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Lyapunov-based Consistent Discretization of
Quasi-Continuous High Order Sliding Modes

Tonametl Sanchez, Andrey Polyakov, and Denis Efimov

Abstract In this chapter we propose an explicit discretization scheme for class of
disturbed systems controlled by homogeneous quasi-continuous High Order Sliding
Mode controllers which are equipped with a homogeneous Lyapunov function. Such
a Lyapunov function is used to construct the discretization scheme that preserves
important features from the original continuous-time system: asymptotic stability,
finite-time convergence, and the Lyapunov function itself.

1 Introduction

Discretization of continuous-time models has become a fundamental step in most
of the processes to design a control systems. It is required, e.g., for numerical sim-
ulation, for implementation by means of digital electronics, or for designing of
sampled-data controllers [27, 11]. For the case of linear systems we can obtain exact
dsicretized models, however, exact discretization of nonlinear systems is in general
impossible due to the lack of explicit solutions. Hence, approximating discretization
techniques must be used in the nonlinear setting. Nonetheless, for many nonlinear
systems it is not a trivial task: first of all, standard discretization techniques usually
impose some smoothness requirements on the system; and secondly, they do not
preserve some relevant characteristics from the continuous-time system.
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For the particular case of High Order Sliding Mode (HOSM) systems, which are
non-smooth by nature, it is well known that standard discretization methods produce
undesirable behaviors in the discrete-time approximation [8, 36, 21, 18, 1, 16, 9, 24,
32].

That is why several new strategies to discretize sliding-mode systems have been
designed, e.g.: the implicit discretization of standard sliding modes [8, 36] and
HOSM controllers [5]; the discrete-time redesign of the robust exact differentia-
tor of arbitrary order proposed in [19]; the consistent implicit or semi-implicit
discretization algorithms for finite-time and fixed-time stable systems developed
in [29], which is based on an adequate transformation of the system; the digital im-
plementation of sliding-mode controllers based on the discretization of differential
inclusions by means of the implicit Euler method, see e.g. [1, 16].

In this chapter we propose a technique to discretize a class of systems controlled
by quasi-continuous HOSM controllers whose origin is asymptotically stable. It
is well known that one of the advantages of quasi-continuous HOSM is that the
only discontinuity is at the origin [23]. The proposed technique is based on the dis-
cretization procedure provided in [34, 33]1 for homogeneous systems without dis-
turbances. On one hand we particularize the method for quasi-continuous HOSM,
nonetheless, on the other hand we extend the method by allowing time-varying dis-
turbances in the model. A relevant feature of the proposed method is that it takes
advantage of the information provided by the Lyapunov function for the closed-loop
system. As in [34] the discretization scheme has the following properties:

1. Lyapunov function preservation: the Lyapunov function of the continuous-time
system is also a Lyapunov function for discrete-time system, guaranteeing this
way that the origin of the obtained discrete-time system is Lyapunov stable;

2. Consistency: the origin of the discrete-time approximating system is finite-time
stable (this means that the discretization is consistent in the sense described
in [29]);

3. Independence of the discretization step: the properties of stability and consis-
tency of the obtained discrete-time systems are not affected by the size of the
discretization step.

Chapter organization: In Section 2 we state the problem to be solved and pro-
vide some definitions and preliminary results. In Section 3 we analyze the dynam-
ics of the studied system by projecting it on a level set of its Lyapunov function.
The discretization scheme, proposed in this chapter, is introduced and explained in
Section 4. In Section 5, we present some examples of the proposed discretization
method. In Section 6 some conclusions are stated.

1 Some parts of Lemma 2, Theorem 3, Theorem 5, and their proofs have been reproduced
with permission from [Sanchez T, Polyakov A, Efimov D. Lyapunov-based consistent dis-
cretization of stable homogeneous systems. Int J Robust Nonlinear Control. 2021;31:3587–3605.
https://doi.org/10.1002/rnc.5308] ©2020 John Wiley & Sons Ltd., and with permission from the
IFAC License Agreement IFAC 2020#1150 of [T. Sanchez, A. Polyakov, D. Efimov, A Consis-
tent Discretisation method for Stable Homogeneous Systems based on Lyapunov Function, IFAC-
PapersOnLine 53(2), 5099-5104 (2020). DOI https://doi.org/10.1016/j.ifacol.2020.12.1141.].
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Notation: The set of integer numbers is denoted by Z. R∗
+ denotes the set R+ \

{0}, analogously for the set Z. For a function V : Rn → R+, which is continuous
and positive definite, we denote the set SV = {x ∈ Rn : V (x) = 1}. The class of
functions η :R+ →R+ with η(0) = 0, which are strictly increasing and continuous,
is denoted by K .

2 Problem statement and preliminaries

In this section we describe the class of systems to be studied in this chapter, we
also give the statement of the problem to be solved, and we recall some important
properties of homogeneous systems.

In this chapter we consider the following continuous-time system

ẋ1(t) = x2(t)
...

ẋn−1(t) = xn(t)
ẋn(t) = d1(t)+d2(t)u(x(t))

(1)

where x(t) ∈ Rn is the state, and u(x(t)) ∈ R is the control signal. The disturbances
d1(t),d2(t) ∈ R are piece-wise continuous functions such that

|d1(t)| ≤ d̄1 , d2 ≤ |d2(t)| ≤ d̄2 , (2)

for all t ∈ R for some known constants d̄1,d2, d̄2 ∈ R∗
+.

