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(Conceptual) explanations in logic

Abstract

To explain phenomena in the world is a central human activity and one of the main
goals of rational inquiry. There are several types of explanation: one can explain
by drawing an analogy, as one can explain by dwelling on the causes (see e.g. see
Woodward (2004)). Amongst these different kinds of explanation, in the last decade
philosophers have become receptive to those explanations which explain by providing
the reasons (or the grounds) why a statement is true; these explanations are often
called conceptual explanations (e.g. see Betti (2010)). The main aim of the paper
is to propose a logical account of conceptual explanations. We will do so by using
the resources of proof theory, in particular sequent rules analogous to deep inferences
(e.g. see Brünnler (2004)). The results we provide not only shed light on conceptual
explanations themselves, but also on the role that logic and logical tools might play in
the burgeoning field of inquiry concerning explanations. Indeed, we conclude the paper
by underlining interesting links between the present research and some other existing
works on explanations and logic that have arise in recent years, e.g. see Arieli et al.
(2022); Darwiche and Hirth (2023); Piazza et al. (2023).

For here it is for the empirical sci-

entist to know the fact and for the

mathematical to know the reason

why.1 Aristotle (1993).

1 Introduction

To explain phenomena in the world is a characteristically human enterprise and a central goal
of rational inquiry; it is thus no surprise that the notion of explanation has been one of the
most intensely discussed topics in philosophy of science over the past century, and computer
science over the past decade. Though the term covers a wide range of diverse cases – from
explaining how to build an Ikea bookcase, or what a symbol means, to explaining a new
concept to a child – doubtless the main ones for human endeavor are explanations that have
a deductive form and aim to shed light on why a certain phenomenon occurs or why a certain
proposition is true. Archetypal examples are causal explanations (Woodward, 2004; Pearl,
2000), which explain their target phenomena by providing their causes. However, it has
recently become increasingly clear that many compelling examples of deductive explanations-
why cannot be captured by causal accounts. In physics as well as in mathematics, several
types of explanations arise that do not seem to rely on any causal mechanism: very naturally,
the idea that causation, though certainly a key ingredient of explanation, is probably not
the full story, started to spread; non-causal explanations, namely explanations that in one
way or another go beyond causation, have become a new thrilling and thriving subject of
research.2

2E.g. see Lange (2017).
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Figure 1: Toy examples of conceptual explanations

Informal Example 1.1. Example 1.2. Example 1.3.
Formal  pp_ qq V @xpSCpxq Ñ ICpxqq

because because because

 p and  q F1 and F2 @xpSCpxq Ñ Cpxqq and

@xpSCpxq Ñ T pxqq

p:= “it is raining,” q:= “it is windy,”V := “this animal is a vixen,” F1:= “this animal is a female,” F2:= “this

animal is a fox,” SCpxq:= “x is a Stanford computer science graduate,” ICpxq:= “x is an ideal candidate

for a certain tech job,” Cpxq:= “x has coding competences,” T pxq:= “x has team-working skills.”

Here we focus on a type of non-causal explanation that has been receiving increasing
attention in the philosophical literature: conceptual explanations (e.g. see Betti (2010);
Detlefsen (1988); Hunmean (2010); Mancosu et al. (2023)). Recognition of such explanations
dates back millennia; as illustrated by the epigraph, a long tradition of scholars, including
Aristotle, Proclus, Leibniz, Arnauld and Nicole, Bolzano, Frege,3 have argued for their
importance for the scientific inquiry. Conceptual explanations bear a striking analogy to
causal explanations: where the latter seeks to explain by providing the causes, the former
explains why a proposition is true by identifying the reasons, or the grounds,4 for its truth.
Instances of conceptual explanations range from stock, toy examples to more involved, real-
life ones. The argument which explains why (1.1.) it is not the case that it is raining or
it is windy because it is neither raining nor it is windy (together with the definition of
the disjunction) is an example of conceptual explanation. Indeed it displays the reasons,
rather than the causes, for the conclusion, with the relation between reasons and conclusion
holding in virtue of the concepts - mainly or - that they contain. Similarly, the explanation
of why (1.2.) a certain animal is a vixen that evokes that animal being a female as well as it
being a fox (together with the definition of vixen), is an example of conceptual explanation.
Indeed it displays the reasons, rather than the causes, of why that animal is a vixen, with
the relation between reasons and conclusion holding in virtue of the concepts - vixen, female
and fox - that they contain. Finally, the explanation why (1.3.) all Stanford Computer
Science graduates are ideal candidates for a particular tech job in terms of their coding
competences and teamwork skills (together with the stipulation of what an ideal candidate
for that position is) is another example of a conceptual explanation in that it explains why
a certain conclusion is true by bringing out the reason(s) for its truth.

Beyond simple examples, there are many instances of conceptual explanation with more
refined (logical) structure, in particular involving quantifiers. This is especially the case for
mathematical explanations – and more precisely those proofs in mathematics that not only
show a theorem to be true, but also seem to provide the reason(s) or the ground(s) why it is
true. As frequently noted, this kind of mathematical explanations could be argued to count
among conceptual explanations (Betti, 2010; Mancosu et al., 2023). A simple example is the
(elementary) proof which explains why (1.4) zero or the successor of any natural number
is a natural number by emphasizing that zero is a natural number, and any successor of a

3E.g. see Detlefsen (1988).
4In this paper, we take the words “reason” and “ground” as synonymous: they are both taken to denote

the objective foundations of truths. On this important point see the more extensive discussion later in this
Section.
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Figure 2: Mathematical examples of (conceptual) explanations
Informal Example 1.4 Example 1.5. Example 1.6.
Formal @xpZpxq _ SNpxq Ñ Npxqq @x@y@z@wppCircpz, x, xyq ^

Circpw, y, xyq ^ Pointpxq ^

Pointpyqq Ñ Dk pPointpkq ^

k P z^k P w^ lpkxq “ lpkyq “

lpxyqqq

@x@y@z@wpRTrpxyz ´ xwz{{xwyq Ñ xz2 `

xy2 “ zy2q

because because because

@xpZpxq Ñ Npxqq and
@xpSNpxq Ñ Npxqq

@x@yppPointpxq^Pointpyqq Ñ

Dkp Pointpkq^ lpkxq “ lpkyq “

lpxyqq

@x@y@z@wpSimpxyz, xwzq Ñ xz2 “ zw.zyq

and @x@y@z@wpSimpxyz, xwyq Ñ xy2 “

wy.zyq

Zpxq:= “x is zero,” SNpxq:= “x is the successor of a natural number,” Npxq:= “x is a natural number,”

Circpx, z, zyq:= “x is a circle, with center z and radius zy,” Pointpxq:= “x is a point,” lpxyq:= “xy is the

length between point x and point y,” RTrpxyz ´ xwz{{xwyq:= “xyz is a right angle triangle divided into

two triangles xwz and xwy by the height,” Simpxyz, xwzq:= “the triangles xyz and xwz are similar.”

natural number is a natural number. The literature on mathematical explanations is replete
with less trivial examples (see e.g. Mancosu et al. (2023)). An old one dates back to Bolzano
(2014), who analyzes the theorem which states that (1.5.) given any two circles A and B,
one with center a and radius ab, and the other with center b and radius ab, then there always
exists a point c where they intersect such that lpacq “ lpcbq “ lpabq. There exists a proof
of this theorem that crucially relies on the property that, for any two points a and b, there
always exists a third point c such that lpabq = lpbcq = lpacq. Bolzano argues that this proof
is explanatory insofar as it relies on the relation between the property of the points - the
reason - and the property of the circles - the conclusion. In its turn, this relation holds in
virtue of the concepts involved, namely the concepts of point, radius, circle.

Or, consider an example from one of the groundbreaking articles in the literature on
mathematical explanation (Steiner, 1973) concerning Pythagoras’ theorem. Out of the many
proofs of the theorem, one that is often argued to be explanatory crucially relies on a property
of similar triangles. Following Steiner (1973), but also a more recent and detailed analysis
put forward by Poggiolesi (2024), this proof is explanatory in that it relies on the relation
between a certain property of similar triangles - the reason - and a certain property of right-
angled triangles - the conclusion. In particular, the reason why any right-angle triangle
ABC, divided in the two triangles ABH and ACH by the height, is such that the square
of the hypothenuse AB is equal to the sum of the squares of the two sides AB and AC
is that the similarity between ABC and each of the triangles ABH and ACH involves
certain ratios amongst their sides. In turn, the relation between Pythagoras’ theorem and
its reason holds in virtue of the concepts that these elements contain, namely the concepts
of similarity, and right-angled triangle. Hence, Pythagoras’ mathematical explanatory proof
is also a paradigmatic example of conceptual explanation, in that it display the features of
this type of explanation.

Despite their widespread relevance, to date conceptual explanations have received little
attention in logic. This absence of systematic study is all the more striking given the recent
interest in logic in non-causal explanations, be it in the field of XAI (e.g. see Darwiche
and Hirth, 2023; Shih et al., 2018), or for abductive reasoning (Arieli et al., 2022; Arieli and
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Strasser, 2015; Piazza et al., 2023; Pulcini and Varzi, 2021). As a result, this is an important
gap in the logical literature and the main goal of the present paper is to fill it. In particular
our aim is to develop a logical theory of conceptual explanations, which is strong enough to
encompass the several different cases of conceptual explanations.

There are (at least) two main questions that a logical theory of (conceptual) explanations
need to address: (i) What is the structure of conceptual explanations? And (ii) what
are the reasons for a certain conclusion? By relying on previous research in Poggiolesi
(2016b, 2018), which is, as far as we know, the only one that have previously addressed
analogous questions, we provide an answer to both (i) and (ii). As for (i) we provide
a modelization of conceptual explanations in terms of proofs. In particular, we introduce
explanatory rules which are such that not only the conclusion is inferable from the premisses,
but also the premisses represent the reasons why the conclusion is true. The concatenation
of these rules represent the logical structure behind conceptual explanations. Note that,
as the examples above show (see Figures 1 and 2), reasons (or grounds) are often linked
to their conclusion by operating inside formulas. Take for instance the example 1.4. (see
Figure 2), where @xppZx _ SNxq Ñ Nxq is explained by @xpZx Ñ Nxq and @xpSNx Ñ
Nxq. The link between these formulas occurs deep inside the formulas themselves: in
particular, the connective _ inside the explanandum is broken into two and thus give rise
to @xpZx Ñ Nxq and @xpSNx Ñ Nxq. As a consequence, explanatory rules will have
the form of deep inferences, namely a recently introduced variation of the sequent calculus
(e.g. see Brünnler (2004); Guglielmi and Bruscoli (2009); Pimentel et al. (2019)) where
rules operate deep inside formulas. Although the literature on deep inferences has been
motivated by cornerstone results of structural proof theory, in this context they reveal a
profound philosophical significance.

As for (ii), we will set out features which establish when some formulas can be seen as
the reasons (or grounds) why another is true. In other terms, by relying on deep insights
which can be found in the philosophical literature, we will set out those conditions that
are necessary and sufficient to ensure that some formulas can be seen as the reasons, or the
grounds, why another is true. Moreover, we will show that the answer to this question is fully
coherent with the answer to question (i), by proving that our explanatory rules provide all
and only those relations from reasons (or grounds) to conclusion that satisfies the proposed
features.

