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In this paper, we present a more efficient strategy than existing solutions to enhance the lateral resolution
of low photon 3D-LiDAR operating in Geiger mode. Our pipeline makes it possible to reconstruct 3D-images
with an unprecedented lateral-resolution, simultaneously at low photon count and Hertz level framerates. It is
applied on simulated GmAPD 3D-LiDAR signals. Signals acquired using these kind of sensors are unsuitable for
direct applications of Compressive Sensing algorithms. Our contribution focuses on a more efficient strategy for

waveform denoising and reconstruction. For each pixel, we reconstruct sub-pixels with a Compressive Sensing
approach. After describing our method, we demonstrate its applicability on realistic simulated data.

1. Introduction

Single-photon cameras are increasingly being used in 3D-LiDAR
sensing systems, especially in low Size Weight and Power (SWaP)
embedded systems. Here we focus on systems based on Geiger mode
Avalanche Photodiode (GmAPD) sensors [1]. These sensors are highly
sensitive [2-4], capable of statistically detecting fractional photons
return levels. This, coupled with centimeter depth-resolution provides
a competitive edge against “classical” linear systems. This is especially
true in long-range remote sensing (>10 km) and surveillance applica-
tions [5,6]. However, GmAPD sensors are limited to a few pixels (up to
128 x 128 pixels) [7,8], which may result in insufficient resolution.
Increasing the pixel count at the sensor level might pose its own
problems, namely the size of the Focal Plane Array (FPA) and light
gathering capabilities. In addition, GmAPD sensors can only detect
the first photon [3] without information on photon count. Therefore,
the first detection may introduced a loss of later detections, we name
it dead-time effect, it is sometime also referred as pile-up [9,10].
Performance in many applications is strongly correlated with the lateral
resolution of the imaging system. This paper describes an original
method to increase the lateral resolution of GmAPD cameras.

Few methods have been detailed to improve GmAPD
lateral-resolution, reduce SWaP and/or acquisition-time for long-range
applications. For instance, Gordon et al. [11] performed long-range
imaging using a 32 x 32 pixels GmAPD without increasing lateral
resolution. Some methods to increase the lateral resolution albeit with
different constraints were used successfully in 3D-LiDAR imaging. In
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2016, Shin et al. [12] demonstrated photon efficient reconstruction
with a visible Single Photon Avalanche Diode (SPAD) by scanning static
scenes with a two-axis motorized scanner system. Long-range acquisi-
tions were made at 10 km [13] in 2017 and 45 km in 2020 [14,15]
using a scanning system. In 2019, Tachella et al. [16] demonstrated
real-time application at medium range (300 m) with improved lateral
resolution using a purely numerical method, which can be akin to a 3D
interpolation.

Scanning systems are compatible with static ranging but not for
dynamic objects observation in an operational context. A FPA delivers
higher framerates than scanning systems [17] among 3D-LiDAR. Ad-
ditionally, Compressive Sensing (CS) demonstrated equivalent results
using only 10% of the acquisitions number required for scanning
systems [18]. Purely numerical methods such as interpolation are in
most cases unable to resolve sub-pixel objects [19]. Moreover, super-
resolution tends to be blurrier than CS reconstruction [20]. Thus, CS
based methods were shown as less vulnerable to these weaknesses. For
these reasons, our study is focused on a CS method [21-23].

Since 2008, CS was used in the 3D-LiDAR community to increase
single-pixel GmAPD lateral-resolution [18,24-31]. In most cases, these
works use Orthogonal Matching Pursuit [32] or Total Variation [33]
algorithms. In 2017, Edgar et al. [28] performed real-time acquisition
with CS at a metric range with a single pixel sensor. In this paper, we
define a complete pipeline to acquire 3D-images, leveraging CS and
InP/InGaAs GmAPD sensors, applied to simulated data. We reconstruct
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Fig. 1. 3D-LiDAR setup.

the 3D-images using CS considering each pixel in the FPA as a single-
pixel detector. As in previous works on single-pixel imaging [18,24—
31], we use a Digital Micro-mirror Device (DMD) [34] to modulate
the incoming light onto the FPA in a binary spatial-modulation scheme
which we call patterns.

Hereafter, we define a complete pipeline to apply CS to GmAPD
sensor acquisition and constraints. This pipeline is fully described in
Section 2. Then we numerically demonstrate in Section 3 its feasibility
using simulated data and, discuss its possibilities capabilities and limits.

