 ^B2s,M ñ N
^1

M ñ N,ArBis

M ñ N,ArB1 _B2s
_1

M ñ N,ArBis

M ñ N,ArB1 ^B2s
^2

ArBis,M ñ N

ArB1 _B2s,M ñ N
_2

ArB˚i s,M ñ N

Ar pB1 _B2qs,M ñ N
 _1

M ñ N,ArB˚i s

M ñ N,Ar pB1 ^B2qs
 ^1

M ñ N,ArB˚i s

M ñ N,Ar pB1 _B2qs
 ^2

ArB˚i s,M ñ N

Ar pB1 ^B2qs,M ñ N
 _2

where i “ t1, 2u.

Proof. We prove in detail the admissibility of the rules ^1 and ^2 by induction on the
construction of the the context Ar.s, and subinduction on the height of the derivation of the
premise of the rule. The admissibility of any other rule can be proved analogously.

We distinguish cases according to the form of Ar.s. If Ar.s “ r.s, then from the premise
Bi,M ñ N we obtain the desired result thanks to the rule ^L. As for the rule ^2, since
Bi has a negative polarity in Ar.s, it can be thought of as  pBiq. Thus we first apply the
inverse of the rule  R35 obtaining Bi,M ñ N . We then apply the rules ^L and  R to get
the desired result.

If Ar.s ‰ r.s, then we distinguish cases according to the last applied rule R on ArBis,M ñ

N and on M ñ N,ArBis. ‚ A rule R has been applied on either M or N . In this case we
apply the inductive hypothesis on the height of the derivation, and then by re-applying R we
get the desired result. ‚ A rule R has been applied on ArBis in the sequent ArBis,M ñ N
(the case where R has been applied on ArBis in the sequent M ñ N,ArBis is analogous).
We distinguish the following subcases according to the form of A.

E,F rBis,M ñ N

E ^ F rBis,M ñ N ù36

E,F rB1 ^B2s,M ñ N

E ^ F rB1 ^B2s,M ñ N

E,M ñ N F rBis,M ñ N

E _ F rBis,M ñ N ù

E,M ñ N F rB1 ^B2s,M ñ N

E _ F rB1 ^B2s,M ñ N

@xF rBis, F rBis,M ñ N

@xF rBis,M ñ N ù

@xF rB1 ^B2s, F rBis,M ñ N

@xF rB1 ^B2s, F rB1 ^B2s,M ñ N
i.h.

@xF rB1 ^B2s,M ñ N

Suppose finally that ArBis is of the form  F rBis
37 and that the sequent  F rBis,M ñ N

has been obtained from the sequent M ñ N,F rBis by means of the rule  L. Then we
consider the sequent M ñ N,F rBis and we apply (since now F P N ) the rule ^2 obtaining
the desired result.

Lemma 5.2. For any pair of formulas B,  B P CF , it holds that:

ArBs ( Ar  Bs
35All logical rules are invertible in Gcl, see Troelstra and Schwichtenberg (1996)).
36The symbol ù means: the premise of the right side is obtained by induction hypothesis on the premise

of the left side.
37The case where ArBis is of the form   F rBis is clearly analogous.
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Proof. By induction on the construction of Ar.s. If Ar.s=r.s, then it is trivial. If Ar.s ‰ r.s,
then we need to distinguish cases. However, since B and   B are logically equivalent, it is
straightforward to check that it holds for any case.

Definition 5.3. Given A,B,C P CF , by

A,B „ C we denote A,B |ù C and A˚, B˚ |ù C˚.

A | B „ C we denote B |ù C and A˚, B˚ |ù C˚.

ă A ą B „ C we denote B˚ |ù C˚ and A,B |ù C.

Lemma 5.4. For any A,B,C P CF :

A | B „ C if, and only if, ă A˚ ą B˚ „ C˚

Proof. Straightforward.

Lemma 5.5. For any context Dr.s that has PUS (see Definition 5.11) and for any formula
G,G1, C P CF , such that C P tG^G1, pG_G1qu, then it holds that:

(a) if G,G1 „ C, then DrGs, DrG1s „ DrCs,

(b) if ă G ą G1 „ C, then ă DrGs ą DrG1s „ DrCs.