Note that a logical theory of conceptual explanations, and related relation from reasons
to conclusion (i.e. related grounding relation), will limit itself to the logical form of these
objects. For instance, when considering examples 1.2, 1.3, 1.5 and 1.6 it is straightforward to
note that they all have an analogous structure; it is this structure that the paper analyses.
In other words, although the paper focuses on the realm of conceptual explanations and
related grounding relation, it only deals with the formal part that characterize these objects.
However, their explanatory power also relies on the relations amongst the concepts that they
involve; the analysis of these relations goes beyond the scope of this paper and will thus be
left aside.5

As already noted, the present work draws on the research developed in Poggiolesi (2016b,
2018), going beyond it both on the conceptual and the formal front. The cited papers
contribute to a more established literature dedicated to grounding (and, amongst other
issues, to its relationship with explanation), developed notably in metaphysics over the last
two decades. More recently, however, there has been an increasing interest in the role and
status of explanation – and secondarily grounding – in its relation to the science (e.g., see
Betti (2010); Kortabarria and Giannotti (2024); Poggiolesi and Genco (2023)). Such a shift

5Details of such an analysis are provided by Poggiolesi and Genco (2023); Poggiolesi (2024).
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is not unfamiliar in philosophy and logic; on the contrary, it is analogous to contrasts between
metaphysical analysis of concepts such as causality or necessity (e.g. see for references Gallow
(2021); Kment (2021)) and formal studies of these concepts (e.g., see Pearl (2000); Blackburn
et al. (2001)). Such a shift naturally implies a focus on different questions and methods
concerning the notions at issue: in our case, questions about the nature of grounding and
metaphysical tools for analyzing them make way for a focus on issues such as the structure
of explanations, for which conceptual analysis and formal tools are more relevant. As is clear
from the questions stated above, the present paper sits squarely in this new branch of the
literature, focusing on structural questions and using formal tools, whilst remaining non-
committal on metaphysical considerations. In concordance with this focus, the word reason,
rather than ground, which is more closely associated with the metaphysical literature, will
be used in this paper.

Beyond a shift in research questions and methods, the focus on explanation and reasons
in the sciences brings to the fore a new set of examples, as compared to the traditional
grounding literature in metaphysics. Typically, this literature discusses almost exclusively
toy cases such as “the ball is red and the ball is round because the ball is red and round”
(e.g. see Fine (2012)) at any length. By contrast, bringing in explanations in fields such
as mathematics – whereby a certain theorem, say, is explained by displaying the reasons
why it is true – requires consideration of much more intricate instances of explanations and
reasons. The ones which are presented in Figures 1 and 2 are illustrative of the kind of
complexity that needs to be addressed.

As a result, not only does the present work differ from Poggiolesi’s one in the main object
of concern – namely explanations rather than grounding – as well as in the background
working framework – sciences rather than metaphysics –, but crucially in the formal theory
it proposes. More specifically, there are two main novelties that this work presents and are
absent from Poggiolesi (2016b, 2018): firstly, the current paper works in first-order logic;
secondly, and more importantly, it employs a formalization that works deep inside formulas.
Moreover, whilst Poggiolesi’s work relies on the resources of natural deduction calculi, results
in this paper are based on the means of the sequent calculus, which is a notoriously stronger
and more powerful proof-theoretic tool. Hence, summing all these features up, the present
paper offers a very general theory of (conceptual) explanations which doesn’t have any
analogue in the literature. At the end of the paper, we discuss how this theory relates to
existing work on explanation, and how it opens up interesting paths of future research.

The paper is organized in the following way. In Section 2 we will formalize the notion of
conceptual explanation via the relation of formal explanation, that is defined via explanatory
rules, i.e. rules that provide the reasons why their conclusion is true and that are added to
the classical sequent calculus for first-order logic. In Section 3 we prove that explanatory
rules are admissible in the classical sequent calculus, i.e. explanatory rules serve to construct
derivations with an explanatory power, not to prove new theorems. Section 4 will serve to
set those features according to which some formulas count as the reasons why another is
true, and in Section 5 we will prove that the explanatory rules provide all, and only, relations
from reasons to conclusion. Whilst in Section 6 we will emphasize some interesting links
with other related works on explanations, in Section 7 we will draw some conclusions and
sketch directions of future research.
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2 Formal explanations

In order to provide the formal structure which underlies conceptual explanation, we start
from an idea that is both ancient and central in the literature: explanations can be seen
as deductive arguments which, starting from true premisses - be they the causes or the
grounds - explain a certain conclusion.6 Of course not any deductive argument constitutes
an explanation, but some of them do, namely those which have an explanatory power. The
perspective that we will develop here7 consists in a formalization of this central idea along
the following lines: explanations can be seen as proofs which, starting from true premisses,
the reasons, not only prove that a certain conclusion is true, but also explain why it is such.
This perspective naturally arises from the observation that proofs are deductive arguments;
moreover, it is supported by the fact that mathematical explanations, a notable subset of
conceptual explanations, actually are proofs of mathematical theorems, which show why
those theorems are true.

Let us pursue this perspective further. Since proofs are standardly formalized in logic by
means of derivations, we will formalize conceptual explanations as a special type of deriva-
tions. More precisely, we will introduce a metalinguistic relation called formal explanation,8

denoted by the symbol ,, which will represent the formal counterpart of conceptual ex-
planations, as well as a special case of the standard notion of derivation. As derivations
are introduced via inferential rules, formal explanations will be introduced via explanatory
rules, namely rules where not only the conclusion is inferable from their premise(s), but also
such that the premisses are the (formal) reasons why the conclusion is true. We will consider
explanatory rules, and related formal explanation relation, in first-order classical logic.

Definition 2.1. The language of first-order logic, L, is composed by: variables (x0, x1, x2,
...), constants (c0, c1, c2, ...), predicates (P k0 , P k1 , P k2 , ...), logical connectives ( , ^, _),
quantifiers (@, D), and parentheses: (, ). We take the symbols J,K and Ñ to be defined
as usual. For the sake of simplicity we do not use the identity symbol nor the functional
symbols. Also we will use the symbols ˝ and d in the following way: ˝ = t^,_u and d =
t@, Du. The set of well-defined formulas, WF , is constructed in the standard way. A closed
formula, or a sentence, is a formula where no free variable occurs. The set of closed formulas
of L will be denoted by CF .

Definition 2.2. Given, the multiset M Ď WF and formula A P WF , we use the standard
notation, M |ù A, to mean that A logically follows from M in first-order classical logic. The
notation M $ A means that there exists a derivation from M to A in (the standard sequent
calculus for) first-order classical logic.

In order to properly spell out the notion of (conceptual) explanation under considera-
tion, we introduce some notable distinctions that help identifying different types of deduc-
tive explanations. Here we start with the following two, namely the distinction between
total/partial explanations, and the distinction between immediate/mediate explanations.9

A total explanation is one that provides all the reasons why something is true. In other
terms, the multiset of all, and only, those formulas each of which contributes to explain
C is a total explanation of C. On the other hand, each proper sub-multiset of the total
explanation of C is a partial explanation of C.10

6E.g. see Aristotle (1993); Hempel (1965, 1942).
7See also Poggiolesi and Genco (2023).
8This name has already been used in Poggiolesi (2018). Here we employ it in a broader sense.
9E.g. see Lewis (1973); Schaffer (2016).

10E.g. see also Poggiolesi (2020b).
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Figure 3: The sequent calculus Gcl`.

p,M ñ N, p
M ñ N

P ñ Q |M ñ N
cw

M ñ N,F

 F,M ñ N
 L

F,M ñ N

M ñ N, F
 R

F,G,M ñ N

F ^G,M ñ N
^L

M ñ N,F M ñ N,G

M ñ N,F ^G
^R

@xF, F px{tq,M ñ N

@xF,M ñ N
@L

M ñ N,@xF px{yq

M ñ N,@xF
@R

where in @R y does not occur in M nor in N.

As concerns the other distinction, whilst an immediate explanation is one that involves
a single explanatory step, i.e. a step that does not seem to be further reducible, a mediate
explanation includes several consecutive immediate steps. In this paper we will first deal
with the notion of total and immediate formal explanation and then generalize it to the
mediate case.

There exists a third distinction that is linked to the notion of total explanation and that
arises both in the causal and conceptual framework. To illustrate it, we start from the causal
case, where it is most well-known. Consider the following notorious example.11 Billy and
Suzy throw rocks at a bottle, which shatters. A causal explanation of why the glass shattered
is that Suzy threw her rock at it. Indeed since Suzy threw her rock first, her rock arrived
first and shattered the glass; Billy’s rock sailed past the already-broken bottle. Billy’s throw
is thus not a cause, but only a potential cause of why the bottle shattered. Potential causes
are central for total explanations: if Billy’s rock hit the bottle at the same time as Suzy’s
rock, it would have been part of the total explanation of why the glass shattered.

A distinction analogous to that between causes and potential causes also arises in the
conceptual framework. Consider indeed the following situation. Billy is Jane’s brother and
Suzy is Jane’s sister. Jane has a niece. Thus the reason why Jane has a niece is that her
sister has a girl. Indeed a niece is the girl of someone’s brother or sister and Suzy, Jane’s
sister, has a girl. Jane’s brother could have had a girl, but he does not. Hence Jane’s brother
having a girl is merely a potential reason of why Jane has a niece. Potential reasons are
also central for total explanations: if Jane’s brother had a girl, his having a girl would have
been part of the total explanation of why Jane has a niece. We rephrase this distinction
between reasons and potential reasons as the one between reasons and conditions.12 So, for
example, we will say that under the condition that Jane’s brother does not have a girl, the
total reason why Jane has a niece is that her sister has a girl.

In order to define the notion of formal explanation, we work with the classical sequent
calculus for first-order logic, implemented with the metalinguistic symbol “|”, for conveying
conditions, and the related rule cw which allows to introduce conditions beside standard
sequents. Conditions only play a role in explanatory rules - no inferential rule operates on
conditions - hence, the sequent calculus Gcl` (see Figure 3) is equivalent to the standard
classical sequent calculus for first-order logic Gcl (see Troelstra and Schwichtenberg (1996)).
The notion of sequent, its interpretation, and the interpretation of inferential rules are

11E.g. see Menzies and Beebee (2020).
12Here we borrow this terminology from Genco (2021).
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standard (e.g. see again Troelstra and Schwichtenberg (1996)). We call c-sequent a sequent
that only contains closed formulas.

We will add to Gcl` explanatory rules. As already underlined, explanatory rules provide
the (total and immediate) reasons why their conclusion is true; but the link between reasons
and conclusion often require looking deep inside formulas (see examples in Figures 1 and
2). So in order to be able to introduce explanatory rules, we will first need to introduce the
notations necessary to work inside formulas. We will do so with the notions of context and
formula in a context. Roughly speaking, a context is the part of a formula that one does
not focus on, and is denoted with the notation C[.]. For example consider the first-order
formula F “ DxpSx ^ Txq _ @x@ypPx Ñ Qx ^ Ryq and suppose we want to focus on a
particular part of F , say Qx^Ry. We denote this fact by rewriting F as CrQx^Rys, where
Cr.s is the context DxpSx^ Txq _ @x@ypPxÑ .q and Qx^Ry is the formula in the context
Cr.s. Note that when working in an explanatory framework, negation needs to be handled
with particular care. This is also true for the notion of context, as can be clearly seen in
the following example, concerning the formulas  pp _ qq and  p p _  qq. As discussed
in Poggiolesi (2016a, 2022), whilst the (total) reasons of  pp _ qq amount to the formulas
 p, q, the (total) reasons of  p p_ qq are p, q. However, if we take a negation (or any
odd number of consecutive negations) in front of a disjunction to be a context, and the
reasons of a disjunction to be its disjuncts, we would get that the reasons for  pp _ qq are
indeed  p, q, whilst the reasons for  p p_ qq are   p,  q, contrary to what has just
been said. To avoid such undesirable cases, we define contexts as only involving an even
consecutive number of negations, and we will treat the negation of a disjunction with special
rules that involve the notion of converse of a formula, introduced below.

Definition 2.3. The converse of a formula A, written A˚, is defined as follows:

A˚ =

"

 n´1E, if A “  nE and n is odd
 n`1E, if A “  nE and n is even

where the main connective in E is not a negation, n ě 0 and 0 is taken to be an even
number. For any multiset M , pMq˚ := tB˚ : B PMu.

So, for instance, returning to our previous example, the converse of  p, namely p pq˚,
is p, not   p.

Definition 2.4. The set Co of contexts is inductively defined in the following way:

- r.s P Co,

- if Cr.s P Co, then   Cr.s, D ˝ Cr.s, Cr.s ˝D, dxCr.s P Co,

- if Cr.s P Co and Cr.s ‰
2n

hkkikkj

 ... r.s, where n ě 0, then  Cr.s P Co.

Definition 2.5. For all contexts Cr.s, and formulas F , we define CrF s, a formula in a
context, as follows:

- if Cr.s “ r.s, then CrF s “ F ,

- if Cr.s “   Dr.s, then CrF s “   DrF s,

- if Cr.s = D1 ˝ Dr.s, Dr.s ˝ D1, dxDr.s,  Dr.s, then CrF s = D1 ˝ DrF s, DrF s ˝ D1,
dxDrF s,  DrF s, respectively.