For (1), we consider the following sub-class of quasi-continuous controllers u(x)
proposed in [7],

u(x) =−kn
σn(x)
σ̄n(x)

, (3)

where σ1(x) = x1, σ̄1(x) = |x1|, and for i ∈ {2, . . . ,n} we have that

ri = n+1− i , σi(x) = ⌈xi⌋
n
ri + k

n
ri
i−1σi−1 , σ̄i(x) = |xi|

n
ri + k

n
ri
i−1σ̄i−1 , (4)

where we used the notation ⌈x⌋p := |x|psign(x).
For the closed-loop system (1), (3) it is also provided in [7] the Lyapunov func-

tion Vn : Rn → R+ given by the following construction for i ∈ {2, . . . ,n},

Vi(x) =Vi−1(x)+Wi(x) , (5)

where Wi(x) =
ri
2n |xi|

2n
ri −⌈νi−1⌋

2n−ri
ri xi + (1− ri

2n )|νi−1|
2n
ri , νi = −ki⌈σi⌋

n−i
n , ν1 =

−k1⌈x1⌋
n−1

n , and V1(x) = 1
2 |x1|2.
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Theorem 1 ([7]). Consider the closed-loop of (1) with (3). There exist large enough
ki > 0 such that the origin of the system is globally finite-time stable and Vn given
by (5) is a Lyapunov function for the system.

A procedure to compute the gains ki is given in [7]. Let us show three explicit
examples of controllers (3) and their respective Lyapunov functions (5).

Example 1. For n = 1 we have the controller

u(x) =−k1sign(x1) ,

and the Lyapunov function
V1(x) = 1

2 x2
1 .

Example 2. For n = 2 we have the controller

u(x) =−k2
⌈x2⌋2 + k2

1x1

x2
2 + k2

1|x1|
,

and the Lyapunov function

V2(x) = 1
2 x2

1 +
1
4 x4

2 + k3
1⌈x1⌋

3
2 x2 +

3
4 k4

1x2
1 .

Example 3. For n = 3 we have the controller

u(x) =−k3
⌈x3⌋3 + k3

2σ2(x)

|x3|3 + k3
2

(
|x2|

3
2 + k

3
2
1 |x1|

) ,
where σ2 = ⌈x2⌋

3
2 + k

3
2
1 x1. For this case, the Lyapunov function is

V3(x) = 1
2 x2

1 +W2(x)+W3(x) ,

where
W2(x) = 1

3 |x2|3 + k2
1⌈x1⌋

4
3 x2 +

2
3 k3

1x2
1 ,

W3(x) = 1
6 x6

3 + k5
2⌈σ2⌋

5
3 x3 +

5
6 k6

2σ
2
2 ,

In Section 5 these examples are resumed to illustrate the discretization procedure
developed in Section 4.

In order to make the exposition clearer, let us rewrite the closed-loop system (1),
(3) as follows

ẋ(t) = f
(
x(t),d(t)

)
, x(t) ∈ Rn , d(t) ∈ R2 , (6)

where fi(x,d) = xi+1 for i ∈ {1, . . . ,n−1}, and fn(x,d) = d1 −d2kn
σn(x)
σ̄n(x)

. Note that

f : Rn+2 →Rn is continuous except at x = 0. Let us also denote with D to the set of
piece-wise continuous functions d : R→ R2 satisfying (2).

Since the input d is unknown, a usual procedure in sliding mode control to ana-
lyze (6) is to replace it by the differential inclusion [22, 30]
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ẋ1(t) = x2(t)
...

ẋn−1(t) = xn(t)
ẋn(t) ∈ [−d̄1, d̄1]− [d2, d̄2]kn

σn(x)
σ̄n(x)

.

(7)

Thus, the solutions of (7) are understood as the solutions of a differential inclusion

ẋ ∈ B(x) , x ∈ Rn , (8)

associated with (7), where the set-valued map B satisfies the following basic condi-
tions [10, p. 77]: for all x ∈ Rn the set B(x) is nonempty, compact and convex, and
the set-valued function B is upper-semicontinuous. In this context, a (generalized)
solution of (7) is defined as a function x : Γ ⊂ R+ → Rn which is absolutely con-
tinuous and satisfies (8) for almost all t ∈ Γ [10, p. 50]. Moreover, the existence of
solutions of the differential inclusion is guaranteed since B satisfies the basic con-
ditions. Following [22], we refer to (8) as a Filippov differential inclusion, which is
obtained by means of a kind of Filippov regularization of (7) [22]. In general, the
solutions of (7) or (8) are non-unique, however, observe that the right-hand side of
(6) satisfies the conditions2 to guarantee uniqueness of solutions on Rn \{0}.

2.1 Homogeneity

Let us begin this section by recalling the definition of Weighted Homogeneity.

Definition 1 ([17, 26, 22]). Given a set of coordinates (x1,x2, . . . ,xn) for Rn, ∆ r(ε)x
denotes the family of dilations characterized by the square diagonal matrix ∆ r(ε) =
diag(ε r1 , . . . ,ε rn), where r = [r1, . . . ,rn]

⊤, ri ∈R∗
+, and ε ∈R∗

+. The components of
r are called the weights of the coordinates. Thus:

1. a function V : Rn → R is r-homogeneous of degree m ∈ R if

V (∆ r(ε)x) = ε
mV (x) , ∀x ∈ Rn, ∀ε ∈ R∗

+ ;

2. a vector field f : Rn → Rn, is r-homogeneous of degree µ ∈ R if

f (∆ r(ε)x) = ε
µ

∆
r(ε) f (x) , ∀x ∈ Rn, ∀ε ∈ R∗

+ ;

3. a set-valued map x 7→ B(x)⊂ Rn, is r-homogeneous of degree µ ∈ R if

B(∆ r(ε)x) = ε
µ

∆
r(ε)B(x) , ∀x ∈ Rn, ∀ε ∈ R∗

+ .

A differential inclusion (8) is said to be r-homogeneous of degree µ ∈ R if its
vector-set field (or set-valued vector field) B is r-homogeneous of degree µ .

2 Under the assumption of d ∈ D , it can be seen that the right-hand side of (6) is locally Lipschitz
in x on Rn \{0}.
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Now, we recall some important features of r−homogeneous differential inclu-
sions3.

