
HAL Id: hal-04390727
https://hal.science/hal-04390727v1

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fixed-time parameter estimation via the discrete-time
DREM method

Marina Korotina, Stanislav Aranovskiy, Rosane Ushirobira, Denis Efimov,
Jian Wang

To cite this version:
Marina Korotina, Stanislav Aranovskiy, Rosane Ushirobira, Denis Efimov, Jian Wang. Fixed-time
parameter estimation via the discrete-time DREM method. 22nd IFAC World Congress, IFAC, Jul
2023, YOKOHAMA, Japan. pp.4013-4018, �10.1016/j.ifacol.2023.10.1382�. �hal-04390727�

https://hal.science/hal-04390727v1
https://hal.archives-ouvertes.fr


Fixed-time parameter estimation via the
discrete-time DREM method

Marina Korotina ∗,∗∗ Stanislav Aranovskiy ∗

Rosane Ushirobira ∗∗∗ Denis Efimov ∗∗∗ Jian Wang ∗∗∗∗
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Abstract: A simple fixed-time converging estimation algorithm is presented for a linear
regression using the dynamic regressor extension and mixing (DREM) method within a discrete-
time setting, with a persistently exciting regressor and bounded measurement noises. The
solution is based on Kreisselmeier’s filters and is computationally simpler than the existing
analogs.
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1. INTRODUCTION

The parameter identification problem for dynamic or
static systems is an essential issue in many scientific dis-
ciplines (Ljung, 1987). It appears everywhere with online
measurements and where a mathematical model should be
realized. Frequently, this leads to applying linear regres-
sion methods with respect to unknown parameters, mainly
due to the existence of many well-matured approaches
to solving this problem (Yan, 2009). The parameters can
be identified in such a case if the regressor is sufficiently
exciting (Sastry and Bodson, 1989; Ioannou and Koko-
tovic, 1983). Most tools for finding the parameters in
linear regression (the least-squares or the gradient-descent
algorithms are popular examples) also have some known
shortages. Among them, it is necessary to mention the
difficulty of accelerating the convergence process to the
ideal values (even in a continuous-time setting, this prop-
erty is mainly predefined by the level of excitation in the
regressor) and the non-monotonicity of the convergence
(Narendra and Annaswamy, 1987; Efimov and Fradkov,
2015; Efimov et al., 2019). The latter fact means that
despite a decreasing norm of the parameter vector estima-
tion error, the respective discrepancies for each parameter
may demonstrate a complex oscillatory behavior before
settling down in a vicinity of the true value, which may
postpone a real-time utilization of the obtained estimates.
That is why a solution to these drawbacks recently pro-
posed by the dynamical regressor extension and mixing
(DREM) method (Aranovskiy et al., 2017) has quickly
gained popularity (Belov et al., 2018; Aranovskiy et al.,
2019; Vediakova et al., 2021). Its additional advantage is
that the excitation constraints can be slightly relaxed.

This note studies discrete-time systems since measure-
ments are usually available in discrete time. Many DREM-
based solutions are formulated in the continuous-time
setting (Wang et al., 2020, 2019; Ortega et al., 2020),

and only some have an extension in the discrete-time
environment (Ortega et al., 2021b,a). In all these works,
the DREM method is used to reduce the initial linear
regression problem for a vector of unknown parameters to
a series of interrelated scalar linear regression problems,
with a posterior application of different iterative schemes
for asymptotic or finite/fixed-time evaluation of the values
of parameters (Belov et al., 2018; Aranovskiy et al., 2019;
Vediakova et al., 2021; Ortega et al., 2020; Wang et al.,
2019).

In this paper, we show that a posterior application of
iterative schemes is not necessary with the DREM proce-
dure. We show that a proper choice of dynamics extension
scheme at the first step of the DREM procedure ensures
that the novel regressor is strictly positive, allowing for
point-wise (algebraic) estimation. A point-wise estimator
can be of limited practical interest due to its noise sen-
sitivity, even if it provides the fixed-time (independent in
initial conditions) convergence. To this end, we analyze
the worst-case upper bound on the estimation error and
study its dependence on tuning parameters. Moreover, we
show that the point-wise estimator combined with a (non-
)linear filter can provide faster transients than a standard
iterative estimator, e.g., the gradient-descent one, having
a comparable steady-state performance.