For any context Dr.s that has NES (see Definition 5.11) and for any formula G,G1, C P CF ,
such that C P tG^G1, pG_G1qu, then it holds that:

(c) if G,G1 „ C, then DrGs, DrG1s „ DrCs,

(d) if ă G ą G1 „ C, then DrGs | DrG1s „ DrCs.

Proof. We prove (a)-(d) by (a common) induction on the the construction of Dr.s. We
start from (a). If Dr.s “ r.s, then it is trivial. Suppose Dr.s ‰ r.s, then we distinguish
cases according to the form of D. We have (i) D =   F r.s, (ii) D = E ^ F r.s,38 (iii) D =
E _ F r.s,39 (iv) D = @xF r.s, (v) D =  F r.s.

(i). It is straightforward.

(ii). Suppose G,G1 „ C (the other option is to have G˚, G1˚ „ C. This can be treated
analogously). By i.h., one obtains F rGs, F rG1s „ F rCs. In order to get the desired result,
we exploit the sequent calculus Gcl in the following way:40

F rGs, F rG1s ñ F rCs E,E ñ E

E,F rGs, E, F rG1s ñ E ^ F rCs
^R1

E,F rGs, E ^ F rG1s ñ E ^ F rCs
^L

E ^ F rGs, E ^ F rG1s ñ E ^ F rCs
^L

F rCs ñ F rGs, F rG1s E ñ E

E,F rCs ñ F rGs, E ^ F rG1s
^R1

E ñ E

E,E, F rCs ñ E ^ F rGs, E ^ F rG1s
^R1

E,F rCs ñ E ^ F rGs, E ^ F rG1s
CL

E ^ F rCs ñ E ^ F rGs, E ^ F rG1s
^L

38The case D = F r.s ^ E is analogous.
39The case D = F r.s _ E is analogous.
40For the sake of simplicity, we use the multiplicative version of the rule ^R, as well as the rule of

contraction on the left side of the sequent, which are both admissible rules in the calculus Gcl.
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From E ^ F rGs, E ^ F rG1s $ E ^ F rCs by completeness of Gcl, one gets E ^ F rGs, E ^
F rG1s |ù E^F rCs. From E^F rCs $ E^F rGs_E^F rG1s by completeness of Gcl, and the
symbol of converse (see Definition 3.2), one gets pE^F rGsq˚, pE^F rG1sq˚ |ù pE^F rCsq˚.
Thus we have E ^ F rGs, E ^ F rG1s „ E ^ F rCs.

(iii). Analogously to (ii).

(iv) In this case we further distinguish sub-cases according to the form of C. We thus have
(iva) C “ G^G1, and (ivb) C “  pG_G1q.

(iva). By i.h., one obtains F rGs, F rG1s „ F rG ^ G1s. One gets the desired result,
exploiting rule ^1 of Lemma 5.1, as well as the sequent calculus Gcl, in the following
way:41

F rGys, F rG1ys ñ F rGy ^G1ys

@xF rGxs, F rG1ys ñ F rGy ^G1ys
@L1

@xF rGxs,@xF rG1xs ñ F rGy ^G1ys
@L1

@xF rGxs,@xF rG1xs ñ @xF rGx^G1xs
@R

@xF rGxs ñ @xF rGxs

@xF rGx^G1xs ñ @xF rGxs
^1

@xF rGx^G1xs ñ @xF rGxs,@xF rG1xs
WR

From @xF rGxs,@xF rG1xs $ @xF rGx^G1xs by completness of Gcl one gets @xF rGxs,@xF rG1xs |ù
@xF rGx ^ G1xs. From @xF rGx ^ G1xs $ @xF rGxs _ @xF rG1xs by completeness of Gcl,
and the symbol of converse (see Definition 3.2), one gets p@xF rGxsq˚, p@xF rG1xsq˚ |ù

p@xF rGx^G1xsq˚. Thus we have @xF rGxs,@xF rG1xs „ @xF rGx^G1xs.

(ivb). Analogously to (iiia) by using the rule  _ 1, whose admissibility has been shown
in Lemma 5.1.