Theorem 2 ([31, 26, 3]). Let (8) be r−homogeneous of degree µ < 0 with B satis-
fying the basic conditions. If x = 0 is strongly globally asymptotically stable then

1. x = 0 is strongly globally finite-time stable;
2. for any positive integer p and any real m > pmax{r1, . . . ,rn} there exists a posi-

tive definite function V : Rn → R+ such that

a. V is of class C∞ for all x ̸= 0 and of class Cp for all x ∈ Rn;
b. V is r−homogeneous of degree m;
c. there exists a continuous positive definite function W̄ : Rn → R+ such that it

is r−homogeneous of degree m+µ , and

∂V (x)
∂x

b ≤−W̄ (x) , ∀x ∈ Rn , ∀b ∈ B(x) . (9)

Remark 1. It is important to mention that (7) is an r-homogeneous differential in-
clusion of degree µ = −1 with weights r = [n,n−1, . . . ,1]⊤. Also note that (since
(6) describes the closed-loop system (1), (3)), for any function d the vector field f
is such that

f (∆ r(ε)x,d) = ε
µ

∆
r(ε) f (x,d) , ∀x ∈ Rn, ∀ε ∈ R∗

+ . (10)

Now, if V is as in Theorem 2, then the derivative of V along (6) is given by

V̇ =−W (x,d) , W (x,d) :=−∂V (x)
∂x

f (x,d) , (11)

where the function W : Rn+m → R satisfies the following

W (∆ r(ε)x,d) = ε
m+µW (x,d) , ∀x ∈ Rn, ∀d ∈ R2, ∀ε ∈ R∗

+ ,

which is a direct consequence of the fact that ∂V (∆ r(ε)x)
∂x = εm ∂V (x)

∂x ∆−r(ε) (see, e.g.
[35, Prop. 1]) and (10).

Moreover, the solutions of (6) are in the set of solutions of the Filippov differen-
tial inclusion (8). Therefore, by Theorem 2, the derivative of V along the solutions
of (6) satisfies V̇ =−W (x,d)≤−W̄ (x), with W̄ as given in (9). In such a case, there
exists α ∈ R∗

+ such that [15, 26]

V̇ ≤−αV
m+µ

m (x) . (12)

As stated in Theorem 2, W̄ is r−homogeneous, hence, the constant parameter α in
(12) can be computed as follows

3 Following [3], we use the term strong stability (which involves all the solutions) in Theorem 2 to
contrast with the term of weak stability, which claims properties of some solutions [10].
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α = inf
x∈SV

W̄ (x) . (13)

We know from Theorem 2 that the degree of homogeneity of W̄ is m+µ , which is
strictly positive if the homogeneity degree of V is restricted to m > −µ . Observe
that this is always the case for (5) since m = 2n and µ =−1.

The properties explained so far prove the following result (analogous to those in
[13, 15, 26] for unperturbed systems).

Lemma 1. Let (8) be a Filippov differential inclusion associated with (7). Also let
(8) and V be as in Theorem 2. Then, in (6), for all x(0) ∈ Rn, for all t ∈ R+, and
for any d ∈ D , the following holds (with α as given in (13)): V (x(t)) ≤ V̄ (x(0), t)
where

V̄ (x(0), t) =


(

V
−µ

m (x(0))− −µ

m αt
) m

−µ

, t < m
−µα

V
−µ

m (x(0))

0, t ≥ m
−µα

V
−µ

m (x(0))
. (14)

From Lemma 1, we can see that the trajectories of (1) converge to the origin
in finite-time. Moreover, the convergence time T (x(0)) to the origin, for the initial
condition x(0), is bounded as follows T (x(0))≤ m

−αµ
V

−µ

m (x(0)).

2.2 Problem statement

As already mentioned in the introduction, an exact discretization for a nonlinear
system is (in general) not possible, this due to the lack of knowledge of the exact
solution of the system. However, any suitable discretization scheme should preserve
relevant properties of the solutions, e.g., the type of convergence of the trajectories
to the origin in case of asymptotic stability. If we are able to extract some relevant
information from a Lyapunov function, e.g., stability properties and convergence
rates, just as it is done in Lemma 1, then such a Lyapunov function should be used
to develop a discretization scheme. Hence, the problem to be solved in this chapter
is:

Develop a discretization scheme, for (6) (which describes the closed-loop sys-
tem (1), (3)) such that: if the origin of (6) is finite-time stable, then the generated
discrete-time approximating system preserves the finite-time stability property of the
continuous-time system.

In this chapter we solve this problem by taking advantage of the information
provided by the homogeneous Lyapunov function of the system. This is done by
making a homogeneous projection of the dynamics of the system on a level set of
the Lyapunov function. Thus, the evolution of the system’s trajectories can be deter-
mined from the trajectories of the projected dynamics and an expansion computed
by using the information of the decaying rate of the Lyapunov function along the
solutions of the system (see Section 3 for more details).



8 Tonametl Sanchez, Andrey Polyakov, and Denis Efimov

We have to mention that, in the literature, there exist some discretization methods
that also utilize the idea of projecting the trajectories of the system onto level sets
of the Lyapunov functions. Unfortunately, although some of those methods are able
to keep the same Lyapunov function for the discrete-time system, they cannot guar-
antee that the convergence rates are preserved as well, see [12] and the references
therein. In general, another disadvantage of those methods is that the projection is
not explicit (i.e., an algebraic equation must be solved to find the projection). In
contrast, in the discretization method of this chapter, the projection onto the level
set of the Lyapunov function is explicit, which represents a procedural advantage.

3 Projected dynamics

In this section we compute and analyze the projection of the dynamics of (6) onto a
unitary level set of its Lyapunov function. The developments of this section consti-
tute the fundamentals for the construction of the discretization method proposed in
Section 4.