2. Methods and materials
2.1. General overview

The objective of this work is to numerically reconstruct 3D-images
with CS under the constraints imparted by the use of GmAPD sensors.
This kind of sensors detects only the first photoelectron without infor-
mation on the photon count [3]. To apply CS methods, we defined a
specific simulated setup in Fig. 1. This setup is a combination of a clas-
sical quasi-monostatic active system with a GmAPD array associated
with a DMD.

In most cases, signals acquired using a GmAPD array are recon-
structed by using histograms of return-times to increase the dynamic
range. While this approach bears good results [35], its use with CS
is precluded by a fixed upper bound on the number of acquisitions
(less than 10° per pattern [2]) required to maintain a sufficient final
framerate. In our case, the signal-to-noise ratio can be low and time-
correlated due to the GmAPD nature. As shown in Section 3.1, under
these constraints, applying iteratively the noise reduction and then
the waveform estimation (resp. waveform estimation then denoising)
leads to poor waveform estimation (resp. dramatic increase in noise
over time). So, to reconstruct the waveform, denoising and waveform
estimation are made at the same time.

The state-of-the-art of ruggedized fiber laser-sources compatible
with low SWaP systems using sufficient energy and nanosecond pulse
length is around 20 kHz [36] at 1.55 pm. Commercially available
GmAPD cameras can achieve framerates of approximately 150 kHz [37].

This difference will be exploited (Section 2.2.2) to acquire frames with-
out laser illumination during the source’s dead time. These additional
acquisitions can be leveraged to partially compensate the GmAPD
constraints. The idea is to perform a statistical test on each time-bin for
each pixel in order to separate the signal from the noise and directly
estimate its support.

As illustrated in Fig. 2, the whole process can be split in several
steps by (i) doing a compressed acquisition, (ii) building the histogram
of return-times for each pattern and, (iii) simultaneously retrieving
the signal support and correcting waveform before (iv) sequentially
applying a classical CS solver in each bin to reconstruct the final
3D-image.

We need to address the temporal correlation induced by a dead-
time effect. This can occur if the backscattered light generates a signal
with multiple echoes. The pattern-coefficient is defined as the acquired
signal for a bin and a given pattern. Let us consider two acquisitions
with two different patterns but identical cross-section. In that case, their
pattern-coefficients must be equal independently of detections in previ-
ous bins. Not meeting this condition may lead to an erroneous estimate
of pattern-coefficients and thus makes 3D-image reconstruction by CS
incorrect.

Fig. 3 presents the temporal correlation effect. Two patterns are
selected. The @, pattern hides only one object. Both objects are visible
with the @, pattern. In the first case, the signal peaks at twice the
level of the second case. Correctly, recovered signal should exhibit
identical peak level for the “triangle” object as they have an identical
cross-section. This illustrates the effect of the pattern selection on the
temporal signal while dead-time occurs. The same effect will occur for
a slope or any target combination producing multiple echoes in the
retrieved signal.

2.2. Preprocessing

2.2.1. Full waveform reconstruction

To address the temporal correlation, there are two ways com-
monly used. First, decreasing the signal level to reach the domain
where GmAPD have a linear behavior, typically at 0.01 average photon
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Fig. 2. Illustration of the pipeline and its associated notations by considering a
reconstruction example.

counts [38]. Second, define a process to correct the dead-time effect
inducing the temporal correlation. In recent advances for dead-time
effect correction, one imply inverse method base on bayesian frame-
work to revert the dead-time effect and demonstrate sub-picosecond-
accurate 3D-image using it [39]. Another recent approach [40], defines
a probabilistic model correction using Markov-chain under high-flux
conditions for a non-paralyzable and asynchronous sensor enabling
higher dynamic range GmAPD measurement.

We define a simpler and faster signal estimator that works when the
ratio of pulse width to bin length is small (typically less than or equal
to one), as demonstrated in Section 3.1. When using a larger pulse,
consider using a slower but much more accurate algorithm in this case,
such as [39,40]. Our method is inspired by Coates pile-up correction
process [9,10,41] extended for an asynchronous GmAPD sensor in a
CS setup. GmAPD sensors are designed to detect events at the single-
photon level. Their dynamic ranges are effectively of one since they can
only detect an event with no information on the photon count. O’Brien
and Fouche [3] defined and validated the following model: Eq. (1).