To summarize, the contribution of this note is twofold:

• We show that (under proper tuning) the DREM
procedure allows for a point-wise algebraic estimator
providing fixed-time convergence independently of
initial conditions;
• We show that for noised measurements, the point-

wise algebraic estimator combined with a filter can
outperform standard iterative tools.

The rest of the paper is organized as follows. The problem
statement is given in Section 2, and Section 3 briefly de-



scribes the DREM procedure. In Section 4, we discuss how
the DREM procedure can preserve the initial excitation.
Section 5 presents this note’s main result, and Section 6
contains simulations illustrating our results. Finally, Sec-
tion 7 contains some concluding remarks.

Notation

• The sets of nonnegative real and integer numbers are
denoted by R+ and N, respectively. Also, N∗ := N \
{0}. The set of real n × m-matrices is denoted by
Rn×m. The n-identity matrix is denoted by In.
• For a vector x ∈ Rn, ‖x‖ denotes its Euclidean norm.
• The rounding function to the greatest integer smaller

than s ∈ R is denoted by bsc = floor(s).

2. ESTIMATION PROBLEM STATEMENT

Assume that a vector linear regression model is given in
discrete-time:

yk = φ
>
k θ + vk, k ∈ N, (1)

where yk, vk ∈ R are the output and the bounded

measurement noise, φk, θ = (θ1 . . . θn)
> ∈ Rn are the

regressor and the unknown parameter vectors. The signals
available for online measurements are yk and φk.

Problem 1. Our goal is to estimate θ from the measure-
ments yk and φk in fixed time, taking into account the
presence of the noise vk.

3. DYNAMICAL REGRESSOR EXTENSION AND
MIXING (DREM)

The DREM procedure consists in finding n stable causal
filters Hi(z), where i ∈ {1, . . . , n}, and z is the time
shift operator (i.e., zhyk = yk−h for any k, h ∈ N,
k ≥ h), whose auxiliary role is also to filter the noise.
For i ∈ {1, . . . , n}, denote

Y ik = Hi(z)yk, Φik = Hi(z)φk, V
i
k = Hi(z)vk, (2)

Yk = (Y 1
k . . . Y

n
k )>, Vk = (V 1

k . . . V
n
k )> ∈ Rn,

Φk = (Φ1
k . . .Φ

n
k )> ∈ Rn×n.

That leads to a new extended regression

Yk = Φkθ + V k, V k = Vk + εk, k ∈ N,
where εk ∈ Rn is an exponentially decaying term coming
from the initialization of the filters (the filters can be
applied directly to (1), or to the auxiliary regression

problem φkyk = φkφ
>
k θ + φkvk). Finally, for

φk = det(Φk) , yk = adj(Φk)Yk, vk = adj(Φk)V k (3)

this yields the element-wise scalar linear regression:

yk,i = φkθi + vk,i, k ∈ N, i ∈ {1, . . . , n}, (4)

where yk,i ∈ R and φk ∈ R are known signals, θi ∈
R is the unknown constant parameter to be estimated,
and vk,i ∈ R is an unknown bounded measurement
distortion. Note that the estimation of each θi is now
explicitly independent of other components of θ, and the
interconnection is hidden in φk ∈ R.

For k ∈ N, let θ̂k ∈ Rn denote an estimate of θ at time k.

Define ek := yk − φkθ̂k = φkθ̃k + vk as the measured

regression error, where θ̃k := θ − θ̂k is the parameter

estimation error. It remains now to design an algorithm

to compute θ̂k, which is a simpler problem than (1), since
in (4) the estimation of each θi can be treated separately.

Moreover, in scalar linear regression, the convergence of θ̃k
is elementwise monotone and can be accelerated by tuning
the estimation procedures (Aranovskiy et al., 2017).