Let V be as in Theorem 2, and define the following change of variable

y = ∆
r(V

−1
m (x))x , ∀x ∈ Rn \{0} . (15)

Observe that, according to [28, p. 159], (15) constitutes the homogeneous projection
of the point x over the level set {x∈Rn : V (x)= 1}, thus, y∈SV for all x∈Rn\{0}.
By taking the derivative of (15) along (6) we obtain

ẏ = ∆
r(V

−1
m (x))

(
I − 1

mV−1(x)Gx ∂V (x)
∂x

)
f (x,d) , (16)

where I is the n×n identity matrix, and G := diag(r1, . . . ,rn). Recall from Remark 1
that f in (6) satisfies (10). From (15) we obtain x = ∆ r(V

1
m (x))y, which can be

substituted in (16) to obtain

ẏ = ∆
r(V

−1
m (x)) f (x,d)− 1

mV−1(x)∆ r(V
−1
m (x))G∆

r(V
1
m (x))y ∂V (x)

∂x f (x,d) ,

=V
µ

m (x) f (y,d)+ 1
m

W (x,d)
V (x) Gy ,

=V
µ

m (x) f (y,d)+ 1
m

V
m+µ

m (x)W (y,d)
V (x) Gy ,

(where W is given by (11)), therefore,

ẏ =V
µ

m (x)
[

f (y,d)+ 1
mW (y,d)Gy

]
. (17)

Equation (17) describes the dynamics (6) projected onto SV . However, note that
we cannot recover the trajectories of (6) directly from the trajectories of (17) since
(15) is not bijective. Here is where we can exploit the information provided by the
Lyapunov function. Thus, we proceed to study the dynamics of V , i.e., its derivative
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along the trajectories of (6). Thus, considering (15), we obtain from (11) that

V̇ =−W
(
∆

r(V
1
m (x))y,d

)
=−V

m+µ

m (x)W (y,d) . (18)

Note that (17) and (18) still depend on x, thus, we introduce two auxiliary equations
that will be useful for our purposes. Thus, we define a function v : R+ → R+ such
that it is solution to the differential equation (cf. (18))

v̇(t) =−v
m+µ

m (t)W (z(t),d(t)) , (19)

where the function z : R+ → Rn is the solution to the following system (cf. (17))

ż(t) = v
µ

m (t)
[

f (z(t),d(t))+ 1
mW (z(t),d(t))Gz(t)

]
. (20)

From the developments made up to this point, we are now ready to state the main
results of this section. The first one of these results consists in verifying that the set
SV is positively invariant with respect to the trajectories of (20).

Lemma 2. Consider (20) with z(0)∈SV , and any continuous function v : R+ →R.
If µ < 0 and v(t) ̸= 0 for all t ∈ [0,T ) for some T ∈ R∗

+, then z(t) ∈ SV for all
t ∈ [0,T ), and any d ∈ D .

Proof. To verify that SV is positively invariant, let us compute the derivative of
V (z) along the trajectories of (20), thus

V̇ = v
µ

m
[

∂V (z)
∂ z f (z,d)+ 1

mW (z,d) ∂V (z)
∂ z Gz

]
.

Since ∂V (z)
∂ z f (z,d) = −W (z,d), we can see that if W (z,d) = 0 then V̇ (z(t)) = 0.

Thus, without loss of generality, we assume that W (z,d) ̸= 0. According to the
equality4

∂V (z)
∂ z Gz = mV (z) , (21)

we obtain
V̇ = v

µ

m W (z,d)
[
−1+V (z)

]
.

Hence V̇ (z(t)) = 0 if and only if V (z(t)) = 1 for all t ∈ [0,T ). □

The second main result of this section is with respect to a useful representation
of the solutions of (19).

Lemma 3. Let (6) and V be as in Lemma 1. For any initial condition v(0)∈R∗
+, and

any d ∈D , there exists Θd(v(0)) ∈R∗
+ such that the function v : R+ →R+ given by

v(t) =


(

v(0)
−µ

m − −µ

m Ŵ0(t)
) m

−µ

, −µ

m Ŵ0(t)< v(0)
−µ

m

0, −µ

m Ŵ0(t)≥ v(0)
−µ

m

, (22)

4 This equation is known as the Euler’s theorem for weighted homogeneous functions, see, e.g. [2,
Proposition 5.4].
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where Ŵ0(t) :=
∫ t

0 W (z(τ),d(τ)) dτ , satisfies (19) with v(t) > 0 for all t in the in-
terval [0,Θd(v(0))), and v(t)→ 0 as t →Θd(v(0)).

Proof. This lemma is proven by direct integration of (19) to obtain (22). Nonethe-
less, let us provide some clarifying details. Since W (z,d)> 0 for all z ∈ SV and all
d ∈ D , then v in (22) is strictly decreasing to zero, hence, for each v(0) ∈ R∗

+ there
exists a maximal Θd(v(0)) ∈R∗

+ such that Ŵ0(t)< v(0)
−µ

m for all t ∈
[
0,Θd(v(0))

)
.

Note that,
[
0,Θd(v(0))

)
is the interval of time such that the right-hand side of (20)

is well-defined on it. □

Note that v : R+ → R+, given by (22), is a continuous function, also note that
v(t) ̸= 0 for all t ∈ [0,Θd(v(0)) and for initial conditions v(0) ∈R∗

+. Therefore, (22)
satisfies the hypothesis required in Lemma 2 for the function v.

The last results of this section (the following theorem and its corollary) constitute
the fundamentals of the discretization technique that is developed in Section 4.

Theorem 3. Let (6) and V be as in Lemma 1. Define ζ = [v,z⊤]⊤ ∈ Z, where
Z = R∗

+×SV . Consider (6) with x ∈ Rn \ {0}, d ∈ D , and (19)-(20) with ζ ∈ Z.
The solutions of (6) and the solutions of (19)-(20) are equivalent with the homeo-
morphism Φ : Rn \{0}→ Z given by

Φ(x) =
[

V (x)
∆ r(V −1

m (x)
)
x

]
. (23)

Proof. Since V is a continuous function of x, we can ensure that Φ is also a contin-
uous function of x, moreover, it has a continuous inverse Φ−1 : Z → Rn \{0} given
by

Φ
−1(ζ ) = ∆

r(v
1
m
)
z . (24)

The remaining steps of the proof are straightforward, it is only needed to note that
ζ (t) = Φ(x(t)) satisfies (19)-(20) and x(t) = Φ−1(ζ (t)) satisfies (6). □

Corollary 1. If v is a solution of (19) with initial condition v(0) = V (x(0)), and if
z is a solution of (20) with initial condition z(0) = ∆ r(v

−1
m (0)

)
x(0), for any x(0) ∈

Rn \{0}, then the function x : R+ → Rn given by

x(t) =
{

∆ r(v
1
m (t)

)
z(t), t <Θd(v(0)),

0, t ≥Θd(v(0)),
(25)

(with Θd as given in Lemma 3) is solution of (6) for all t ∈ R+.