8



Once formulas are considered in contexts, they will naturally have a polarity which is
either positive or negative and that is defined as standard, e.g. see Troelstra and Schwicht-
enberg (1996).

Definition 2.6. We define the set of contexts with positive P and negative polarities N
simultaneously by an inductive definition given by the three clauses (i)-(iii) below.

(i) r.s P P,

if G` P P, G´ P N , and F is any formula, then:

(ii)  G´, F ^G`, G` ^ F , F _G`, G` _ F , @xG`, DxG` P P.

(iii)  G`, F ^G´, G´ ^ F , F _G´, G´ _ F , @xG´, DxG´ P N

whenever these objects are in Co. We say that a formula F is positive (resp. negative) in a
context CrF s if Cr.s P P (resp. Cr.s P N ).

The last ingredient needed to introduce explanatory rules is obtained by defining the
scope of a context, in terms of the quantifiers that formulas in contexts lie in.

Definition 2.7. If Cr.s is a context, then the scope of a context, SCpCq, and the inverse
scope SCinvpCq, are defined inductively in the following way:

- if Cr.s= r.s, then SCpCq = SCinvpCq = H,

- if Cr.s=   Dr.s, then SCpCq “ SCpDq and SCinvpCq “ SCinvpDq,

- if Cr.s= D1 ˝Dr.s or Dr.s ˝D1, then SCpCq “ SCpDq and SCinvpCq “ SCinvpDq,

- if Cr.s= @xDr.s, then SCpCq “ @x.pSCpDqq and SCinvpCq “ Dx.pSCinvpDqq,

- if Cr.s= DxDr.s, then SCpCq “ Dx.pSCpDqq and SCinvpCq “ @x.pSCinvpDqq

- if Cr.s=  Dr.s, then SCpCq “ SCinvpDq and SCinvpCq “ SCpDq.

Note that scopes of contexts are defined in such a way that an existential that occurs
in a context with a negative polarity is transformed into an universal in a context with a
positive polarity, whilst an universal in a context with a negative polarity is transformed into
an existential in a context with a positive polarity. For instance, consider a context Cr.s “
@x Dy r.s, then SCpCq= @x@y. On the other hand, consider a context Cr.s “ Dx @y r.s,
then SCpCq= DxDy.

Given a formula in a context CrF s, we can restrict the scope of context SCpCq to the
scope of context relative to the formula F , SCF pCq, depending on the variables that the
quantifiers in SCpCq bound in F .

Definition 2.8. Let F be a formula of L, then the free variables of F , FV pF q, are standardly
defined as those variables occurring in F which are not bound by any quantifier. We define
the restricted free variables of a formula F , FV `pF q, in the following way

- if F is not of the form G ˝G1, then FV `pF q = FV pF q,

- if F is of the form G ˝G1, then FV `pF q = FV pGq X FV pG1q.

9



Figure 4: Explanatory propositional rules.

M ñ N,CrF s

M ñ N,Cr  F s
  

M ñ N,CrF s M ñ N,CrGs

M ñ N,CrF ˝Gs
˝1

M ñ N,CrFjs | M ñ N,CrFis

M ñ N,CrF1 ˝ F2s
˝2

M ñ N,CrF˚s M ñ N,CrG˚s

M ñ N,Cr pF ˝Gqs
 ˝1

M ñ N,CrF˚j s | M ñ N,CrF˚i s

M ñ N,Cr pF1 ˝ F2qs
 ˝2

where i, j “ t1, 2u and j ‰ i.

Definition 2.9. Let CrF s be a formula in a context, and let FV `pF q “ x1, ..., xn. The
scope of a context Cr.s relative to the formula F , SCF pCq, is the result of removing from
SCpCq any quantifier that is not of the form dx1, ...,dxn.

We can classify any formula in context CrF s according to the polarity of (the formula
in) the context and the type of quantifiers that its SCF pCq corresponds to.

Definition 2.10. For any formula in a context CrF s, we say that it has

a positive universal scope (PUS) if Cr.s P P and SCF pCq “ @x1, ...@xn,

a negative universal scope (NUS) if Cr.s P N and SCF pCq “ @x1, ...@xn,

a positive existential scope (PES) if Cr.s P P and SCF pCq “ Dx1, ...Dxn,

a negative existential scope (NES) if Cr.s P N and SCF pCq “ Dx1, ...Dxn.

We now have all the elements to introduce explanatory rules. In Figure 4 we present
explanatory rules for propositional connectives. We assume these rules not to distinguish
between formulas that are equivalent by associativity and commutativity of conjunction and
disjunction, substitution of variables, and change of orders of identical quantifiers,13 and to
only apply to c-sequents.14 Also their application is conditioned by the following restrictions.

Definition 2.11. We assume the application of explanatory propositional rules15 to obey
the following restrictions. For any formula of the form CrF ˝Gs:

- if ˝ “ ^ and SCF˝GpCq ‰ H, then the rule ˝1 can be applied if, only if, CrF ˝Gs has
PUS or NES; the rule ˝2 can be applied if, and only if, CrF ˝Gs has NES.

- if ˝ “ ^ and SCF˝GpCq “ H, then the rule ˝1 can always be applied; the rule ˝2 can
be applied if, and only if, Cr.s has a negative polarity.

- if ˝ “ _ and SCF˝GpCq ‰ H, then the rule ˝1 can be applied if, only if, CrF ˝Gs has
NUS or PES; the rule ˝2 can be applied if, and only if, CrF ˝Gs has PES.

13See, Genco (2024).
14As it will become clear in the sequel, the choice of restricting to c-sequents renders problematic their

extension to first-order rules. Although this condition can be relaxed, we prefer to adopt it in the present
paper to limit the intricacy of the formalization.

15Reading the rules bottom-up.
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- if ˝ “ _ and SCF˝GpCq “ H, then the rule ˝1 can always be applied; the rule ˝2 can
be applied if, and only if, Cr.s has a positive polarity.

For any formula of the form Cr pF ˝Gqs:

- if ˝ “ ^ and SC pF˝GqpCq ‰ H, then the rule  ˝1 can be applied if, only if, Cr pF ˝
Gqs has NUS or PES; the rule  ˝2 can be applied if, and only if, Cr pF ˝ Gqs has
PES.

- if ˝ “ ^ and SC pF˝GqpCq “ H, then the rule  ˝1 can always be applied; the rule
 ˝2 can be applied if, and only if, Cr.s has a positive polarity.

- if ˝ “ _ and SC pF˝GqpCq ‰ H, then the rule  ˝1 can only be applied if, only if,
Cr pF ˝Gqs has PUS and NES; the rule  ˝2 can be applied if, and only if, Cr pF ˝Gqs
has NES.

- if ˝ “ _ and SC pF˝GqpCq “ H, then the rule  ˝1 can always be applied; the rule
 ˝2 can be applied if, and only if, Cr.s has a negative polarity.

We now comment on these explanatory rules, which extend those presented in Poggiolesi
(2018); Genco (2021). Indeed, whilst in Poggiolesi (2018); Genco (2021) explanatory rules
were formulated for a propositional language, here they involve quantifiers. Most impor-
tantly, whilst the explanatory rules proposed in Poggiolesi (2018); Genco (2021) could only
operate on the main connective of the formula under consideration, just like standard logical
rules, one of the main innovations of this paper is that explanatory rules, differently from
logical rules, can operate inside first-order contexts. This novelty provides us with explana-
tory rules that are much more powerful than those so far introduced in the literature on
explanation or grounding (e.g. see Fine (2012); Millson and Strasser (2019)). This strength
aligns with the strength standardly associated with explanations.

Each of the explanatory rules is supposed to capture cases where the premisses are the
total and immediate reasons for the conclusions. In Section 5, we prove that this is indeed
the case. Here our remarks are at the more intuitive level. Note first that some examples
are clear: for instance p and q are clearly the reasons for p ^ q; and rule ˝1 reflects this.
Let us then dwell on the less obvious and more novel cases. First of all, note that there is
no single rule for negation. This is because explanations notoriously go from (potentially)
true formulas to (potentially) true formulas; there can thus be no rule which acts, as in the
case of the rule for negation in the standard sequent calculus, by shifting formulas from one
side of the sequent to another. In other words, one cannot explain the truth of  F , from
the falsity of F . Instead negation is spread over the other connectives: either it is analyzed
when it is double, or when it is in front of conjunction and disjunction. Note that, because
of the aspects mentioned above (when introducing contexts) and which are discussed at
more length in Poggiolesi (2016b), the connective of negation must be carefully treated in
an explanatory context; this is why the converse of a formula (see Definition 2.3) is used in
the rules  ˝1 and  ˝2.

Let us now turn to those rules that do not involve conditions: i.e., rules   , ˝1 and  ˝1.
Each of them stands as a straightforward generalization of standard rules concerning classical
connectives, allowing them to apply deep inside formulas. This is so because these rules are
not merely intended to be simple inferential rules but explanatory rules, i.e. rules that
provide the (total) reason(s) why their conclusion is true. The relation between reason(s)
and conclusion might hold in virtue of elements that lie inside formulas, so the rules need to
reflect this possibility. Note however that application of rules deep inside formulas involves
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some limitations to preserve an adequate notion of explanation. Let us illustrate this on
some paradigmatic examples. The following is an instance of rule  ˝1:

ñ  p ñ  q

ñ  pp_ qq
 ˝1

The rule can be applied since ˝ is a disjunction and the context is empty. Thanks to the
rule  ˝1, we can explain, totally and immediately, the formula  pp _ qq by means of the
formulas  p and  q, which are its reasons. The rule matches example 1.1. in Figure 1, and
thus stands as an adequate instance of the rule. Let us also analyze an application of the
same rule on the formula  p p_ qq. In this case we have:

ñ p ñ q

ñ  p p_ qq
 ˝1

The rule can be applied since ˝ is a disjunction and the context is empty. Thanks to the
rule  ˝1, we can explain, totally and immediately, the formula  p p_ qq by means of the
formulas p and q, which are its reasons. In particular, note that the rule provides as reasons
p pq˚ and p qq˚, and that, by Definition 2.3 (definition of converse), p pq˚ corresponds to
p and p qq˚ corresponds to q. The rule thus faithfully reflects the intuition discussed above
Definition 2.3.

Let us now move to the following instance of the rule ˝1:

ñ @xpZxÑ Nxq ñ @xpSNxÑ Nxq

ñ @xppZx_ SNxq Ñ Nxq
˝1

The rule can be applied since ˝ is a disjunction, the scope of the context relative to the
formula Zx _ SNx is not empty, and the formula in a context at issue has NUS (see
Definition 2.11). Thanks to the rule ˝1, we can explain, totally and immediately, the formula
@xppZx_SNxq Ñ Nxq by the formulas @xpZxÑ Nxq and @xpSNxÑ Nxq, which represent
the reasons why it is true. The rule matches example 1.4. of Figure 2 and thus stands as a
an adequate instance of the rule.

Finally, consider the following formula @xpNxÑ Ex_Oxq, which can be seen as formal-
izing the sentence “every natural number is either odd or even.” Suppose that one focuses
on the disjunction and would like to apply a rule on it. Since the disjunction occurs with a
positive polarity inside an universal quantifier that bounds variables both in E and O, none
of the rules of the calculus can be applied to it. But this again matches our intuitions, as
it would be incorrect to claim that because every natural number is even and every natural
number is odd, then every natural number is either even or odd.16

Let us now move to the rules which involve conditions, namely the rules ˝2,  ˝2. These
rules naturally emerge for total explanations, i.e. explanations where all the reasons why a
conclusion is true need to be evoked. In this setting, conditions need to be mentioned to
prevent equivocation between total and partial explanations (e.g. see Poggiolesi (2016b)).
Consider the example: John got into the University, and he is rich or he passed the entrance
exam. Suppose that in fact John got into the University, he is rich, but he did not pass
the entrance exam. In this example, the explanation why it is true that John got into the

16Note that this does not involve that there is no reason at all which explains the truth of this formula. Such
reason(s) might be found by operating on the universal quantifier, or by relying on the concepts involved.
The only point we aim to emphasize here is that whatever the reasons of the formula @xpNx Ñ Ex _ Oxq
are, they cannot be found be operating on the disjunction of the formula.
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Figure 5: Explanatory first-order rules.