1 _
P(pityi) = - [Y(t.1p)]" eV (112 8]

where P(p;1,;1,) is the probability for a given pattern that an amount of
p events occurs between times 7, and 7, and Y (7, 1) is the rate function
of the process [3] which varies with noise, scene (including optical and
geometrical properties) and setup. Based on the state-of-the-art of the
cameras, we only consider equally sized bins. As GmAPD sensors can
only measure whether at least one photon was detected, we define two
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probabilities for each bin in Eq. (2).

{ Pp, =0) =P0;t:t,,1) = e~V lelirr)

2
P(p > 0) = 1= PO 314 p) = 1 = 77 it 2

where p, is the number of events that occurs between ¢, and ¢, ;. This
probability assumes that all bins are independent and only the first
return is detected. Thus, we define the probability D, that a detection
is made at bin k in Egs. (3) and (4) taking the time dependency into
account.

k=1

D =P >0 [P, =0 3)
=0
k=1
=> D, = (1 - e_Yk) He‘yf (©)]
=0
where Y, = Y(t;,1,,) is the rate function of the process between

times t, and #,,,. Thus, to retrieve the correct waveform, we must
approximate the rate function Y, for each bin .

The signal is retrieved from the return-times histogram. Let H, be
the normalized histogram at bin k:

N-1
1
He=1 Y L (5)
=0

where N is the number of acquisitions for each used pattern, and z; is
the bin where the signal is detected during acquisition j. From the law
of large numbers, H, converges to the probability of a detection at bin
k, which is D, in Eq. (6).

Hk
N-o

[1.-4] =P(z=k) =D, (6)
Thus, H, approximates D,. We use Eq. (6) to infer an approximation
of all (Y;),e(0.x-1)> which is the purpose of this step. If D, € ]0,1], we
deduce from Eq. (4) that:
k=1 N\ !
e Yk :1_Dk><<HYj) e10,1] (@]
j=0
We have H, € ]0,1] by definition. Using the logarithm of Eq. (7)
and by approximating D, by H,, we define Y, an estimator of Y, by
recurrence in Eq. (8).

¥, =—In <1 — e x Hk> ®

Eq. (8) allows us to estimate the signal using histograms. The noise
needs to be removed to accurately reconstruct the signal. As mentioned
before, this step must be concomitant to the reconstruction.

2.2.2. Function support estimation

We introduce a new method to denoise a signal using the constraint
of a state-of-the-art setup (Section 2.1) at our advantage. Noise rate
is nearly time invariant for each pixel, but variable between GmAPD
array’s pixels [42]. As mentioned before, it is possible to acquire a few
frames (at least one) of noise between each useful frame with concomi-
tant laser illumination. By statistically comparing bin-sets (all pattern
coefficients for a given bin k) with H ]1 and without H]? concomitant
laser illumination, we determine the support of the signal directly from
the waveform, with set probability a. For all patterns, we calculate the
support of the signal and the corrected waveform. Then, we multiply
both as illustrated in Fig. 2, step (iii).

We statistically test each bin-set of potential signal H ,1 against pure-
noise bin-set H 1? to define which population is the larger. The function’s
support is built from the bin-sets where H, ,i is stochastically larger.

We define the null hypothesis as: “the distributions of both popu-
lation are identical”. Usually a Student’s t-test should be used to test
this statistical hypothesis. In our case, the distributions of H ,f and H,?
are not normal. So, the use of non-parametric tests, without additional
assumption on the noise or data distribution, is preferable. We choose
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Fig. 3. Illustration of case where the temporal correlation is especially strong leading to an inaccurate 3D-image.

the Mann-Whitney U rank test [43] among them, it is defined in
Eq. (10). Here, we test the whole waveform for each pixel, considering
each pattern-coefficient as an element of the population. In practice,
we concatenate H} and HY to form an overall population. Then the
resulting list is sorted by photon count. The U statistic is defined as
the number times H,? precedes H 11 as in Eq. (9). Finally U is used to

compare the rank of the elements of both populations.