4 Discretization scheme

In this section we describe the proposed discretization scheme. The main idea of
the method is a consequence of the developments presented in Section 3. Indeed,
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observe that (20) represents the dynamics of (6) but projected on a unit sphere SV ,
and that v (as given in Lemma 3) characterize the decay of the Lyapunov function V
evaluated along the trajectories of (6). So, the main idea is to compute a numerical
solution5 of (19)-(20), and next, to define the numerical solution of the original
system by using (25).

Remark 2. Although, several different schemes can be used to obtain a numerical
solution of (19)-(20), we restrict ourselves in this chapter to the explicit (also known
as forward) Euler method taking into account that v(t) is a nonegative variable and
z(t) belongs to a manifold for all t ≥ 0.

To construct the discrete-time approximation of v, we see from Lemma 3 that for
any h ∈ R+,

v(t +h) =


(

v
−µ

m (t)− −µ

m Ŵ (t)
) m

−µ

, −µ

m Ŵ (t)< v
−µ

m (t)

0, −µ

m Ŵ (t)≥ v
−µ

m (t)
, (26)

where Ŵ (t) :=
∫ t+h

t W
(
z(τ),d(τ)

)
dτ . Note that (26) give us the exact value of

v(t + h), but it requires the value of Ŵ (t). Hence, by defining a discrete-time ap-
proximation of Ŵ (t) we immediately obtain a discrete-time approximation of v. For
example, if we use the forward Euler method with an integration step h, then we
obtain the discrete-time approximation vk ∈ R to v(kh) given by

vk+1 =


(

v
−µ

m
k − −µh

m W (zk,dk)
) m

−µ

, −µh
m W (zk,dk)< v

−µ

m
k

0, −µh
m W (zk,dk)≥ v

−µ

m
k

, (27)

for all k ∈ Z+, where dk := d(kh), and zk ∈Rn is the discrete-time approximation to
z(kh) given by

zk+1 = ∆
r(V −1

m (z̃k+1)
)
z̃k+1 ,

z̃k+1 =

{
zk +hv

µ

m
k

(
f (zk,dk)+

1
mW (zk,dk)Gzk

)
, vk+1 > 0

zk, vk+1 = 0
. (28)

Let us explain the main idea of (28). First, the term z̃k+1 can be regarded as an
explicit Euler discretization of (20); second, such a discretization is scaled by the
factor ∆ r(V −1

m (z̃k+1)
)
. Note that such scaling is necessary since we have to ensure

that zk ∈ SV for all k ∈ Z+. Also note that, the condition z̃k+1 ̸= 0 is necessary to
have (28) well defined, this is why we require the following assumption.

Assumption 1. Consider (6) and V as in Theorem 3. For all z ∈ SV , all d ∈ D , and
all τ ∈ R∗

+,

5 In this chapter, we mean by numerical solution a sequence {zk}k∈Z+ such that z0 = z(0), and for
some h ∈ R∗

+, zk approximates z(kh).
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z+ τ
(

f (z,d)+ 1
mW (z,d)Gz

)
̸= 0 .

In the following lemma we state some sufficient conditions that can be helpful in
verifying Assumption 1.

Lemma 4. Assumption 1 holds in any of the following cases:

1. for all z ∈SV such that ∂V (z)
∂ z z = 0 we have that z⊤F(z,d)≥ 0, where F(z,d) :=

f (z,d)+ 1
mW (z,d)Gz;

2. ∂V (z)
∂ z z ̸= 0 for all z ∈ SV ;

3. the set {z ∈ Rn : V (z)≤ 1} is convex.

Proof. From Lemma 2 we know that, for all z∈SV and all d ∈D , F(z,d) is tangent
to SV . Hence, ∂V (z)

∂ z F(z,d) = 0 for all z ∈ SV . On the other hand, if there exist
τ ∈ R∗

+, z ∈ SV and d ∈ D such that z+ τF(z,d) = 0, then the vector F(z,d) is
necessarily collinear to z but it has the opposite direction. Therefore, the following
are necessary conditions to have z+ τF(z,d) = 0: ∂V (z)

∂ z z = 0 and z⊤F(z,d)< 0.
The analysis in the previous paragraph let us clearly see that a sufficient condition

to guarantee that Assumption 1 holds is either ∂V (z)
∂ z z ̸= 0 for all z ∈ SV (which is

satisfied, for example, if the function z 7→ ∂V (z)
∂ z z is positive definite), or z⊤F(z,d)≥

0 for all z such that ∂V (z)
∂ z z = 0. This proves the first two items of the lemma.

The third item of the lemma is proven as follows. On one hand, if the set {z ∈
Rn : V (z) ≤ 1} is convex, the fact that V is homogeneous guarantees that the sets
{z ∈Rn : V (z)≤ a} are also convex for all a ∈R∗

+, hence, we have that the function
V is quasi-convex (see, e.g. [4, Section 3.4.1]). On the other hand, z = 0 is a global
minimum of V since it is positive definite. From these reasoning we conclude that
V is a pseudo-convex function (see, e.g. [6, Lemma 2.1]), therefore (by definition of
pseudo-convexity), ∂V (z)

∂ z z > 0 for all z ∈ SV , see also [25, p. 40]. □

It is important to mention that in [34] it is wrongly stated that (in absence of
disturbances) the first item in Lemma 4 is an equivalent condition to Assumption 1,
however, this is only true for n = 2. Now, we can state the following theorem, which
is the main result of this section.