M ñ N,CrFys

M ñ N,Crdx.Fxs
d1

M ñ N,Crdx.Fxs, CrFts

M ñ N,Crdx.Fxs
d2

M ñ N,CrF˚ys

M ñ N,Cr pdx.Fxqs
 d1

M ñ N,Cr pdx.Fxqs, CrF˚ts

M ñ N,Cr pdx.Fxqs
 d2

where in d1 and  d1 y does not occur free in M nor in N .

University, and he is rich or he passed the entrance exam is that John got into University and
he is rich. However, if nothing is said about the exam, the explanation remains ambiguous:
it is indeed unclear whether the explanandum is true also because John got into University
and passed the entrance exam. Conditions allow disambiguation of the explanation. Thus
we say that, under the condition that it is not the case that John got into University and
passed the entrance exam, it is true that John got into the University, and he is rich or
he passed the entrance exam, because John got into University and he is rich. On formal
terms, let us denote the sentence “John gets into the University, and he is either rich or it
has passed the entrance exam,” with the formula p^ pq _ rq. Let us apply on this formula,
focussing on the disjunction, the following instance of the rule ˝2, we get:

ñ p^ q |ñ p^ r

ñ p^ pq _ rq

The rule can be applied since ˝ is a disjunction with a positive polarity, in the scope of no
quantifier (see Definition 2.11). Thanks to the rule ˝2, we can explain the formula p^pq_rq
by the formula p ^ r, which represents the total reason why it is true under the condition
that the formula p^ q does not hold. The explanatory step matches what we have just been
discussing and thus stands as an adequate instance of the rule.

Finally, we make two important remarks about all explanatory rules. The first con-
cerns the fact that these rules do not distinguish between formulas that are equivalent
by associativity and commutativity of conjunction and disjunction, substitution of vari-
ables, and change of orders of identical quantifiers. Consider for example the formulas
@x@yppPx _ Ryq Ñ pPx ^ Ryqq and @y@xppPx _ Ryq Ñ pRy ^ Pxqq, which are equiv-
alent by change of orders of identical quantifiers and commutativity of conjunction. We
can reasonably consider that these two formulas are explained by the same (multiset of)
total and immediate reasons, for example @x@ypPxÑ pPx^Ryqq,@x@ypRy Ñ pPx^Ryqq,
but also @y@xpPx Ñ pPx ^ Ryqq,@y@xpRy Ñ pPx ^ Ryqq, and also @y@xpPx Ñ pRy ^
Pxqq,@y@xpRy Ñ pRy ^ Pxqq, and so on. The explanatory rule reflects this feature.17

The second remark concerns the contexts in which the explanatory rules operate. When
the explanatory rule has only one premise, like the rule   , then the rule can be applied
in any context Cr.s. On the contrary, when the rule has two premisses, as all the other ex-
planatory rules, attention needs to be paid to the quantifiers that bound variables occurring

17Note that this is a relevant property of the system which has strong connections with the so-called
ground-theoretic, or factual, equivalence, so far only analyzed at the propositional level (e.g. see Correia
(2016)), but also with the vast literature regarding the nature of proofs, such as proof-nets, or combinatorial
proofs, (e.g. see Girard et al. (1989)).
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in the formula on which the rule operates. Generally speaking, let CrF s be the formula
in the context on which the rule operates, and let F “ G ˝ G1. Then if SCG˝G1pCq is not
empty (namely if several quantifiers, under the scope of which G ˝G1 lies, bound the same
variables in G as they do in G1), then the quantifiers need to be uniform,18 and there needs
to be a correspondence between quantifiers and main connective of the formula that lies in
the scope of the quantifiers. If there is no variable common to G and G1 that is bound by a
quantifier, under the scope of which F lies, then quantifiers can be mixed. Technically, these
restrictions depend on very well-known laws concerning the distributivity of quantifiers over
connectives;19 philosophically, as we have seen with the examples above, these restrictions
guarantee that our rules formalize adequately the notion of (conceptual) explanations.

In Figure 5, we propose explanatory rules for quantifiers. Since we are providing a
logical theory of conceptual explanations in first-order logic, we believe that we get a more
elegant and harmonious overall theory if explanatory rules for quantifiers are displayed.
However, it is worth emphasizing that in all the examples of conceptual explanations in
the literature (e.g. see examples 1.2.-1.6.) quantifiers are typically left untouched, the
explanation occurring inside them (hence motivating the use of contexts).

The explanatory rules for quantifiers are finitary rules, which we take to be a proof-
theoretical desirable feature. Explanatory rules for quantifiers, like the explanatory rules
for propositional connectives, extend inferential intuitions concerning the universal and the
existential quantifiers at the explanatory level. Roughly speaking, the rule for the univer-
sal quantifier explains this quantifier by using the eigenvariable,20 i.e. it explains why any
object x has a property A via the fact that if one picks a random object y, y has the prop-
erty A. This seems to correspond to what happens in mathematical contexts, where if a
mathematician aims to explain why all triangles have a certain property, she will not work
with all triangles, rather she will pick a triangle with no particular assumption on it - this
is what the eigenvariable stands for - and prove that that triangle enjoys the property at
issue. Since no particular assumption was invoked, she can generalize the explanation to
all triangles.21 The rule for the existential quantifier explains this quantifier via one of its
instances; however, in order for the premisses of this rule to be the reasons of its conclusion,
the existential itself needs to be repeated in the premisses. This move is analogous to that
adopted in the rules @L and DR of the classical sequent calculus for first-order logic, e.g.
see Troelstra and Schwichtenberg (1996). In the classical sequent calculus, the formula is
repeated in the premise of the rule to make the rule invertible. In the case of the explana-
tory rule for the existential, the repetition of the formula serves to avoid the occurrence of
conditions, which would be infinite. In other words, if one wants to keep the rule finitary, in
the case of existential quantifier, conditions need to be given up: they are substituted by the
repetition of the formula. This is a simple and useful technical device, although it may not
be very satisfactory from a conceptual point of view. Another deep, yet more complicated,
solution for the case of the existential is provided in Genco et al. (2021).

Finally, we also assume explanatory rules for quantifiers not to distinguish between for-
mulas which are equivalent by associativity and commutativity of conjunction and disjunc-
tion, substitution of variables, and change of orders of identical quantifiers. Moreover, their
application is conditioned on the following restrictions.

Definition 2.12. There is no restriction on the application of the rules d1 and  d1. We

18Namely they either need to be all universal quantifiers in contexts with positive polarity and existential
in contexts with negative polarity, or vice-versa.

19E.g., see Casari (1997).
20See Troelstra and Schwichtenberg (1996).
21Note that analogous ideas have already been introduced and discussed in Genco et al. (2021).
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assume the application of explanatory first-order rules d2 and  d2
22 to obey the following

restrictions:

- rule d2 can be applied on a formula of the form Crdx.Fxs if, and only if, Cr.s P P
and d “ D, or C P N and d “ @.

- rule  d2 can be applied on a formula of the form Cr dx.Fxs if, and only if, Cr.s P P
and d “ @, or C P N and d “ D.

We will call GclE the sequent calculus composed by the rules of Figures 3 and 4, whilst
we will call GclEQ the sequent calculus composed by the rules of Figures 3, 4 and 5. Here,
since we focus on closed formulas, we will mainly deal with the calculus GclE , leaving results
concerning GclEQ for future research.

Definition 2.13. A (standard) derivation in GclE is a finite (upward-growing) tree with
a single root. The nodes of the tree are labelled by sequents and the sequents at the top
nodes which are not initial sequents form the multiset S (that may be empty). For each
non-terminal node, its label is connected with the labels of the immediate predecessor nodes
by one of the rules of Figure 3 (except rule cw). The root of the tree is the conclusion of
the whole derivation and in case its label is the sequent M ñ N , we say that there exists a
derivation of M ñ N from the assumptions S, in symbols S $GclE M ñ N . In case S is
empty, we say that M ñ N is a theorem, in symbols $GclE M ñ N .

Let S, S1, ... be multisets of c-sequents. Then, pSq˚ “ tpM ñ Nq˚ : M ñ N P Su, where
the converse of a c-sequent, pM ñ Nq˚, corresponds to the formulas

Ź

M,
Ź

N˚.

Definition 2.14. A total and mediate formal explanation in GclE is a finite (upward-
growing) tree with a single root. The nodes of the tree are labelled by c-sequents or c-
sequents with a bar; the c-sequents at the top nodes on the right side of the bar form
the multiset S, whilst the c-sequents at the top nodes on the left side of the bar form the
multiset S1 (which could be empty). For each non-terminal node, its label is connected with
the labels of the immediate predecessor nodes by one of the rules of Figure 4. The root of
the tree is the conclusion of the explanation and is totally explained by the c-sequents S
under the conditions pS1q˚: in symbols S1 | S ,m M ñ N . A total and immediate formal
explanation from S to M ñ N , under conditions pS1q˚ (which might be empty), in symbols
S1 | S ,M ñ N , is any total and mediate formal explanation with one rule.

In the calculus GclE it is thus possible to construct standard derivations, that formalize
the notion of proof, but also formal explanations, which formalize the notion of explanatory
proof, or conceptual explanation. Finally, in the calculus GclE it is also possible to construct
mixed derivations, which are standard derivations that might contain explanatory steps.23

Definition 2.15. A mixed derivation in GclE is a derivation where also explanatory rules,
as well as the rule cw, might have been applied. We use the notation S1 | S $‹

GclE
M ñ N ,

where both S and S1 might be empty, to denote a mixed derivation in the calculus GclE .

22Reading the rules bottom-up.
23Note that these three types of logical objects - namely standard derivations, formal explanations, and

mixed derivations - have been first introduced in Genco (2021), and then further analysed in Genco (2024).
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3 Eliminability of the explanatory rules in the calculus
GclE

In the previous section, we have introduced the calculus GclE which is a calculus composed
by the sequent calculus Gcl` plus explanatory rules for the classical propositional connec-
tives. In GclE not only one can construct standard derivations (denoted by the symbol
$), but also derivations with explanatory steps (denoted by the symbol $‹), as well as
formal explanations (denoted by the symbol ,m). As concerns standard derivations, GclE

is equivalent to Gcl and it keeps the same properties as Gcl.24

Lemma 3.1. For any sequent M ñ N , $Gcl M ñ N if, and only if, $GclE M ñ N .

Proof. Straightforward.

Lemma 3.2. The structural rules of weakening and contraction are height-preserving ad-
missible in GclE. The logical rules of GclE are height-preserving invertible (and given a
logical rule R, we will call R its inverse).

Proof. The proof is the same as that developed in Gcl, see (Troelstra and Schwichtenberg,
1996, Ch. 3.5).

As concerns explanations, we need to show that nothing can be explained that cannot be
derived, i.e. explanatory rules serve to build derivations with an explanatory power, not to
prove new theorems.25 To this end, we show that any explanatory rule can also be replaced
by several applications of the standard inferential rules.

Lemma 3.3. For any multiset of sequents S and S1, any sequent M ñ N , and for any
mixed derivation d of M ñ N from S and S1, namely S1 | S $‹ M ñ N which contains
only one application of an explanatory rule, one can construct a derivation d1 with the same
end-sequent from the same multiset of assumptions, namely S $M ñ N .