One of the main issues of the DREM methodology is the
excitation of the common regressor φk, and its relation
with the excitation of φk in the original problem state-
ment, which is obviously predefined by the choice of the
filters Hi in (2). Let us present a solution to this problem.

4. KREISSELMEIER’S REGRESSOR EXTENSION

Let us introduce a possible selection of the filters Hi,
i ∈ {1, . . . , n} that keep the excitation level of the original
regression for (4). To this end, let us characterize the
admissible excitation levels (Narendra and Annaswamy,
1987):

Definition 1. (PE). A bounded signal φ : N → Rn is
called (`, µ)-persistently exciting (PE) if there exist ` ∈ N∗
and µ > 0 such that

`−1∑
i=0

φk+iφ
>
k+i ≥ µIn, ∀k ∈ N.

It is said to be intervally exciting (IE) if the above
inequality is satisfied for k = 0 only.

Persistent excitation is a widely used property and in the
noise-free case, interval excitation can be related with the
conventional identifiability/observability condition of θ in
(1).

Within the context of the DREM procedure, Kreis-
selmeier’s dynamic regressor extension (the filter in (2)
applied to the auxiliary regression problem) is given by

Φk+1 = λΦk + (1− λ)φkφ
>
k , (5)

Yk+1 = λYk + (1− λ)φkyk,

where λ ∈ (0, 1), Y0 ∈ Rn and Φ0 ∈ Rn×n, Φ0 = Φ>0 ≥
0. After the mixing step, it yields the decoupled linear
regression equation (4). Specifically, the choice Φ0 = 0
and Y0 = 0 guarantees that εk ≡ 0 for all k ∈ N.

Lemma 1. (Excitation Preservation). Consider a (`, µ)-
PE signal φ and the Kreisselmeier’s dynamic extension
(5). Then the signal φ defined in (3) is (`, α)-PE, with

α =
(
µ (1− λ)λ`−1

)n
.

Moreover,

φk ≥ α, ∀k ≥ `; lim inf
k→∞

φk ≥ α
(

1

1− λ`

)n
.

The proof of Lemma 1 is omitted for brevity. In the
continuous-time setting, a similar result on the choice of
filters is given in (Aranovskiy et al., 2023).

Remark 1. As it has been shown in (Vedyakov et al.,
2019), even if φ does not satisfy the needed excitation
constraints after transformation, the excitation can al-
ways be ensured by simple additional manipulations. For
example, let us recall one of the solutions provided in
(Vedyakov et al., 2019). Both sides of the equation (4)



can be multiplied by φk and summed, leading to a new
linear regression equation:

ỹk = φ̃kθ + ṽk, k ∈ N,
where

ỹk =

k∑
i=0

φiyi, φ̃k =

k∑
i=0

φ2
i , ṽk =

k∑
i=0

φivi.

The new scalar regressor φ̃ is a non-decreasing signal of
time, and under very mild requirements (e.g., φk 6= 0 for
some k ∈ N), it has to show a minimal excitation. It is
worth highlighting that such a procedure may increase
the noise intensity.

Remark 2. If φ̄ in (1) is IE, then φ resulting from (3), (5)
cannot be identically zero, and if φ̄ is PE, then φ is strictly
positive for all k ≥ `. Thus, we consider only steps k ∈ N
when φk 6= 0. Otherwise, the linear regression (4) reads
yk = vk, and there is no reason to update the estimate for

such samples, i.e., θ̂k = θ̂k−1 for φk = 0 (recall that the
signal φ is known).

5. PARAMETER ESTIMATION FOR NOISED
MEASUREMENTS

In the noise-free case, after applying the DREM method
and obtaining the decoupled linear regression (4), the
estimation problem has a trivial solution

θ̂k =
yk
φk
, (6)

which can be unconditionally applied as soon as φk 6= 0
for some k ∈ N. Such a scenario is always realizable with
an IE-function φ in (4) (since (4) is identifiable).

In the presence of noise, using the established properties
of Kreisselmeier’s filters (5), the following simple result
can be obtained, which presents the main outcome of this
note. Its proof is omitted for brevity.