M Nptse Nugie
v=3 % X LD, >HO ®
m=1 [j=1 =1

where M is the number of patterns, (-),,; the /th coefficient acquisi-
tions of pattern m, N,,, and N, are respectively the number of

acquisitions with and without a concomitant laser illumination.

P(U < U) = a, under the null hypothesis

10
= the hypothesis of identical distribution is rejected (10)

Thus, we consider the test as significant with level « if the proba-
bility that U is inferior or equal to the U under the null hypothesis,
i.e. if the distributions were identical. Under the null hypothesis, both
distributions are equal so the ranks are uniformly random. « determines
the tolerance level at which we can affirm that a bin is in the support
by rejecting the null hypothesis. The practical implementation used is
defined in [44].

2.3. Compressive sensing

After reconstruction through the first two steps (Sections 2.2.1 and
2.2.2), each bin is time-independent from the others and, noise is only
present where signal is detected. Practically, we simulate a set of small
DMD pixels imaged by a GmAPD sensor. Reconstruction is performed
by considering each GmAPD focal-plane-array pixel with a set of DMD
pixels as a single-pixel camera configuration. For each camera pixel,
we solve a CS optimization problem for each bin to reconstruct local
2D-images that we concatenate to obtain a global 3D-image.

Let X, be the vectorized reconstructed image at the pixel (i,,)
and the bin k) and Y, the corresponding measurement. Let @ be the
measurement basis. Due to the binary nature of the DMD, a linear
transformation to convert this basis into binary {0, 1} must exist. Let
¥ be the basis where X, is K-sparse (i.e. only K components of X, are
non-zero). Let N the number of DMD pixels in one group corresponding
to the dimension of X;. We can express the CS optimization problem
as:

min |sl;,
(Pes) {4 seRN 11)
st |IY —@¥s|i <e, €20

where s, = YX, and ¢ is an error term. To recover accurately s,
from Y, and then X,, it is established [21,23] that @ must follow

the 2K-RIP (Restricted Isometry Property). This means that s, can
be inferred from Y, ie s, must be K-sparse and ¥ must be highly
incoherent with @. In practice, solving exactly the problem with [,
norm is known to be NP-hard [45]. Therefore, the use of a different
approach is required. The optimization problem can be relaxed by
using the /; norm. Another approach is to approximate the solution
with a greedy algorithm [32]. Here, we choose the later option with
Orthogonal Matching Pursuit (OMP) since it provides the best precision
/ performance ratio [46]. In this paper, the measurement process @ is
defined as an undersampled Hadamard transform and the sparsifying
basis ¥ as the 2D-Haar transform. Thus, as a measurement process, each
row of @ represents one vectorized pattern.

2.3.1. Orthogonal matching pursuit using cholesky decomposition

The following algorithm is an efficient way to implement OMP as
defined in [32].

We can solve the /, minimization problem evaluated at each step of
the ‘while’ loop of Algorithm 1 by the orthogonal projection
(<I>|TACD|A)"<D|TA . The projection’s computation is accelerated by approx-
imating the inverse matrix using Cholesky or QR decomposition. This
strategy was proposed in [47,48]. This implementation is efficient
when the size of the matrix is low enough (<10?). Otherwise, an
approximation of the projection can be made with a similar method,
like the Batch-OMP algorithm [48]. We achieved a reduction of the
execution time by two orders of magnitude with this implementation.

Algorithm 1 Orthogonal Matching Pursuit

1: procedure OMP(N X d measurement matrix @&, N — dim
measurement vector Y,N X N Sparsifying matrix ¥)
2: r<Y

3 A<D
4 while halting criterion not True do
5 A« AU argmax‘(r, (di'llf)j)‘
j=l,d
6 S « argmin||Y — (<D'I’)‘As||2
s
7: r<—Y—((D'z”)‘AS|A
8 end while

9: return ¥ S
10: end procedure

2.3.2. Graphics Processing Unit (GPU) acceleration

The problem is well suited for parallel implementation since we ex-
ecute our algorithm on each pixel independently. Commercially avail-
able sensors are 32 x 32 or 32 x 128 pixels array which is com-
patible with the number of blocks of current GPU generation. With
the Cholesky version of OMP, we also reduce the necessary memory.
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Fig. 4. Selected scenes for simulation tests. (a) A synthetic scene at 13 km from the sensor with a field of view of 0.8 mrad in both horizontal and vertical directions equivalent
to a resolution of 4 cm at 13 km. (b) The French motto, a bust of the French Marianne and a 1 m wide “ONERA” letters at 10 km from the 3D-LiDAR system with a square field

of view of 0.4 mrad equivalent to a resolution of 2 cm.