Theorem 4. Let (6) and V be as in Lemma 1. Suppose that Assumption 1 holds.
Consider the discrete-time approximation of (6) given by

xk+1 = ψ(xk) =

{
∆ r(v

1
m
k+1

)
zk+1, xk ̸= 0,

0, xk = 0,
k ∈ Z+ , (29)

where vk+1 and zk+1 are given by (27) and (28), respectively, with vk =V (xk), zk =

∆ r(V −1
m (xk)

)
xk, and x0 = x(0). Then V is a Lyapunov function for (29), and for all

h ∈ R∗
+ and all x(0) ∈ Rn \{0}, xk → 0 as k → ∞. Moreover, V (xk)≤ V̄ (x0,kh) for

all k ∈ Z+, with V̄ given by (14).
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The proof of the theorem is completely analogous to the proof of Theorem 2 in
[34]. It is clear from Theorem 4 that the solutions of (29) reach the origin in a finite
number of steps.

Remark 3. Let us underline the main features of the proposed discretization scheme
described in Theorem 4:

1. the discretization method is consistent, this means that the stability properties
and the convergence rate from the solutions of the continuous-time system are
preserved;

2. the Lyapunov function is preserved, i.e., the Lyapunov function from the conti-
nuous-time system is a Lyapunov function for the discrete-time approximating
system as well;

3. the discretization method is explicit since the right-hand side of (29) does not
depend on xk+1 but only on xk.

Numerical convergence to the solutions

In this section we verify that the solutions of the discrete-time approximating system
converge to the solutions of the continuous-time system. The methodology is the
same as that given in [34].

First, consider the solution x : [0,a] → Rn of (6) for some fixed time a ∈ R∗
+.

Second, suppose that the discretization step h is given by h= a/N, for some N ∈Z∗
+,

thus it is clear that h → 0 as N → ∞.
Let {xk}N

k=0 be the sequence generated by means of some discretization of (6).
Consider the step-function (associated to such a discretization method) defined as
t 7→ x̃(t) := xk, for all t ∈ [kh,(k+1)h). An essential requirement for any discretiza-
tion technique is that its associated step-function converges uniformly on [0,a] to
the solution x as the step size h tends to zero (or equivalently, as N tends to infinity).
The standard procedure to verify such a convergence property consists in confirm-
ing that the global truncation error6 tends to zero as the step h tends to zero. Such a
confirmation can be achieved by verifying the existence of a function η ∈ K such
that the local truncation error7 E(t + h) := x(t + h)− xk+1 satisfies the following
(see, e.g. [37] and [14, pp. 37 and 159])

|E(t +h)| ≤ hη(h) . (30)

Thus, in this section we demonstrate the convergence property of the discretization
scheme proposed in Section 4, by means of the verification of a local truncation
error estimate given by 30. It is important to see that taking into account Theorem 3,
we only need to demonstrate that vk and zk converge to v and z, respectively. Thus,

6 The global truncation error can be understood as the accumulation of the errors generated at each
step in a given compact interval [0,a], see, e.g. [20] or [14, p. 159].
7 The local truncation error is the one-step error computed by assuming that E(t) = 0, i.e. x(t) = xk.
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we only have to analyze the local truncation error estimates of vk and zk as stated in
the following theorem.

Theorem 5. Assume that the hypotheses of Theorem 4 hold with v(t)= vk and z(t)=
zk for some t ∈ R+. Assume also that min{V (x(t +h)),vk+1} ≥ b for some b ∈ R∗

+.
Then, there exist functions ηv,ηz ∈ K such that in (27), (28):

|Ev(t +h)| := |v(t +h)− vk+1| ≤ hηv(h) , (31)

|Ez(t +h)| := |z(t +h)− zk+1| ≤ hηz(h) . (32)

The proof of Theorem 5 is given below, but first we state the following lemma,
which is used for the proof of the theorem. We use the following notation: the i-th
element of the vector z̃k is denoted as z̃i

k.

Lemma 5. Consider (28). Given H ∈ R∗
+, under the assumptions of Theorem 5,

there exist constants γ i,γ i
∈ R∗

+ such that γ
i
≤ |z̃i

k+1| ≤ γ̄i for all h ≤ H and all
i ∈ {1, . . . ,n}.

Proof. On one hand, we have that Assumption 1 guarantees the existence of the
constants γ

i
. On the other hand, from (28) we can see that for every i = 1, . . . ,n,

|z̃i
k+1| ≤ ζi +hv

µ

m
k

(
f̄i +

1
m ᾱriζi

)
,

where D̄ = [−d̄1, d̄1]× [d2, d̄2],

f̄i = sup
z∈SV
d∈D̄

| fi(z,d)| , ζi = sup
z∈SV

|zi| , ᾱ = sup
z∈SV
d∈D̄

|W (z,d)| .

Now, since vk is decreasing and µ < 0, the hypotheses of the lemma ensure that

γ i = ζi +Hb
µ

m
(

f̄i +
1
m ᾱriζi

)
.

□

Proof of Theorem 5

First we analyze Ev given by (31). From (26) and (27) we have that (denoting Ev =
Ev(t +h))

|Ev| ≤ v(t)
∣∣∣(1− −µ

m v
µ

m (t)Ŵ (t)
) m
−µ −

(
1− −µ

m v
µ

m (t)W (zk,dk)h
) m
−µ

∣∣∣ ,
where Ŵ (t) :=

∫ t+h
t W (z(τ),d(τ))dτ . Note that we have used the hypothesis v(t) =

vk. Now, we rewrite these inequalities as follows

|Ev| ≤ hv(t)

∣∣∣(1− −µ

m v
µ

m (t)Ŵ (t)
) m
−µ −

(
1− −µ

m v
µ

m (t)W (zk,dk)h
) m
−µ

∣∣∣
h

.
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Assume that d is continuous at t. Recall that W is continuous for all z ∈ Rn \ {0}
and all d ∈ R2, moreover, z(t) = zk and d(t) = dk. Hence, it is clear (e.g. by using
the L’Hôpital’s rule) that

lim
h→0

1
h

∣∣∣(1− −µ

m v
µ

m (t)Ŵ (t)
) m
−µ −

(
1− −µ

m v
µ

m (t)W (zk,dk)h
) m
−µ

∣∣∣= 0 .