Proof. We reason by induction on the height of the derivation. We divide the explanatory
rules into two groups: explanatory rules without conditions, namely   , ˝1, ˝1 and ex-
planatory rules with conditions, namely ˝2, ˝2. We start analyzing the rules of the first
group. Suppose that the main formula of the premise of the explanatory rule is of the form
CrF s. We apply on the context Cr.s as many rules R as necessary to unfold the context
itself and reach the formula F .26 Once arrived to F , given that explanatory rules do not
distinguish between formulas which are FOL-equiv, we might need to further apply R-rules
to further decompose the formulas composing Cr.s. We then apply the standard logic rules
to get from F , or any formula FOL-equivalent to F , to the desired conclusion, and then we
also use the logical rules to reconstruct the context Cr.s. Here is a simple example of the
procedure. Consider the following instance of the explanatory rule   :

M ñ N,@xpQx^ PxÑ Rxq

M ñ N,@xpPx^QxÑ   Rxq
  

We obtain the desired result in the following way:

24Note that this also straightforwardly holds for GclEQ.
25This is an important feature which has been underlined in many papers, e.g. see Betti (2010); Poggiolesi

(2016b).
26If C is empty, this first step of the procedure can be skipped.
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M ñ N,@xpQx^ PxÑ Rxq

M ñ N,Qc^ PcÑ Rc
@R

Qc^ Pc,M ñ N,Rc
ÑR

Pc,Qc,M ñ N,Rc
^L

 Rc, Pc,Qc,M ñ N
 L

Pc,Qc,M ñ N,  Rc
 R

Pc^Qc,M ñ N,  Rc
^L

M ñ N,Pc^QcÑ   Rc
ÑR

M ñ N,@xpPx^QxÑ   Rxq
@R

As for the rules of the second group, namely those explanatory rules with conditions, one
needs to consider the mixed derivation d, which either starts from leafs containing conditions,
or leafs not containing any condition, and might involve applications of the rule cw. We
substitute the derivation d with a derivation d1 with no application of the rule cw, and in
case d started from leafs containing conditions, we substitute them with the very same leafs
but where all conditions have been erased. Then we continue the procedure as above.

Lemma 3.4. For any multiset of sequents S and S1, any sequent M ñ N , and for any
mixed derivation d of the form S1 | S $‹ M ñ N , one can construct a derivation d1 from S
to M ñ N , namely S $M ñ N .

Proof. By several applications of Lemma 3.3.

Corollary 3.5. For any multiset of sequents S and S1, any sequent M ñ N , and for any
formal explanation f of the form S1 | S ,m M ñ N , one can construct a derivation d from
S to M ñ N , namely S $M ñ N .

Proof. From Lemma 3.3.

4 From reasons to conclusions

The main aim of this paper is to develop a logical theory of conceptual explanations. As
noted, this involves addressing two central questions. The first - what kind of structure
underlies conceptual explanations? - has been answered in Section 2 with the introduction
of explanatory rules in the sequent calculus defining (formal) explanations. We use this
section to answer the second question: what kind of features need to be satisfied for some
formulas to count as the (total and immediate) reasons of another? As we have done for
the first question, in order to answer this question, we will extend Poggiolesi’s work; in
particular, whilst Poggiolesi (2016b) proposes sufficient and necessary conditions to identify
the grounds for a truth by only considering toy examples, here we will generalize her results
to also encompass more refined cases (see Figures 1 and 2). In particular, working in first-
order logic, we will put out those features that are sufficient and necessary to establish that,
under certain conditions N , M are the total and immediate reasons of why A is true. The
discussion will proceed into two main stages. First, we will introduce the features informally,
and then move to the formal definitions.

The first feature that we need to consider in order to model the relation which links
(total) reasons, or grounds, to their conclusion (i.e. the grounding relation) amounts to the
widespread observation (e.g. see Jansson (2017); Kim (1994), Woodward (2004)), that this
is a dependence relation. This dependence can, in its turn, be conveyed in the following
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terms. In a relation that goes from the (total) reasons to their conclusion not only does the
conclusion follow from its reasons, but it is also the case that if the reasons were modified
somehow (under certain conditions), then this change would affect the conclusion. Trans-
lated into logical terms this becomes: not only it is the case that the conclusion logically
follows from the (total) reasons, but also the negation of the conclusion needs to logically
follow from the negation of some (even all) the (total) reasons (under certain conditions).

Let us consider this idea of dependency expressed in logical terms on the background
of the example 1.3. (Figure 1) from the Introduction. It logically follows from their cod-
ing competences and teamwork skills that Stanford Computer Science graduates are ideal
candidates for a particular tech job. However there seems to be more than just a logical
consequence relation between these relata: indeed, if one of the premisses (or even both)
were modified, this change would affect the conclusion. Suppose for example that Stanford
Computer Science graduates do not have teamwork skills, then it follows that they no longer
are ideal candidates for the tech job.

The conclusion is thus dependent on its reasons or grounds; however, this is not all.
Indeed, any explanatory relation is asymmetric: there is a direction from what explains
to what is explained. The dependency does not provide such a directionality. To see this
clearly, one can consider any case with a single reason. Example 1.5. above (see Figure 2)
perfectly fits this type of scenario: we indeed have that a property of circles is explained
by an unique reason, namely a property of points. Note that these two properties can be
proved to be equivalent, in line with our formulation of dependency. Yet, despite their
equivalence and following Bolzano’s intuitions, it is the property of points that explains
the property of circles and not vice versa. We need to find an ingredient that determines
this directionality or asymmetry. Poggiolesi27 relies on an old and illustrious philosophical
tradition28 in identifying the missing ingredient as complexity : the simpler reasons explain
the more complex conclusion, not the other way. Moreover, the increase in complexity in
a grounding relation should be of a particular type:29 the formulas by means of which a
sentence is explained should correspond to a decomposition of the sentence itself. Although
this insight is clear, deep as well as supported in the philosophical tradition, problems arise
when we try to formalize it. The first notions that would seem to naturally serve the purpose
are the standard notions of logical complexity and subformula; however, they turn out to
be inadequate for explanations. Indeed, they face two main kinds of counterexample.30

The first, concerning negation, can be illustrated by returning to example 1.1. (Figure 1).
As already discussed, the (total and immediate) reasons of the formula  pp _ qq are  p
and  q. However  p and  q taken together are neither less complex31 nor subformulas
of  pp _ qq, according to the standard notions. The second type of counterexample arises
when considering cases like 1.2-1.6, namely cases where, as already underlined, one needs to
look deep inside a formula. Consider in particular example 1.4. (Figure 2.).32 In this case
the (total and immediate) reasons of the formula @xppZx_ SNxq Ñ Nxq are the formulas
@xpZxÑ Nxq and @xpSNxÑ Nxq. Again, these two latter formulas are not logically less

27On this point, see further work in Poggiolesi (2018, 2024).
28E.g. see Betti (2010); Detlefsen (1988).
29See Rumberg (2013).
30Other features of logical complexity and subformulas that are not adequate for an explanatory framework

will naturally emerge during the discussion.
31Here we mean that the sum of the logical complexity of  p and  q is lower than the logical complexity

of  pp_ qq.
32As already emphasized, although examples 1.2., 1.3. as well as 1.5. and 1.6., all display an analogous

logical form, their explanatory power rely on the use of concepts the analysis of which goes beyond the
purpose of the present paper. Such an analysis can be however found in Poggiolesi (2024).
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complex nor subformulas of the conclusion, according to the standard definitions of logical
complexity and subformula. In particular, whilst the standard notion of subformula only
allows to break a formula along its main connective, the present example vividly shows that
the possibility of breaking a formula from the inside, i.e. by breaking a connective that is
not the main one and leaving the rest of the formula untouched, should also be taken into
account.

We take these examples not as challenges to the idea that explanation involves an increase
in complexity, but rather as a demonstration that standard notions of logical complexity
and subformula are not fit for this purpose. We will thus enrich the notions of complexity
and subformula to adapt them for an explanatory framework. In particular, we will first
introduce the notion of e-complexity, that extends the standard notion of logical complexity
by providing a more explanatory compelling way of counting connectives. Consequently,
and in accordance with the new notion of e-complexity, we will define another relation of
subformula, called e-subformula, that extends the standard notion of subformula in a way
which is adequate for an explanatory framework.

Definition 4.1. Let A P WF , the e-complexity of A, ecmpAq, is defined in the following
way:

- ecmpPtq = ecmp Ptq = 0

- ecmp  Aq = ecmpAq ` 1

- ecmpA ˝Bq = ecmp pA ˝Bqq = ecmpAq + ecmpBq + 1

- ecmpdxAxq = ecmp d xAxq = ecmpAxq + 1

Definition 4.1 relies on a previous definition of complexity for an explanatory framework
provided in Poggiolesi (2016b) and extends it to the first-order level. Let us briefly illus-
trate the main insight behind it. It is a notion that basically aims at depicting a hierarchy
of first-order formulas that lies in the background of the explanatory framework. Since in
an explanatory framework, one goes from truth to truths, e-complexity tracks relationships
among the truths expressed by the formulas, if they were true. In the cases of conjunc-
tion, disjunction and quantifiers, e-complexity coincides with the standard notion of logical
complexity. If, for example, A and B express truths, then the truth expressed by A^ B is
obtained from the previous truths using a single operation. Thus conjunction increases by
the sum of the e-complexity of A and that of B. Analogously, if A expresses a truth, then
the truth expressed by @xAx is obtained from the previous truth using a single operation.
Thus the universal quantifier increases by one the e-complexity of the formula it is applied
to. Things are more subtle for the case of negation. Let us see this first with the case of
literals. Since (at most) one of Pc and  Pc will express a truth, then only one of these for-
mulas will ever be an object of an explanatory hierarchy. Thus, there seems to be no reason
to count  Pc as more complex than Pc:  Pc can no longer be seen as constructed from
Pc, since if one is true, the other is false. We should rather consider them as two formulas
on the same level and this is precisely what e-complexity does. Analogous reasoning can be
applied to the e-complexity of more complex formulas like A^B and  pA^Bq, or @xAx and
 p@xAxq. We can no longer count the complexity of  pA^Bq as the complexity of A^B
plus one, as standard logical complexity does, since if  pA^Bq is true, then A^B is false
and thus it cannot be constructed from it. We should rather think of A^B and  pA^Bq
as two formulas that lie at the same level of an explanatory hierarchy and thus have the
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same e-complexity. The exception is the case of double negation, where the negation counts
since ecmp  Aq = ecmpAq` 1. But this is in harmony with what has been said up to now:
  A and A may both express truths, and thus the former can be seen as constructed from
the latter by means of a single operation.

Note also that thanks to the notion of e-complexity, we can look at the relation between
a formula A, and its converse A˚ (see Definition 2.3), under a novel light. Indeed each
formula and its converse are such that their conjunction corresponds to a contradiction and
they have the same e-complexity.33 Note also that in an explanatory framework one may
work with contexts (see Definitions 2.4) and formulas in contexts (see Definitions 2.5). The
e-complexity of contexts, and formulas in contexts can be defined as follows.

Definition 4.2. We define the e-complexity of a context ecmpCr.sq “ ecmpCrPcsq for any
predicate P and constant c in L.

Definition 4.3. We define the e-complexity of a formula in context, ecmpCrF sq as a pair of
numbers pm,nq such that m “ ecmpCr.sq and n “ ecmpF q. Accordingly, given the formulas
in a context C1rF1s, ..., CkrFks and DrGs, if ecmpC1rF1sq = pm,n1q, ..., ecmpCkrFksq =
pm,nkq and ecmpDrGsq = pm,nq, where n “ n1 ` ... ` nk ` 1, then C1rF1s, ..., CkrFks will
be said to be immediately less g-complex than DrGs.

We now move to our new notion of subformula, that will be called e-subformula, and
that will work in parallel with the notion of e-complexity (just as logical complexity and
subformula do). There are three main ideas that motivate the new notion of e-subformula.
The first idea is related to the aforementioned fact that in an explanatory framework relations
amongst formulas might involve connections that go deep inside formulas themselves. The
standard subformula only connects formulas by looking at the main connective; we will
enrich it by also allowing to look at connectives inside the formulas. As a consequence, we
will use again the notions of context, and formula in a context. The second and third ideas
are linked to the novel way of counting the complexity of a formula. Consider formulas F and
E which are equivalent by associativity and commutativity of conjunction and disjunction,
change of orders of identical quantifiers, and substitution of variables. Not only are F and
E logically equivalent, they also are equivalent from an explanatory point of view. Indeed,
E and F convey the same “state of affairs,” and occupy the same place in the explanatory
hierarchy, i.e. they have the same e-complexity. Hence if F is a subformula of F 1, then E
should be as well. We will render this feature by closing the relation of e-subformula under
associativity and commutativity of conjunction and disjunction, change of orders of identical
quantifiers, and substitution of variables.

Note that this sort of reasoning also applies to any formula F and its converse F˚.
Although F and F˚ are of course not equivalent, yet they share a deep relation: they convey
the same“state of affairs” and they occupy the same place in the explanatory hierarchy, i.e.
they have the same e-complexity. Either F is true or F˚ is, yet they represent the two sides
of the same coin. As a result, whenever a formula F 1 is a e-subformula of a formula F , its
converse will be too.