This enable the computation of the complete pipeline for all pixels
simultaneously. One can notice that this version of OMP is almost only
vector multiplication that could more optimized to work in parallel
using the different threads inside each block.

When pipeline ran only on GPU, we gain another two orders of
magnitude in terms of execution time. A short processing time allows
low latency reconstruction that is an important advantage, eg. for
surveillance applications (close to real-time).

2.4. Simulation of 3D-LiDAR signal

Simulated data are used to design, test and validate our method.
The MATLIS software — an ONERA software [49] allows us to simulate
the signal from a GmAPD sensors paired with a laser source. This end-
to-end tool models 3D laser imagers, using physically realistic sensor
models, validated through laboratory and field experiments. It relies
on a description of the optronic scene, including the geometry and the
optical properties of the materials for each facet of the target [50,51].
Moreover, simulation provides full control of input parameters and
information unavailable on field data to design, test and validate our
approach:

« The same mathematical model [3] can be used to both simulate
detection and reconstruction of the correct waveform,;

« Realistic signal features are artificially accessible eg. photon
count or signal/noise classes.

The pipeline is sensitive to the geometry of the scene. To test its ro-
bustness against different geometrical features, various 3D objects were
created. The following Fig. 4 illustrates the 3D targets used to generate
the simulated data. The (a) scene provides multiple-types of planar
surfaces including slopes. From these, we evaluate spatial frequency,
lateral and temporal resolutions and, responses of our pipeline.

The (b) scene provides finer details, with broader spatial frequency
content distribution. The French motto and the bust of Marianne are
used to illustrate behavior of our process in different context.

The pipeline is also sensitive to signal level to a lower extend.
We define the surface of the object covered by a 10% Lambertian
hemispherical reflectance material to get a uniform response from all
sensor’s pixels. In this work, we simulate the camera high enough to
neglect the atmospheric turbulence effect. We introduce specifications
(Table 1) compatible with a single-photon 3D-LiDAR using commer-
cially available components. We consider two sources of noise in the
simulation, solar detection and Dark Count Rate. We only give the
combine contribution of noise for each pixel as Noise Count Rate.

The simulations are carried out at 13 km range. In a real scene, the
start of the gate could be a real burden, it is not alleviated in the work.

Table 1

Specification of the simulated 3D-LiDAR system using commercially available
components.

Laser

Pulse width 0.25 ns

Pulse energy 100-150 pJ

Pulse repetition frequency 20 kHz

Per pattern pulse acquisition 1000

Wavelength 1550 nm

Divergence Matching the field of view
Aperture 5 mm

Sensor

GmAPD acquisition frequency 186 kHz

Number of GmAPD array pixels 32 x 32

DMD pattern frequency 5 kHz

DMD maximum/used pixels 1024 x 768/256 x 256
Bin length 0.25 ns

Noise Count Rate 1 MHz

Quantum efficiency 0.4

A lot of applications will need to consider complementary approach,
to this method to find a correct gate starts (e.g., another sensor for
detection purpose only).

All simulations made in this paper, aims a 64-folds resolution en-
hancement. The physical factors which could limits the lateral resolu-
tion, will be linked to the instrument size due to diffraction. This is not
restrictive in a simulation, but limiting the resolution enhancement to
64-folds leaves enough margin to consider a realistic instrument size at
low SWaP.

3. Results and discussion

The complete pipeline is applied to multiple simulated scenes by the
MATLIS software to validate our approach. To cover most types of real
objects that could be imaged, we select four representative categories:
(i) objects spread over the 2-lateral dimensions (flat surface with large
cross-section) (ii) object(s) producing multiple echoes in a single pixel,
(iii) objects spread over the temporal dimension (slanted surface), (iv)
sub-pixel objects.