Observe that W (z,d) is positive and bounded for all z ∈SV and all d ∈ D̄, therefore,
there exists a function η̄v ∈ K (which does not depend on zk ∈ SV ) such that

1
h

∣∣∣(1− −µ

m v
µ

m (t)Ŵ (t)
) m
−µ −

(
1− −µ

m v
µ

m (t)W (zk,dk)h
) m
−µ

∣∣∣≤ η̄v(h) .

Thus, the result of the theorem is obtained by taking ηv(h) = v(t)η̄v(h).
Now, we analyze the error Ez, which is given by (32). Observe from (28) that

Ez(t +h) = z(t +h)−∆
r(V −1

m (z̃k+1)
)
z̃k+1,

which can be rewritten as

Ez(t +h) = z(t +h)− z̃k+1 +
(
I −∆

r(V −1
m (z̃k+1)

))
z̃k+1.

Hence, for i = 1, . . . ,n, we have that

Ez
i (t +h) = zi(t +h)− z̃i

k+1 +
(
1−V

−ri
m (z̃k+1)

)
z̃i

k+1 . (33)

Since z(t +h) ∈ SV , the term 1−V
−ri
m in (33) can be rewritten as follows

1−V
−ri
m (z̃k+1) =

1

V
ri
m (z̃k+1)

(
V

ri
m (z̃k+1)−1

)
=

1

V
ri
m (z̃k+1)

(
V

ri
m (z̃k+1)−V

ri
m (z(t +h))

)
.

From Lemma 5, and for any H ∈ R∗
+, we can ensure the existence of constants

a1,a2 ∈ R∗
+ such that a1 ≤V (z̃k+1)≤ a2 for all h ≤ H. Hence,8∣∣V ri

m (z̃k+1)−V
ri
m (z(t +h))

∣∣≤ Li
∣∣V (z̃k+1)−V (z(t +h))

∣∣≤ LiLv
∣∣z̃k+1 − z(t +h)

∣∣ ,
for some constants Li,Lv ∈ R∗

+. Thus, we obtain
∣∣1−V

−ri
m (z̃k+1)

∣∣≤ ci
∣∣z̃k+1 − z(t +

h)
∣∣ with ci := a

−ri
m

1 LiLv. Hence, we find a bound for (33) as follows

8 Since [a1,a2]⊂R is compact and a1 > 0, the function g : [a1,a2]⊂R∗
+ →R given by g(V ) =V

ri
m

is Lipschitz continuous. Also, zk and z belong to a compact subset of Rn on which V is Lipschitz
continuous.
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|Ez
i (t +h)| ≤ |zi(t +h)− z̃i

k+1|+ ci
∣∣z̃k+1 − z(t +h)

∣∣|z̃i
k+1| ,

≤ |z̃k+1 − z(t +h)|+ ci
∣∣z̃k+1 − z(t +h)

∣∣|z̃i
k+1| ,

≤ (1+ ci|z̃i
k+1|)

∣∣z̃k+1 − z(t +h)
∣∣ ,

≤ c̄i
∣∣z̃k+1 − z(t +h)

∣∣ , c̄i := 1+ ciγ i , (34)

with γ i as given in Lemma 5. To analyze the term
∣∣z̃k+1 − z(t +h)

∣∣ define F(x,d) :=
f (x,d) + 1

mW (x,d)Gx. Thus, from (20) and (28) we have that z(t + h) = z(t) +∫ t+h
t v

µ

m (τ)F(z(τ),d(τ))dτ and z̃k+1 = zk +hv
µ

m
k F(zk,dk), respectively. By the Tay-

lor’s theorem, there exists a function h 7→ R(t,h) such that z(t + h) = z(t) +
v

µ

m (t)F(z(t),d(t))h+R(t,h), and 1
h R(t,h)→ 0 as h → 0. Since zk = z(t), d(t) = dk,

and vk = v(t),∣∣z̃k+1 − z(t +h)
∣∣= ∣∣∣zk +hv

µ

m
k F(zk,dk)− z(t)− v

µ

m (t)F(z(t),d(t))h−R(t,h)
∣∣∣ ,

= |R(t,h)|= h
∣∣∣1
h

R(t,h)
∣∣∣ , lim

h→0

∣∣∣1
h

R(t,h)
∣∣∣= 0 . (35)

Therefore, from (34) and (35) we conclude that there exist c ∈R∗
+ and ηz ∈K such

that
|Ez(t +h)| ≤ hηz(h) , ηz(h)≥ c

∣∣∣1
h

R(t,h)
∣∣∣ .

□

5 Examples

In this section, firstly we resume the examples given in Section 2 to illustrate the
discretization scheme proposed in Section 4. Secondly, in Example 7 we show a
possible application of the proposed discretization scheme to construct a discrete-
time implementation of the controller 3. The disturbances to be used in the examples
are given by

d1(t) = A1 sin(ω1t) , d2(t) = 1−A2 cos(ω2t) , (36)

where d̄1 = A1, d2 = 1−A2 and d̄2 = 1+A2, with the parameters A1 = 1, ω1 = π ,
A2 = 1/5, and ω2 = 10π .

Example 4. For n = 1 consider (1) with the controller and the Lyapunov function
given in Example 1. Observe that ∂V1(x)

∂x x = x2
1. Hence, Lemma 4 guarantees that

Assumption 1 holds. For the simulation, we use the gain k1 = 3 and the initial con-
dition x(0) = 5. Fig. 1 shows the behavior of the discretization scheme (29) with a
step of h = 0.1. It is clear that the state of the system converges exactly to the origin
in finite-time despite the disturbance.