Now that we have clarified the main insights behind the new notion of e-subformula, we
introduce it formally via the following definitions.

Definition 4.4. Given the formulas F and G of L, we say that F is FOL-equiv to G if, and
only if, F can be obtained from G by associativity and commutativity of conjunction and
disjunction, substitution of variables, and change of orders of identical quantifiers.

33Whilst a formula and its negation are such that their conjunction corresponds to a contradiction, but
they do not necessarily have the same e-complexity.
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Definition 4.5. Given a context Cr.s of L, we say that Cr.s is FOL-equiv to Dr.s if, and
only if, for any predicate P and any constant c P L, CrPcs is FOL-equiv to DrPcs.

Definition 4.6. For any pair of formulas F and G of L, we say that F – G if, and only if,
F is FOL-equiv to G or F is FOL-equiv to G˚.

Definition 4.7. For any pair of contexts Cr.s and Dr.s of L, we say that Cr.s – Dr.s if,
and only if, for any predicate P and any constant c in L, CrPcs is FOL-equiv to DrPcs or
CrPcs is FOL-equiv to pDrPcsq˚.

Definition 4.8. For any pair of multisets M and N of formulas of L, such that M “

tC1rF1s, ..., CnrFnsu and N “ tD1rG1s, ..., DnrGnsu, we say that M – N , if, and only if,
F1 – G1, ...., Fn – Gn and C1 – D1, ...., Cn – Dn.

Definition 4.9. For any pair of formulas in contexts CrF s and DrGs of L, we say that
DrGs is a e-subformula of CrF s if, and only if, Cr.s – Dr.s, and:

- F – G,

- F –   F 1 and G is a e-subformula of F 1,

- F – F 1 ˝ F 2 and G is a e-subformula of F 1 or G is a e-subformula of F 2,

- F – dxF 1 and G is a e-subformula of F 1pt{xq for all t free for x in F 1.

The notion of immediate e-subformula is analogous to that of immediate subformula.

Definition 4.10. M is a multiset of distinguished immediate e-subformulas of CrF s, if, and
only if:

- M – tCrF 1su and F –   F 1,

- M – tCrF 1s, CrF 2su and F – pF 1 ˝ F 2q,

- M – tCrdxF 1u and F – F 1pt{xq, for all t free for x in F 1.

Note that the distinguished immediate e-subformulas of CrF s are always immediately less
e-complex than CrF s according to Definition 4.3, so that the notion of e-complexity and
e-subformula go hand in hand.

We now have all the ingredients to formally define the necessary and sufficient condi-
tions which establish when, under certain conditions N , formulas M count as the total and
immediate reasons of a formula A.

Definition 4.11. For any finite multisets of CF M = tD1rG1s, ..., DmrGmsu and N “

tC1rF1s, ..., CnrFnsu(which could be empty), and for any CF CrF s, M is a total and imme-
diate formal reason of CrF s under the condition that N˚, in symbols N | M ( CrF s, if,
and only if, for any Er.s such that SCpEq “ SCpCq and Er.s P P if, and only if, Cr.s P P,
we have:

1. ErG1s, ..., ErGms |ù ErF s,

2. for some non empty (possibly non proper) submultiset M 1 of M , such that M 1 “

tDk1rGk1s, ..., DkrrGkrsu, we have that pErF1sq
˚, ..., pErFnsq

˚, pErGk1sq
˚, ..., pErGkrsq

˚,M´{E |ù
pErF sq˚.
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3. N YM is a multiset of distinguished immediate e-subformulas of CrF s.

where M´ = M ´M 1 and M´{E =tErGzs : DzrGzs PM
´u.

Definition 4.11 represents the formal counterpart of the features discussed in this section.
Conditions 1. and 2. are meant to capture the dependency of the relation. Obviously
this dependence holds amongst the formulas (in contexts) at issue, independently from the
contexts these formulas belong to. For this reason, it is relevant to demand the dependency
for any context Er.s whose scope and polarity are the same as that of the formula to be
explained.34 Condition 3. amounts to the directionality or asymmetry of the explanatory
relation at issue: this is conveyed via the new notion of e-subformula.35

Let us evaluate some relations of reasons to related conclusions which emerge from this
definition. Consider the formula  pp_ qq that we have discussed in the example 1.1. above
(see Figure 1), for which, as noted  p, q are the total and immediate reasons. Definition
4.11 matches this intuition. Indeed  pp_ qq is a classical logical consequence of  p and  q,
but it is also the case that if we modify a subset of the reasons and we consider, say, p and
 q, instead of  p,  q, it logically follows that p _ q. Finally, t p, qu is the multiset of
distinguished immediate e-subformulas of  pp_ qq.

Let us now turn to the formula @xppZx_SNxq Ñ Nxq from the example 1.4 (see Figure
2), whose total and immediate reasons are the formulas @xpZxÑ Nxq and @xpSNxÑ Nxq.
Definition 4.11 again agrees with this intuition. For any context Er.s, such that SCpEq “ @x
and E P N , we have that ErZx _ SNxs logically follows from ErZxs and ErSNxs; but it
is also the case that if we modify the reasons, so we consider, say ErZxs and pErSNxsq˚,
then it logically follows that pErZx _ SNxsq˚. Finally, t@xpZx Ñ Nxq,@xpSNx Ñ Nxqu
is a multiset of distinguished immediate e-subformulas of @xppZx_ SNxq Ñ Nxq.

Finally, consider the formula @xpNxÑ Ex_Oxq mentioned in Section 2, that could be
seen as formalizing the sentence “for any x, if x is a natural number, then it is an odd or an
even number.” Although the formulas @xpNx Ñ Exq - for any x if x is a natural number,
then it is even - and @xpNx Ñ Oxq - for any x if x is a natural number, then it is odd -
are both e-subformulas of @xpNxÑ Ex_Oxq, it would be rather strange to think of them
as its reasons, if only because they are false. Definition 4.11 confirms this intuition: it can
be easily checked that condition 2. does not hold between the well-formed closed formula
@xpNx Ñ Ex _ Oxq and the formulas @xpNx Ñ Exq and @xpNx Ñ Oxq: in particular,
from p@xpNxÑ Exqq˚ and p@xpNxÑ Oxqq˚ (or even the converse of just one of them), it
does not follow that p@xpNxÑ Exq and @xpNxÑ Oxqq˚.

We can extend the definition of total and immediate formal reasons-conclusion (or equiv-
alently, the definition of the total and immediate formal grounding relation) to total and
mediate formal reasons-conclusion in the following way.

Definition 4.12. For any multisets of CF M and N (which could be empty), and for
any CF F , under the condition that N˚, M is a total and mediate formal reason of F ,
N |M (m F , if, and only if:

34Although it arose in a different framework, a similar dependence relation has been investigated in
Humberstone (2013).

35Note that Definition 4.11 picks up the main insights of Definition 6.1 given in Poggiolesi (2016b) and
extends it in three different ways. On the one hand, and as already underlined, dependency between the
reason and their conclusion is extended to rely on any context (with the same polarity and scope of the
formula to be explained) and g-complexity (see Poggiolesi (2016b)) is replaced by e-complexity. These two
modifications lead to a notion of total and immediate formal reasons of a generality incomparably wider than
that which can be found in Poggiolesi (2016b). On the other hand, (i) the second condition of Definition 6.1.
of Poggiolesi (2016b) has been slightly modified, and (ii) the possibility of having multiple conditions and
not just one has been added. The necessity of both (i) and (ii) were motivated and discussed in Poggiolesi
and Francez (2021).
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- N |M ( F , or

- N 1 |M 1 ( G and N2 | G,M2 (m F , where M 1 YM2 “M , and N 1 YN2 “ N .

5 Explanatory rules provide all, and only, relations from
(total) reasons to conclusion

In this section we prove that the answers offered to our two motivating questions – concerning
the structure of explanations and the relationship between reasons and conclusions – are
consistent. More specifically we show that a conclusion follows from reasons (in the sense
of () if, and only if, there is an explanation from the former to the latter (i.e. , holds). In
particular, Theorem 5.7 establishes that if a rule is explanatory then its premisses represent
the total and immediate reasons of it conclusion, according to Definition 4.11. Theorem
5.14 will prove that if some formulas count as the total and immediate reasons of a certain
conclusion (according to Definition 4.11), then there exists an explanatory rule which convey
this relation. Other lemmas and definitions serve to prove these main theorems.

Lemma 5.1. The following rules are admissible in the calculus Gcl:

when Cr.s P P: when Cr.s P N :

CrFis,M ñ N

CrF1 ^ F2s,M ñ N
^1

M ñ N,CrFis

M ñ N,CrF1 _ F2s
_1

M ñ N,CrFis

M ñ N,CrF1 ^ F2s
^2

CrFis,M ñ N

CrF1 _ F2s,M ñ N
_2

CrF˚i s,M ñ N

Cr pF1 _ F2qs,M ñ N
 _1

M ñ N,CrF˚i s

M ñ N,Cr pF1 ^ F2qs
 ^1

M ñ N,CrF˚i s

M ñ N,Cr pF1 _ F2qs
 ^2

CrF˚i s,M ñ N

Cr pF1 ^ F2qs,M ñ N
 _2

where i “ t1, 2u.

Proof. We prove in detail the admissibility of the rules ^1 and ^2 by induction on the
construction of the context Cr.s, and subinduction on the height of the derivation of the
premise of the rule. The admissibility of the other rules can be proved analogously.

We distinguish cases according to the form of Cr.s. If Cr.s “ r.s, then from the premise
Fi,M ñ N we obtain the desired result thanks to the rule ^L.

If Cr.s ‰ r.s, then we distinguish cases according to the last applied rule R on CrFis,M ñ

N and on M ñ N,CrFis. (i) A rule R has been applied on either M or N . In this case we
apply the inductive hypothesis on the height of the derivation, and then by re-applying R we
get the desired result. (ii) A rule R has been applied on CrFis in the sequent CrFis,M ñ N
(the case where R has been applied on CrFis in the sequent M ñ N,CrFis is analogous).
We distinguish the following sub-cases according to the form of Cr.s.

E,DrFis,M ñ N

E ^DrFis,M ñ N ù36

E,DrF1 ^ F2s,M ñ N

E ^DrF1 ^ F2s,M ñ N

E,M ñ N DrFis,M ñ N

E _DrFis,M ñ N ù

E,M ñ N DrF1 ^ F2s,M ñ N

E _DrF1 ^ F2s,M ñ N

36The symbol ù means: the premise of the right side is obtained by inductive hypothesis on height of
the derivation of the premise of the left side.
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When CrFis “ @xDrFis, we proceed as follows:

@xDrFis, DrFis,M ñ N

@xDrFis,M ñ N ù

@xDrF1 ^ F2s, DrFis,M ñ N

@xDrF1 ^ F2s, DrF1 ^ F2s,M ñ N
i.h.

@xDrF1 ^ F2s,M ñ N

where in the derivation on the right, in the top inference, i.h. stands for the fact that the
inductive hypothesis on the construction of the context Cr.s allows us to infer the sequent
@xDrF1 ^ F2s, DrF1 ^ F2s,M ñ N .

Suppose finally that CrFis is of the form  DrFis
37 and that the sequent  DrFis,M ñ N

has been obtained from the sequent M ñ N,DrFis by means of the rule  L. Then we
consider the sequent M ñ N,DrFis and we apply (since now Dr.s PN ) the rule ^2 obtaining
the desired result.

Lemma 5.2. For any pair of formulas F,  F P CF , it holds that:

CrF s ( Cr  F s

Proof. By induction on the construction of Cr.s. If Cr.s=r.s, then it is trivial. If Cr.s ‰ r.s,
then we need to distinguish cases. However, since F and   F are logically equivalent, it is
straightforward to check that it holds for any case.

Definition 5.3. Given G,G1, F P CF :

we write G,G1 „ F when G,G1 |ù F and G˚, G1˚ |ù F˚.

we write G | G1 „ F when G1 |ù F and G˚, G1˚ |ù F˚.

we write ă G ą G1 „ F when G1˚ |ù F˚ and G,G1 |ù F .