(v) Assuming G,G1 „ C, we apply (c) getting F rGs, F rG1s „ F rCs, where C has a negative
polarity. However, by logic, this is equivalent to  F rGs, F rG1s „  F rCs, which is the
desired result and where C has a positive polarity.

The cases (b)-(d) can be treated analogously to case (a).

Lemma 5.6. For any context Dr.s that has PES (see Definition 5.11) and for any formula
G,G1, C P CF , such that C P tG_G1, pG^G1qu, then it holds that:

(a) if G,G1 „ C, then DrGs, DrG1s „ DrCs,

(b) if G | G1 „ C, then DrGs | DrG1s „ DrCs.

For any context Dr.s that has NUS (see Definition 5.11) and for any formula G,G1, C P CF ,
such that C P tG_G1, pG^G1qu, then it holds that:

(c) if G,G1 „ C, then DrGs, DrG1s „ DrCs,

(d) if G | G1 „ C, then ă DrGs ą DrG1s „ DrCs,

Proof. The proof is analogous to the proof of Lemma 5.5.

41For the sake of simplicity, we use the version of the rule @L without the repetition of the quantifier, as
well as the wekeaning on the right. These rules are admissible in the calculus Gcl.
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Theorem 5.7 (Soundness). For any multisets of sequents S1, S (where S1 is possibly empty),
and sequent M ñ N ,

if S1 | S ,M ñ N, then pS1qτ | pSqτ (
ľ

M Ñ
ł

N

where pS1qτ , pSqτ are the standard translation of the multisets of sequents into multisets of
formulas.

Proof. In order to prove the theorem, we should check the validity of each explanatory rule
of Figure 3. The validity of the rule   follows from Lemma 5.2. We prove the validity of
rule ˝1. The validity of the other rules can be proved analogously.

Consider the rule ˝1 applied on a formula of the form DrB^Cs such that D has PUS. Clearly,
it holds that B,C „ B^C. But, then by Lemma 5.5, we have

Ź

M Ñ
Ž

N_DrBs,
Ź

M Ñ
Ž

N _DrCs „
Ź

M Ñ
Ž

N _DrB^Cs, where the context
Ź

M Ñ
Ž

N _Dr.s has PUS.
Actually for Lemma 5.5 again, we have that, for any context Er.s that has PUS, it holds
that ErBs, ErCs „ ErB ^ Cs. Finally, t

Ź

M Ñ
Ž

N _DrBs,
Ź

M Ñ
Ž

N _DrCsu is a
multiset of immediate and distinguished g-subformulas of

Ź

M Ñ
Ž

N _DrB ^ Cs (also
thinking of FOL-equivalent formulas). Hence we have the desired result.

Consider the rule ˝1 applied on a formula of the form DrB^Cs such that D has NES. Then
the reasoning is the same as above and it thus crucially relies on Lemma 5.5.

Consider the rule ˝1 applied on a formula of the form DrB_Cs such that D has PES. Then
the reasoning is the same as above, except that one needs to use Lemma 5.6.

Consider the rule ˝1 applied on a formula of the form DrB_Cs such that D has NUS. Then
the reasoning is the same as above, except that one needs to use Lemma 5.6.

Definition 5.8. For any context Dr.s, we define the related quantifiers-only-context QopDqr.s,
in the following way:

- if D P P, then QopDqr.s “ SCpDqr.s

- if D P N , then QopDqr.s “ SCpDqr.s˚

where r.s˚ stands for  p.^Jq.

Lemma 5.9. Let QopDqr.s be the quantifiers-only-context related to Dr.s, then:

SCpQopDqq “ SCpDq

Proof. Straightforward from Definition 5.8.

Lemma 5.10. For any multisets of CF M and N (which could be empty), and for any CF
F rBs,

if N |M ( F rBs, then QopNq | QopMq ( QopF qrBs

where for any multiset of closed formulas P , QopP q “ tQopAqrCs | ArCs P P u.