3.1. Waveform reconstruction

Results obtained after the reweighting step (see Section 2.2.1) are
plotted in Figs. 5 and 6. Outputs of the support estimation and their
comparisons with ground truth (Section 2.2.2) are plotted in Fig. 7
and summarized in Table 2. In Figs. 5 to 7, Y, and its support are
obtained from artificially available data thanks to the simulation. These
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5k. Filled bins are in the function’s support. Each column is the signal processed for different GmAPD pixel. From left to right: case (B), (C) and (D). Min-Max normalization, by
column, is applied to the three signals. The gate starts at 13 km from the camera.

data are not accessible to the algorithm, as these variables are just we store this values for future exploitation and comparisons between

considered for direct simulations in MATLIS software. Nevertheless, ground truth and reconstructed point clouds. ﬁk is the reconstructed,
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(a) Synthetic raw data
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(c) Marianne/ONERA raw data

(d) Marianne/ONERA data from pipeline

Fig. 9. Results obtained after: (a) and (c) 3D-LiDAR acquisition plotted with only the point labeled as signal; (b) and (d) a CS acquisition with all patterns, processed with the
complete pipeline, without any supplementary post-processing. The grayscale represents the normalized intensity from the pipeline.

time decorrelated waveform, as defined in Section 2.2.1. H, is the
return-times histogram.

We use the Peak Signal-to-Noise Ratio (PSNR, Eq. (12)) to evaluate
the quality of the waveform-estimation (Fig. 6).

maxy

PSN Ry, (¥) = 20log,, 12)

We process one hundred signals to better represent the trends in the
estimation. Then we calculate the mean of the signal and an estimated
95% confidence interval for each bin.

We select four pixels of interest to illustrate the results on different
specific situations:

(A) Plane surface perpendicular to the camera optical axis, with a
size superior to a camera pixel

(B) Plane surface perpendicular to the camera optical axis, with a
size inferior to a projected DMD pixel
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(a) removing
waveform reconstruction

(b) replacing
support estimation

(c) whole pipeline

Table 2

Journal of Quantitative Spectroscopy and Radiative Transfer 314 (2024) 108866

Comparison of confusion matrices, (a) is the confusion matrix of support(H,) versus support(Y,); (b) is the
confusion matrix of support(H,) using a threshold versus support(Y,) and (c) is the confusion matrix of support(f’k)
versus support(Y,). Green hue corresponds to the true positive/negative and red to the false positive/negative,
and saturation lowers with the quality of the estimation.

Predicted Predicted
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True True
out 263652
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Predicted
out
True
269274
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Fig. 10. 16 pattern From top to bottom, result obtained after: removing the waveform reconstruction step, replacing the support estimation step by a threshold chosen to avoid
more losses for signal recovery and, using the whole pipeline. From left to right, result using: the synthetic scene with 16, 32, 48 pattern measurement. The grayscale represents
the intensity normalized from the pipeline for a given scene.

(C) Two planes perpendicular to the camera optical axis, at two While the histogram’s mean PSNR is 64.6 with a variance of 180.4,

different ranges, each filling approximately half of a sensor pixel

field-of-view

that of the estimation’s is 71.3 with a variance of 2.6 both calculated
on the synthetic scene (Fig. 4(a)). The estimated waveform error is
less sensitive to the spatial distribution of the objects and signal level

(D) A 75° slope, with respect to the camera optical axis, filling all (see Fig. 5). High (6x 107') and low (6x 10~%) photon-counts esti-

the pixels

mated waveform errors are more stable to low photon count (6 x 107%)
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Fig. 11. From top to bottom, result obtained after: (a) removing the waveform reconstruction step, (b) replacing the support estimation step by a threshold chosen to avoid more
losses for signal recovery and, (c) using the whole pipeline. From left to right, result using the ONERA scene with 16, 32, 48 pattern measurement. The grayscale represents the

intensity normalized from the pipeline for a given scene.

estimation error than for the histogram. Coates method [9,10] gives
nearly the same result as the method define in Section 2.2.1. These
methods are sensitive to saturation: if the sensor saturates (average
photon count is close to one), the estimation tends to be unstable due to
the exponential term in the reconstruction formula. If a measurement of
the average photon number close to one is required, more complex and
computational intensive method as [39,40] should be used to replace
this step.

The estimated waveform is less time-correlated, which is the main
goal of this step. It is clear in most cases except for the second one,
where signal levels are too low to observe dead-time effect. Indeed,
the error increases with time while the signal decreases. This effect is
illustrated in case (D). If signal level is low enough, the following bins
will not be greatly affected, as in (B). Temporal response is correlated
to pulse length. Long pulses with respect to the bin-length will cause
temporal distortion. In this case, adding a deconvolution step using
available knowledge on the pulse should be considered. Here, we only
consider short pulses, with full width at half maximum shorter than
half the temporal bin size, where this effect can be neglected.