Lemma 5.4. For any G,G1, F P CF :

G | G1 „ F if, and only if, ă G˚ ą G1˚ „ F˚

Proof. Straightforward.

Lemma 5.5. For any context Cr.s that has positive polarity and for any formula G,G1, F
P CF such that F P tG^G1, pG_G1qu, then it holds that:

(a) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

(b) if ă G ą G1 „ F , then ă CrGs ą CrG1s „ CrF s,

where if SCF pCq is not empty, then CrF s has PUS (see Definition 2.10).

For any context Cr.s that has negative polarity and for any formula G,G1, F P CF such that
F P tG^G1, pG_G1qu, then it holds that:

(c) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

37The case where CrFis is of the form   DrFis is clearly analogous.
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(d) if ă G ą G1 „ F , then CrGs | CrG1s „ CrF s,

where if SCF pCq is not empty, then CrF s has NES (see Definition 2.10).

Proof. We prove (a)-(d) by (a common) induction on the the construction of Cr.s. We
start from (a). If Cr.s “ r.s, then it is trivial. Suppose Cr.s ‰ r.s, then we distinguish
cases according to the form of C. We have (i) C =   Dr.s, (ii) C = E ^Dr.s,38 (iii) C =
E _Dr.s,39 (iv) C = @xDr.s, (v) C = DxDr.s, (vi) C =  Dr.s.

(i). It is straightforward.

(ii). Suppose G,G1 „ F . By i.h., one obtains DrGs, DrG1s „ DrF s. In order to get the
desired result, we exploit the sequent calculus Gcl in the following way:40

DrGs, DrG1s ñ DrF s E,E ñ E

E,DrGs, E,DrG1s ñ E ^DrF s
^R1

E,DrGs, E ^DrG1s ñ E ^DrF s
^L

E ^DrGs, E ^DrG1s ñ E ^DrF s
^L

DrF s ñ DrGs, DrG1s E ñ E

E,DrF s ñ DrGs, E ^DrG1s
^R1

E ñ E

E,E,DrF s ñ E ^DrGs, E ^DrG1s
^R1

E,DrF s ñ E ^DrGs, E ^DrG1s
CL

E ^DrF s ñ E ^DrGs, E ^DrG1s
^L

From E ^DrGs, E ^DrG1s $ E ^DrF s by completeness of Gcl, one gets E ^DrGs, E ^
DrG1s |ù E^DrF s. From E^DrF s $ E^DrGs_E^DrG1s by completeness of Gcl, and the
symbol of converse (see Definition 2.3), one gets pE^DrGsq˚, pE^DrG1sq˚ |ù pE^DrF sq˚.
Thus we have E ^DrGs, E ^DrG1s „ E ^DrF s.

(iii). Analogously to (ii).

(iv) In this case we further distinguish sub-cases according to whether (iva) SCF pCq ‰ H, or
(ivb) SCF pCq “ H. We start by analyzing (iva). We further distinguish this case, according
to the form of F . We thus have (iva1) F “ Gx^G1x, and (iva2) F “  pGx_G1xq.

(iva1). By i.h., one obtains DrGxs, DrG1xs „ DrGx^G1xs. One gets the desired result,
exploiting rule ^1 of Lemma 5.1, as well as the sequent calculus Gcl, in the following way:41

DrGxs, DrG1xs ñ DrGx^G1xs

@xDrGxs, DrG1xs ñ DrGx^G1xs
@L1

@xDrGxs,@xDrG1xs ñ DrGx^G1xs
@L1

@xDrGxs,@xDrG1xs ñ @xDrGx^G1xs
@R

@xDrGxs ñ @xDrGxs

@xDrGx^G1xs ñ @xDrGxs
^1

@xDrGx^G1xs ñ @xDrGxs,@xDrG1xs
WR

From @xDrGxs,@xDrG1xs $ @xDrGx^G1xs by completness of Gcl one gets @xDrGxs,@xDrG1xs |ù
@xDrGx ^ G1xs. From @xDrGx ^ G1xs $ @xDrGxs _ @xDrG1xs by completeness of Gcl,
and the symbol of converse (see Definition 2.3), one gets p@xDrGxsq˚, p@xDrG1xsq˚ |ù
p@xDrGx^G1xsq˚. Thus we have @xDrGxs,@xDrG1xs „ @xDrGx^G1xs.

38The case C = Dr.s ^ E is analogous.
39The case C = Dr.s _ E is analogous.
40For the sake of simplicity, we use the multiplicative version of the rule ^R, as well as the rule of

contraction on the left side of the sequent, which are both admissible rules in the calculus Gcl.
41For the sake of simplicity, we use the version of the rule @L and DR without the repetition of the

quantifier, as well as the weakening on the right. These rules are admissible in the calculus Gcl.
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(iva2). Analogously to (iva1) by using the rule  _1, whose admissibility has been shown
in Lemma 5.1.

(ivb) We should further distinguish cases depending on whether (ivb1) the quantifier
bounds no variable at all or a variable in G but not in G1 (or vice versa); or (ivb2) the
quantifier bounds some variable in Dr.s. In the former case, the procedure is straightforward,
in the latter case one proceeds as in (iva).

(v) In this case, since we are dealing with an existential, we have that SCF pCq “ H. Given
that, there are mainly two sub-cases to treat. (va) The quantifier bounds a variable in either
G or G1, (vb) the quantifiers bound some variable in Dr.s.

(va) By i.h., one obtains DrGxs, DrG1s „ DrF s (we assume the variable x to occur in G
and not in G1, the inverse situation can be treated analogously). In order to get the desired
result, we exploit the sequent calculus Gcl in the following way:

DrGxs, DrG1s ñ DrFxs

DrGxs, DrG1s ñ DxDrFxs
DR1

DxDrGxs, DrG1s ñ DxDrFxs
DL

DxDrGxs, DxDrG1s ñ DxDrFxs
DL

DrFxs ñ DrGxs, DrG1s

DrFxs ñ DxDrGxs, DrG1s
DR

DrFxs ñ DxDrGxs, DxDrG1s

DxDrFxs ñ DxDrGxs, DxDrG1s
DL

DL

From DxDrGxs, DxDrG1s $ DxDrFxs by completness of Gcl one gets DxDrGxs, DxDrG1s |ù
DxDrFxs. From DxDrFxs $ DxDrGxs _ DxDrG1s by completeness of Gcl, and the symbol
of converse (see Definition 2.3), one gets pDxDrGxsq˚, pDxDrG1sq˚ |ù pDxDrFxsq˚. Thus we
have DxDrGxs, DxDrGxs „ DxDrFxs.

(vb) By i.h., one obtains DrGs, DrG1s „ DrF s. In order to get pDxDrGsq˚, pDxDrG1sq˚ |ù
pDxDrF sq˚, we proceed as in the case above, namely exploiting the sequent calculus, the
completeness of the sequent calculus and the symbol of converse. In order to get the other
side, namely DxDrGs, DxDrG1s |ù DxDrF s, we start from DrGs, DrG1s $ DrF s and we apply
as many rules R as necessary to divide the context D (relative to the formulas DrGs and
DrG1s), into two parts: the part which contains the variable which will be bound by the
existential and the part without it. We thus either get (i) D1, D2rGs, D1, D2rG1s $ DrF s, if
the connective linking D1 and D2 in D is a conjunction; (ii) D1 $ DrF s and D2rGs, D2rG1s $
DrF s, if the connective linking D1 and D2 in D is a disjunction. In the former case we proceed
as follows:

D1, D2rGs, D1, D2rG1s ñ DrF s

D1, D2rGs, D2rG1s ñ DrF s
CL

DrGs, D2rG1s ñ DrF s
^L`R

DrGs, D2rG1s ñ DxDrF s
DR1

DxDrGs, D2rG1s ñ DxDrF s
DL

DxDrGs, D1, D2rG1s ñ DxDrF s
WL

DxDrGs, DrG1s ñ DxDrF s
^L`R

DxDrGs, DxDrG1s ñ DxDrF s
DL
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In the latter case we proceed as follows:

D1 ñ DrF s

D1 ñ DxDrF s
DR1

DxDrGs, D1 ñ DxDrF s
WL

D1 ñ DrF s

D1, D2rG1s ñ DrF s
WL

D2rGs, D2rG1s ñ DrF s

DrGs, D2rG1s ñ DrF s
_L`R

DrGs, D2rG1s ñ DxDrF s
DR1

DxDrGs, D2rG1s ñ DxDrF s
DL

DxDrGs, DrG1s ñ DxDrF s
_L`R

DxDrGs, DxDrG1s ñ DxDrF s
DL

(vi) Assuming G,G1 „ F , we apply (c) getting DrGs, DrG1s „ DrF s, where F has a negative
polarity. However, by logic, this is equivalent to  DrGs, DrG1s „  DrF s, which is the
desired result and where Dr.s has a positive polarity.

The cases (b)-(d) can be treated analogously to case (a).

Lemma 5.6. For any context Cr.s that has positive polarity and for any formula G,G1, F
P CF such that such that F P tG_G1, pG^G1qu, then it holds that:

(a) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

(b) if G | G1 „ F , then CrGs | CrG1s „ CrF s,

where if SCpCqF is not empty, then CrF s has PES (see Definition 2.10).

For any context Cr.s that has negative polarity and for any formula G,G1, F P CF , such that
F P tG_G1, pG^G1qu, then it holds that:

(c) if G,G1 „ F , then CrGs, CrG1s „ CrF s,

(d) if G | G1 „ F , then ă CrGs ą CrG1s „ CrF s,

where if SCpCqF is not empty, then CrF s has NUS (see Definition 2.10).

Proof. The proof is analogous to the proof of Lemma 5.5.

Theorem 5.7. (Soundness) For any multisets of sequents S1, S (where S1 is possibly empty),
and sequent M ñ N ,

if S1 | S ,M ñ N, then pS1qτ | pSqτ (
ľ

M Ñ
ł

N

where pS1qτ , pSqτ are the standard translation of the multisets of sequents into multisets of
formulas.

Proof. In order to prove the theorem, we should check the validity of each explanatory rule
of Figure 4. The validity of the rule   follows from Lemma 5.2. We prove the validity of
rule ˝1. The validity of the other rules can be proved analogously.

Consider the rule ˝1 applied on a formula of the form CrF ^Gs, where Cr.s has a positive
polarity. Clearly, it holds that F,G „ F ^ G. But, then by Lemma 5.5, we have

Ź

M Ñ
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Ž

N _ CrF s,
Ź

M Ñ
Ž

N _ CrGs „
Ź

M Ñ
Ž

N _ CrF ^Gs, where if SCF^Gp
Ź

M Ñ
Ž

N _ Cq is not empty, then
Ź

M Ñ
Ž

N _ CrF ^Gs has PUS. Actually for Lemma 5.5
again, we have that, for any context Er.s it holds that ErF s, ErGs „ ErF ^ Gs, where if
SCF^GpEq is not empty, then ErF ^Gs has PUS. Finally, t

Ź

M Ñ
Ž

N _ CrF s,
Ź

M Ñ
Ž

N _ CrGsu is a multiset of immediate distinguished e-subformulas of
Ź

M Ñ
Ž

N _

CrF ^Gs (also thinking of FOL-equivalent formulas). Hence we have the desired result.

Consider the rule ˝1 applied on a formula of the form CrF ^Gs where Cr.s has a negative
polarity. Then the reasoning is the same as above and it thus crucially relies on Lemma 5.5.

Consider the rule ˝1 applied on a formula of the form CrF _ Gs where Cr.s has a positive
polarity. Then the reasoning is the same as above, except that one needs to use Lemma 5.6.

Consider the rule ˝1 applied on a formula of the form CrF _Gs where Cr.s has a negative
polarity. Then the reasoning is the same as above, except that one needs to use Lemma 5.6.

Corollary 5.8. For any multiset of sequents S1, S (where S1 is possibly empty), and sequent
M ñ N ,

if S1 | S ,m M ñ N, then pS1qτ | pSqτ (m

ľ

M Ñ
ł

N

where pS1qτ , pSqτ are the standard translation of the multisets of sequents into multisets of
formulas.

Proof. From Theorem 5.7.