Proof. By Definition 3.16.
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Definition 5.11. For any quantifier-only-context QopF qr.s, we say that QopF qr.s is:

a positive universal if, and only if, QopF qr.s “ @x1, ...@xnr.s, where n ě 0.

a negative universal if, and only if, QopF qr.s “ @x1, ...@xnr.s
˚, where n ě 0.

a positive existential if, and only if, QopF qr.s “ Dx1, ...Dxnr.s, where n ě 0.

a negative existential if, and only if, QopF qr.s “ Dx1, ...Dxnr.s
˚, where n ě 0.

Lemma 5.12. For any multisets of CF M and N (which could be empty), and for any CF
ArCs,

if QopNq | QopMq ( QopF qrBs then pNqδ | pMqδ , ñ F rBs

where for any multiset of CF M , Mδ = tñ ErCs | ErCs PMu.

Proof. We proceed by distinguishing cases based on the form of QopF qr.s and B.

[-] QopF qr.s might be such that: (i) it is a positive universal; (ii) it is a positive existential;
(iii) it is a negative universal; (iv) it is a negative existential; (v) QopF qr.s= SCpF qr.s,
where SCpF q corresponds to any finite sequence of universal and existential quantifiers
that is not empty and is neither of the type @x1, ...,@xn, nor of the type Dx1, ..., Dxn; (vi)
QopF qr.s= SCpF qr.s˚, where SCpF q corresponds to any finite sequence of universal and
existential quantifiers that is not empty and is neither of the type @x1, ...,@xn, nor of the
type Dx1, ..., Dxn.

[-] B can be of the following form: (a)   C; (b) C ^ D; (c) C _ D; (d)  pC ^ Dq; (d)
 pC _Dq; (e) @xCx; (f)  @xCx; (g) DxCx; (h)  DxCx .

We check in detail the combination of (i)-(vi) with (a), (b) and (e). The other combina-
tions can be treated analogously.

1. We combine (i)-(vi) with (a). In each case, we have that QopF qrCs ( QopF qr  Cs; at
the syntactic level the explanatory rule   gives us what desired, namely ñ F rCs ,
ñ F r  Cs.

2. We combine (i) with (b). We have that QopF qrCs, QopF qrDs ( QopF qrC ^ Ds. At
the syntactic level, thanks to the explanatory rule ˝1, we get what desired, namely
ñ F rCs,ñ F rDs , ñ F rC ^Ds .

3. We combine (iv) with (b). We have that QopF qrCs, QopF qrDs ( QopF qrC ^ Ds,
QopF qrCs | QopF qrDs ( QopF qrC ^Ds and QopF qrCs | QopF qrDs ( QopF qrC ^Ds.
At the syntactic level, thanks to the explanatory rules ˝1, ˝2, we get what desired,
namely ñ F rCs,ñ F rDs , ñ F rC ^ Ds, ñ F rCs |ñ F rDs , ñ F rC ^ Ds and
ñ F rCs |ñ F rDs ,ñ F rC ^Ds.

4. It is straightforward to check that the combination of (ii), (iii), (v), and (vi) with (b)
does not give rise to any grounding principle.

5. We combine (i)-(vi) with (e), hence with a formula of the type QopF qr@xCxs It is easy
to check that there is no closed g-subformula of QopF qr@xCxs such that it stands with
QopF qr@xCxs in a total and immediate grounding relation. Hence, this case does not
need to be further analyzed.
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Theorem 5.13 (Completeness). For any multisets of closed formulas N , N 1 (possibly
empty), and formula F rBs,

if N 1 | N ( F rBs, then pN 1qδ | pNqδ , ñ F rBs

Proof. From Lemmas 5.10 and 5.12.

6 Eliminability of the explanatory rules in the calculus
GclE

In this paper we have introduced the calculus GclE which is a calculus composed by the
sequent calculus Gcl` plus explanatory rules for the classical propositional connectives. In
GclE not only one can construct standard derivations (denoted by the symbol $), but also
derivations with explanatory steps (denoted by the symbol $‹), as well as formal explana-
tions (denoted by the symbol ,). As for standard derivations, GclE is equivalent to Gcl
and it keeps the same properties as Gcl.

Lemma 6.1. For any sequent M ñ N , $Gcl M ñ N if, and only if, $GclE M ñ N .