A new case with multiple targets along the line of sight and in-
creased gate length is considered to illustrate the effect of noise on

the support estimation. Fig. 6 highlights a drawback of our method:
the noise is increasing along the gate. Here, discriminating signal from
noise is especially challenging. For example, the signal around 23 m
is at the same level as noise at 40 m. Using a simple threshold is
insufficient to insure both low false alarm and good detection rates.

3.2. Support estimation

Estimated function support is compared against ground truth and
histogram based method in Fig. 7 for cases (B), (C) and (D).

Each point of the estimated waveform is considered as a statistical
observation, labeled in or out with respect to ground truth. Thus, we
construct the confusion matrix (Table 2) to evaluate the estimation’s
quality. In most cases, support is correctly retrieved with a tendency to
slightly broaden it around peaks.

Estimating the support using this method increases true positives/
negatives and decreases false positives/negatives numbers. No absolute
threshold is necessary. Only a significance level for the test must be
set. Arbitrarily, we set it at 0,1%. Our method provides better support
estimation than the classical histogram method, with a higher true
positive and lower false negative. Statistics in Table 2 are made on
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all pixels, bins and patterns. Our method provides higher statistical
confidence than evaluating support for each pattern separately.

We apply the current step to the case presented in Fig. 6. In Fig. 8,
we illustrate that our approach works well even with lower signal
to noise ratio. For example, support at 23 m and 40 m is correctly
evaluated.

3.3. Complete process

As shown in Fig. 9, the pipeline allows the recovery of many details
in the scene in comparison with the raw data thanks to the increased
number of points.

One can notice reconstruction artefacts (e.g. holes, noise), stemming
from the resolution of the CS optimization problem. Highest spatial
frequency (spoke target) and plane surface with a cross-section smaller
than one projected DMD pixel-size are not recovered (synthetic scene).

Our method has clear advantages for recovering details by recon-
structing better-defined edges like in cases (A), (C) and (D) (Figs. 9(a)
and 9(b)) or the ‘ONERA’ letters (Figs. 9(c) and 9(d)). Another advan-
tage is about high spatial frequency objects (French Motto) and with
depth variations (Marianne’s bust). These objects are identifiable in
Figs. 9(b) and 9(d) where they were only recognizable in Figs. 9(a) and
9(c). The lateral resolution is increased by a factor of 8 in each lateral
direction (Fig. 9), depth resolution remains unchanged.

In Figs. 10 and 11, we investigate the variation of quality in the
reconstruction process while removing different parts of the pipeline
on the different scenes and different numbers of pattern-measurements.
Without the waveform reconstruction the overall intensity decreases
and additional artefacts show up. These artefacts depend on sparsifying
and measurement basis. In the second row, an optimal threshold was
define to avoid losses for CS optimization recovery and lets a lot
of noisy acquisition. As classical CS algorithm, it allows a 3D-image
acquisition with increased lateral resolution using only few compressed
measurement. One can notice that the quality decreases faster relatively
to the compression rate than others classical CS algorithms [18]. The
decrease in quality with the compression ratio does not decrease lin-
early with the image size [52]. However, to highlight the interest of our
method, it only needs 16 full-waveform pattern-measurements with a
32 x 32 pixels GmAPD array to reconstruct an 256 x 256 x 256 vox-
els 3D-image. Moreover, using the complete pipeline limits unwanted
artefacts emerging from CS recovery while efficiently denoising.

4. Conclusion

This paper describes a complete pipeline to increase lateral reso-
lution of GmAPD 3D-LiDAR systems using Compressive Sensing (CS).
Our pipeline considers the nature of the signal using a statistical
approach to denoise and estimate a corrected waveform before solv-
ing the CS optimization problem. The feasibility of our method is
numerically demonstrated on simulated data. In our case, the lateral
resolution is enhanced 64-folds while preserving the depth resolution
and minimizing artefacts. This pipeline is suitable under daylight at
very long-range. We validated on static targets. Future work will deal
with the reconstruction of moving targets by evaluating the use of
pattern registration.
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