Definition 5.9. For any context Cr.s, we define the related quantifiers-only-context QopCqr.s,
in the following way:

- if Cr.s P P, then QopCqr.s “ SCpCqr.s

- if Cr.s P N , then QopCqr.s “ SCpCqr.s˚

where r.s˚ stands for  r.^Js.42

Lemma 5.10. Let QopCqr.s be the quantifiers-only-context related to Cr.s, then:

SCpQopCqq “ SCpCq

Proof. Straightforward from Definition 5.9.

Lemma 5.11. For any multisets of CF M and N (which could be empty), and for any CF
CrF s,

if N |M ( CrF s, then QopNq | QopMq ( QopCqrF s

where for any multiset of closed formulas P , QopP q “ tQopEqrGs | ErGs P P u.

42The need of writing  r. ^ Js, instead of the simpler  r.s, is motivated by the way contexts have been
defined, i.e. it is not always possible to have a context of the form  r.s. On the other hand, in this specific
case, we need to consider a context with a negative polarity.
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Proof. By Definition 4.11. Indeed, since by such Definition, the relation should hold for any
context Er.s such that SCpEq “ SCpCq and Er.s P P if, and only if, Cr.s P P, then it will also
hold for those contexts where quantifiers are at the top of the formulas under consideration,
as these contexts satisfy both conditions above by the way they are constructed. As for the
third clause of Definition 4.11, note that by the way subformulas are defined (see Definition
4.9) if NYM is a multiset of distinguished immediate e-subformulas of CrF s, so is QopNqY
QopMq with respect to QopCqrF s. Indeed, QopNq, QopMq and QopCqrF s are all obtained
in the same way from N , M and CrF s, respectively.

Definition 5.12. For any quantifier-only-context QopCqr.s, we say that QopCqr.s is:

a positive universal if, and only if, QopCqr.s “ @x1, ...@xnr.s, where n ě 0.

a negative universal if, and only if, QopCqr.s “ @x1, ...@xnr.s
˚, where n ě 0.

a positive existential if, and only if, QopCqr.s “ Dx1, ...Dxnr.s, where n ě 0.

a negative existential if, and only if, QopCqr.s “ Dx1, ...Dxnr.s
˚, where n ě 0.

Lemma 5.13. For any multisets of CF M and N (which could be empty), and for any CF
CrF s,

if QopNq | QopMq ( QopCqrF s then pNqδ | pMqδ , ñ CrF s

where for any multiset of CF M , Mδ = tñ ErCs | ErCs PMu.

Proof. We proceed by distinguishing cases based on the form of QopCqr.s and F .

[-] QopCqr.s might be such that: (i) it is a positive universal; (ii) it is a negative universal;
(iii) it is a positive existential; (iv) it is a negative existential; (v) QopCqr.s= SCpCqr.s,
where SCpCq corresponds to any finite sequence of universal and existential quantifiers
that is not empty and is neither of the type @x1, ...,@xn, nor of the type Dx1, ..., Dxn; (vi)
QopCqr.s= SCpCqr.s˚, where SCpCq corresponds to any finite sequence of universal and
existential quantifiers that is not empty and is neither of the type @x1, ...,@xn, nor of the
type Dx1, ..., Dxn.

[-] F can be of the following form: (a)   G; (b) G ^ G1; (c) G _ G1; (d)  pG ^ G1q; (d)
 pG_G1q; (e) @xGx; (f)  @xGx; (g) DxGx; (h)  DxGx .

We check in detail the combinations of (i)-(vi) with (a), (b) and (e). The other combi-
nations can be treated analogously.

1. We combine (i)-(vi) with (a). In each case, we have that QopCqrGs ( QopCqr  Gs;
at the syntactic level the explanatory rule   gives us ñ CrGs , ñ Cr  Gs, as
required.

2. We combine (i) with (b). We have that QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s. At
the syntactic level, thanks to the explanatory rule ˝1, we obtain ñ CrGs,ñ CrG1s ,
ñ CrG^G1s, as required.

3. We combine (iv) with (b). We have that QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s,
QopCqrGs | QopCqrG1s ( QopCqrG^G1s and QopCqrG1s | QopCqrGs ( QopCqrG^G1s.
At the syntactic level, thanks to the explanatory rules ˝1, ˝2, we get ñ CrGs,ñ
CrG1s , ñ CrG^G1s, ñ CrGs |ñ CrG1s , ñ CrG^G1s and ñ CrG1s |ñ CrGs ,ñ
CrG^G1s, as required.
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4. We combine (ii) with (b). We distinguish between two sub-cases: in the first sub-case
SCG^G1pQopCqq is not empty (this involves that there exists some variable that occurs
both in G and G1 that the quantifiers bound), whilst in the second case SCG^G1pQopCqq
is empty (which means that there is no variable that occurs both in G and G1 that
the quantifiers bound). In the former sub-case, it is straightforward to check that
no relation of total and immediate formal reasons can be established. In the latter
sub-case, we have QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s, QopCqrGs | QopCqrG1s (
QopCqrG ^ G1s and QopCqrG1s | QopCqrGs ( QopCqrG ^ G1s. At the syntactic level,
the explanatory rules ˝1, ˝2 give us what required.

5. We combine (iii) with (b). We distinguish between two sub-cases: in the first sub-
case SCG^G1pQopCqq is not empty, whilst in the second case SCG^G1pQopCqq is
empty. In the former sub-case, it is straightforward to check that no relation of total
and immediate formal reasons can be established. In the latter sub-case, we have
QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s. At the syntactic level, the explanatory rule
˝1 give us what required.

6. We combine (v) with (b). We distinguish between two sub-cases: in the first sub-
case SCG^G1pQopCqq is not empty, whilst in the second sub-case SCG^G1pQopCqq is
empty. In the latter sub-case, we have QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s. At
the syntactic level, thanks to the explanatory rule ˝1 we get what required. In the
former sub-case, we need to further distinguish depending on the type of quantifiers
SCG^G1pQopCqq contains. If SCG^G1pQopCqq “ @y1, ...@yn, then, as before we have
QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s and the explanatory rule ˝1 gives us what
required. In all the other cases, no relation of total and immediate formal reason
arises.

7. We combine (vi) with (b). We distinguish between two sub-cases: in the first sub-
case SCG^G1pQopCqq is not empty, whilst in the second sub-case SCG^G1pQopCqq
is empty. In the latter sub-case, we have QopCqrGs, QopCqrG1s ( QopCqrG ^ G1s,
QopCqrGs | QopCqrG1s ( QopCqrG^G1s and QopCqrG1s | QopCqrGs ( QopCqrG^G1s.
At the syntactic level, thanks to the explanatory rules ˝1, ˝2, we get what desired. In
the former sub-case, we need to further distinguish depending on the type of quantifiers
SCG^G1pQopCqq contains. If SCG^G1pQopCqq “ Dy1, ...Dyn, then, as before, we have
QopCqrGs, QopCqrG1s ( QopCqrG^G1s, QopCqrGs | QopCqrG1s ( QopCqrG^G1s and
QopCqrG1s | QopCqrGs ( QopCqrG ^ G1s. The explanatory rules ˝1 and ˝1 give us
what required. In all the other cases, no relation of total and immediate formal reason
arises.

8. We combine (i)-(vi) with (e), hence with a formula of the type QopCqr@xAxs It is easy
to check that there is no closed e-subformula of QopCqr@xAxs such that it stands with
QopCqr@xAxs in a relation of total and immediate reasons-conclusion. Hence, this case
does not need to be further analyzed.

Theorem 5.14. (Completeness) For any multisets of closed formulas N , N 1 (possibly
empty), and formula CrF s,

if N 1 | N ( CrF s, then pN 1qδ | pNqδ , ñ CrF s
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Proof. From Lemmas 5.11 and 5.13.

Corollary 5.15. For any multisets of closed formulas N , N 1 (possibly empty), and formula
CrF s,

if N 1 | N (m CrF s, then pN 1qδ | pNqδ ,m ñ CrF s

Proof. From Theorem 5.14.

6 Related work

Recent years have witnessed an increasing interest in the notion of explanation from a
logical point of view. Here we mention some trends (the list is not exhaustive) that could
be seen as related to the present work. A first trend is that which is taking place with some
common machine learning classifiers, where recent research has aimed at identifying the
reasons behind the classification of instances, and thus has proposed explanations for this
type of decision, e.g. see Darwiche and Hirth (2023); Shih et al. (2018). By considering the
examples taken into account in this wide and still flourishing literature, and in particular
by dwelling on the crucial notion of sufficient reason, we are led to believe that there are
strong analogies with our approach. If this analogy is well-founded, then it could prove
fruitful in (at least) two ways. On the one hand, the semantics put forward by Darwiche
and Hirth (2023) - which is mainly in terms of prime implicants - can be profitably employed
to develop a semantic-approach for the present proposal that is for now mainly syntactic.
On the other hand, the power of the explanatory sequent calculus introduced here could be
implemented to enrich the computational part of the work developed in, e.g. Shih et al.
(2018); it could also be used to extend their perspective, which to date concerns solely the
propositional level, to a first-order language.

Another direction, related to Darwiche and Hirth (2023); Shih et al. (2018) is the work
of Liu and Lorini (2023, 2022). In a nutshell, Liu and Lorini introduce the reasons behind
the classification of instances in a (modal) language, and develop an axiomatic system as
well as a semantics for the new connective. Since the approach we propose only lies at the
metalinguistic level,43 but is lacking for its linguistic counterpart, the work of Liu and Lorini
(2023, 2022) can be seen as a useful source of inspiration.

A third trend that one might be tempted to consider lies within metaphysics, where there
is a growing interest towards the notion of (metaphysical) grounding (e.g. see Fine (2012)).
Although there exists several attempts to develop a logic of metaphysical grounding, these
attempts are all based on toy examples (e.g. see Poggiolesi (2020a)). As a result, rules or
axioms involved in these formalizations are much weaker and simpler than those introduced
in this paper. The issue in this case will be that of verifying whether one can witness
more intricate cases of metaphysical grounding, closer to the type that can be found in
mathematics. If this is the case - as we suspect - then results of this paper can contribute
to discussion in the metaphysical literature as well.

Last, but not least, another recent trend in the current literature concerns those ex-
planations that are characterized by abductive reasoning, namely an inference to the best

43This is a further difference with Poggiolesi (2018), where the connective Ź, for because, was introduced.
Given the intricacy of the issue, we leave the analysis of the extension of the connective Ź for connecting
formulas in contexts at the first-order level for future research.
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explanation. In this framework there are (at least) two recent lines of work, one developed
by Arieli et al. (2022); Millson and Strasser (2019), whilst the other by Piazza et al. (2023);
Pulcini and Varzi (2021). Despite their difference, these works have a strong common fea-
ture, namely they both develop new sequent calculi were several different rules are proposed
to account for abductive reasoning. We thus have three proof-theoretical formal frameworks
dealing with different notions of explanations. As a consequence, the study of their relations
could open up for a novel and interesting connection between conceptual and abductive
explanations, both at the conceptual and at the logical level.

7 Conclusions

The word explanation is an umbrella term which covers several different notions, such as
causal, non-causal or abductive explanations. In this paper we have focussed on concep-
tual explanations, namely some deductive explanations-why, which come from a long and
illustrious tradition in philosophy, bear several analogies with causal explanations, but still
deserve a thorough formal study. The main aim of this paper has been to take some first
steps towards filling this gap, by the introduction of a logical theory of the notion of (concep-
tual) explanation and related relation from reasons to conclusion (i.e. grounding relation).
We have accomplished this task by using and enriching the standard tools of proof theory,
namely the sequent calculus for classical first-order logic. In particular we have added to the
standard inferential rules explanatory rules, i.e., rules whose premisses represent the (total
and immediate) reasons why their conclusion is true. By means of these rules we can con-
struct formal explanations, which represent the formalization of the notion of (conceptual)
explanation. Not only do we believe that this research provides a valuable contribution per
se, in that it fills an important gap in the logical literature, but it also naturally opens up
several directions for future research, such as the formalization of the notion of explanation
in logics other than classical logic, the applications of conceptual explanations to related
fields such as explainable AI, or to related notions of explanation. Finally, it also open up
to the investigation of the value of explanatory rules in proof-theoretic semantics, e.g. see
Francez (2015).
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