Proof. Straightforward.

Lemma 6.2. The structural rules of weakening and contraction are height-preserving ad-
missible in GclE. The logical rules of GclE are height-preserving invertible (and given a
logical rule R, we will call R its inverse).

Proof. The proof is the same as that developed in Gcl, see (Troelstra and Schwichtenberg,
1996, Ch. 3.5).

As for explanatory rules, not only have we shown in the previous section that their
premise(s) represent the total and immediate ground of their conclusion, but also we need
to show that they do not allow us to derive any new formula, i.e. explanatory rules serve
to build derivations with an explanatory power, not to prove new theorems. To get this
result, we show that any explanatory step from some grounds to their conclusion can also
be performed by several applications of the standard inferential rules.

Lemma 6.3. For any sequent M ñ N , and for any mixed derivation d of M ñ N , namely
d $‹ M ñ N which contains only one application of an explanatory rule, one can construct
a derivation d1 with the same end-sequent, namely d1 $M ñ N .

Proof. We reason by induction on the height of the derivation. We divide the explanatory
rules into two groups: explanatory rules without conditions, namely   , ˝1, ˝1 and ex-
planatory rules with conditions, namely ˝2, ˝2. We start analyzing the rules of the first
group. Suppose that the main formula of the premise of the explanatory rule is of the form
F rBs. We apply on the context F as many rules R as necessary to unfold the context
itself and reach the formula B.42 Once arrived to B, given that explanatory rules do not
distinguish between formulas which are FOL-equiv, we might need to further apply R-rules
to further decompose the formulas composing F . We then apply the standard logic rules

42If A is empty, this first step of the procedure can be skipped.

22



to get from B, or any formula FOL-equivalent to B, to the desired conclusion, and then
we also use the logical rules to reconstruct the context F . Here is a simple example of the
procedure. Consider the following instance of the explanatory rule   :

M ñ N,@xpQx^ PxÑ Rxq

M ñ N,@xpPx^QxÑ   Rxq
  

We obtain the desired result in the following way:

M ñ N,@xpQx^ PxÑ Rxq

M ñ N,Qc^ PcÑ Rc
@R

Qc^ Pc,M ñ N,Rc
ÑR

Pc,Qc,M ñ N,Rc
^L

 Rc, Pc,Qc,M ñ N
 L

Pc,Qc,M ñ N,  Rc
 R

Pc^Qc,M ñ N,  Rc
^L

M ñ N,Pc^QcÑ   Rc
ÑR

M ñ N,@xpPx^QxÑ   Rxq
@R

As for the rules of the second group, namely those explanatory rules with conditions,
one needs to consider the mixed derivation d, which will necessarily contain an application
of the rule cw. We substitute the derivation d with a derivation d1 with no application of
the rule cw. Then we continue the procedure as above.

Proposition 6.4. For any sequent M ñ N , and for any mixed derivation d of M ñ N ,
namely d $‹ M ñ N , one can construct a derivation d1 with the same end-sequent, namely
d1 $M ñ N .

Proof. Considering the derivation d from top, by several applications of the previous Lemma
6.3.

7 Conclusions

Although the contemporary logical literature abounds with formalizations of key notions,
such as knowledge, belief, or time, the equally central notion of explanation has never been
given any formal treatment. The main aim of this paper has been to fill this gap and thus
to develop a logical theory of the notion of (conceptual) explanation and related notion of
grounding. We have accomplished this task by using and enriching the standard tools of
proof theory, namely the sequent calculus for classical first-order logic. In particular we
have added to the standard inferential rules explanatory rules, i.e., rules whose premisses
represent the (total and immediate) reasons why their conclusion is true. By means of
these rules we can construct formal explanations, which represent the formalization of the
notion of (conceptual) explanation. Not only do we believe that this research provides a
valuable contribution per se, in that it fills an important gap in the logical literature, but
it also naturally opens up several directions of future research, such as the formalization
of the notion of explanation in logics other than classical logic, the applications of formal
explanations to related fields such as explainable AI, finally the investigation of the value of
explanatory rules in proof-theoretic semantics.
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