Additional details of this example are given in [34], where it is even compared
with the implicit discretization schemes from [8] and [1].
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Fig. 1 Discrete-time approximation of (1), (3) for n = 1.

Example 5. Now consider (1) with n = 2, the controller and the Lyapunov function
given in Example 2. Observe that

∂V2(x)
∂x

x =
(
1+ 3

2 k4
1
)

x2
1 +

5
2 k3

1⌈x1⌋
3
2 x2 + x4

2 .

By applying the Young’s inequality to the term ⌈x1⌋
3
2 x2 it can be verified that the

function given by x 7→ ∂V2(x)
∂x x is positive definite if k1 < 8

1
4

(
3
(

5
( 5

8

) 1
3 −4

))− 1
4
.

Under this condition, Lemma 4 guarantees that Assumption 1 holds. For the simula-
tion we use the initial conditions x1(0) = 2, x2(0) = 2 and the gains k1 = 1, k2 = 4.
The discretization step is again set to h = 0.1. In Fig. 2 it can be seen the states
of the discrete-time approximation (29) preserving the finite-time converge feature
from the continuous-time model.
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Fig. 2 Discrete-time approximation of (1), (3) for n = 2.
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Example 6. Now, for the case n = 3, consider (1) with the controller and the Lya-
punov function given in Example 3. To simulate the discretization scheme (29) we
use the initial conditions x1(0) = 2, x2(0) = 2, x3(0) = 2 and the gains k1 = 0.6,
k2 = 1.7, k3 = 1200. The discretization step is set to h = 0.001. Fig. 3 shows the
states of the system converging exactly to the origin in finite-time.
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0
5x10-6

8.65 8.75

0
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xk
1

xk
2

xk
3

hk

Fig. 3 Discrete-time approximation of (1), (3) for n = 3.

Since, for this example, Assumption 1 is not easily verifiable by means of
Lemma 4, we confirm along the simulation that z̃k ̸= 0 for k ≥ 0. This can be cor-
roborated in Fig. 4, which shows the norm of z̃k.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

|zk|

hk

Fig. 4 Norm of z̃k in (28) for the discrete-time approximation of (1), (3) for n = 3.

Example 7. In this example we show a possible application of the proposed dis-
cretization scheme to construct a discrete implementation of the controller (3).

Consider (1) for n = 2. Assume that the state x is measured at instants tk = kh,
k ∈Z+, h∈R∗

+, and the control signal must be constant for the interval Ik = [kh,(k+
1)h), i.e. u(t) = uk for all t ∈ Ik. It is well known that the standard discretization of
u(x(t)) given by

uk = u(x(tk)) , (37)
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generates numerical chattering as it can be seen in Fig. 5, which shows the behav-
ior of the states of the system for d1 = 0 and d2 = 1, with the controller (3) dis-
cretized as in (37). For the simulation the initial conditions are x1(0) = 1, x2(0) = 1
and the gains k1 = 1, k2 = 4. The step for the control discretization is h = 0.01.
The continuous-time dynamics is approximated by means of the explicit Euler dis-
cretization with a step of hs = 1×10−5.
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Fig. 5 States of (1) in closed loop with the discretization of (3) given by (37) (undisturbed case).

Now, as it is done with implicit discretization techniques for sliding mode con-
trollers (see, e.g. [8, 1]) we consider the controller discretization

uk = u(xk+1) . (38)

We use the proposed discretization method to compute xk+1. First, observe that the
function u : Rn → R given by (3) is r−homogeneous of zero degree. Hence, if x =
∆ r(ε)z, then u(x) = u(z) for all ε ∈ R∗

+. Thus, by considering (29), we can replace
(38) with

uk = u(zk+1) . (39)

To compute zk+1 we use (28) and vk+1 given by (27) with the data

vk =V (x(tk)) , zk = ∆
r(v

− 1
m

k

)
x(tk) .

Now, note that both vk+1 and zk+1 given by (27) and (28), respectively, depend on
the disturbance d, and it is generally unknown. Thus, we compute vk+1 and zk+1 by
assuming the nominal case, i.e. with the disturbance d such that d1 = 0 and d2 = 1.
Finally, observe that u is discontinuous at zero, hence we have to assign the value
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of u(zk+1) for the case zk+1 = 0. Since limε↓0 u(∆ r(ε)z) = u(z) for all z ̸= 0, we set
u(zk+1) = u(zk) if zk+1 = 0.

In Fig. 6 we can see the states of the system with the controller (3) discretized
as in (39). The disturbance signals are set as before, i.e. d1 ≡ 0 and d2 ≡ 1. The
initial conditions are x1(0) = 1, x2(0) = 1 and the gains k1 = 1, k2 = 4. It can be
seen that the numerical chattering has been considerably reduced with the proposed
discretization scheme.
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Fig. 6 States of (1) in closed loop with the discretization of (3) given by (39) (undisturbed case).

Now we repeat the simulations by considering the disturbances given in (36).
In Fig. 7 and Fig. 8 we can appreciate the states of the system and the control
signals with the two different methods. It is clear that the proposed Lyapunov-based
discretization helps to reduce the numerical chattering effect in the state signals. It is
also noticeable that the accuracy in the second state is improved with the Lyapunov-
based method, but it is not for the first state.

6 Conclusion

We have provided in this chapter a discretization scheme for a class of systems
controlled by a family of quasi-continuous HOSM controllers. Two of the most
relevant properties of the method are that it preserves from the continuous-time
system the finite-time convergence to the origin and the Lyapunov function. Another
interesting feature of the technique is that both the discretization and the projection
procedures are explicit. Finally, we have shown an example of the application of
the proposed discretization-scheme to design a discrete-time implementation of a
quasi-continuous controller that helps to reduce the numerical chattering effect.
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