Theorem 3. Let the regressor signal φ in (1) be (`, µ)-PE
and the Kreisselmeier’s dynamic extension filters (5) be

used in (2). Then the estimate θ̂k can be computed by
(3), (6), for all k ≥ `, and with α defined in Lemma 1.

sup
k≥`
‖θ̃k‖ ≤

supk≥` ‖vk‖
α

,

lim sup
k→+∞

‖θ̃k‖ ≤
(
1− λ`

)n lim supk→+∞ ‖vk‖
α

Thus, the DREM-based algorithm (5), (3), (6) guarantees

a fixed-time convergence of the estimate θ̂k to the true
value θ (the convergence time ` ≥ n is independent of ini-
tial conditions), while the estimation error is proportional
to the noise v amplitude.

Remark 4. According to the estimates given in Theorem
3, the choice λ∗ = `−1

` minimizes the parameter estima-

tion error gain α−1 with respect to the noise. Augmenting
the value of λ can improve the asymptotic precision of the
proposed algorithm.

Several final comments are in order:

(1) Roughly speaking, the DREM method provides a
direct measurement of the unknown parameter vector
θ for k ≥ `:

Yk = θ + Vk, with Yk = φ−1
k yk, Vk = φ−1

k vk.

Note that for a (`, µ)-PE signal φ, the linear regres-
sion problem (1) has the sliding-window solution for
k ≥ `− 1:

θ̂k =

(
`−1∑
i=0

φk−iφ
>
k−i

)−1 `−1∑
i=0

φk−iyk−i, (7)

then (5), (3), (6) realize such a scheme with a forget-
ting factor λ (with exponentially weighted moving
average). The iterative application of (6) or (7) for
k > ` is originated from the noise filtering need.

(2) Any other additional noise filtering can be applied to
Yk to attenuate the influence of Vk. In the existing
literature, gradient algorithms are frequently used
for (4) (Belov et al., 2018; Aranovskiy et al., 2019;
Vediakova et al., 2021; Ortega et al., 2020; Wang
et al., 2019), which serve merely for implicit noise-
canceling, being probably not the best choice for such
a purpose. Indeed, the conventional selection is the
least-squares algorithm:

θ̂k = θ̂k−1 + γkφk(yk − φkθ̂k−1), γk ∈ (0, 2φ−2
k ).

For γk = φ−2
k , it is reduced to (6), while for γk =

%φ−2
k with % ∈ (0, 1), to a low-pass filtering of

(6). In general, many more options are available, as
the moving-average filter or nonlinear designs that
cannot be directly applied to the linear regression (4),
e.g., the median filter. See Section 6 for an illustrative
comparison of selected methods.

(3) Note that Kreisselmeier’s dynamic extension (5) fil-
ters the noise vk already, or other noise filters can be
applied to get (1).

6. EXAMPLE

We consider the parameter estimation problem for an
ARX model. The model is given by

yk = −a1yk−1 − a0yk−2 + b0uk + vk, (8)

where y and u are measured scalar output and input
signals, respectively, v is the unmeasured noise, and b0,
a0, and a1 are unknown constants to be estimated. This
model can be written in the form (1) setting for all k ∈ N

φ = (−yk−2 −yk−1 uk)
>
,

θ = (a0 a1 b0)
>
,

and yk = yk.

The input signal is chosen as

uk = A1 sin (ω1k + ψ1) +A2 sin (ω2k + ψ2) , (9)

where A1, A2, ψ1, ψ2, ω1, and ω2 are known parameters
of the input signal.

We apply the DREM procedure with the Kreisselmeier’s
dynamic regressor extension (5) with zero initial condi-
tions. The procedure yields the element-wise scalar linear
regression equations (4) for i = 1, 2, 3.

Standard results in system identification, see, e.g., Sastry
and Bodson (1989), show that for ω1 6= ω2, the input
signal (9) provides excitation to the model (8) and φ is
persistently exciting. Thus, the Excitation Preservation
Lemma applies and the signal φ is also PE and strictly



separated from zero for k ≥ T0 for some T0 ∈ N; a
conservative estimate of T0 is the period of the input signal
u. Then the direct estimation (6) is applied,

θ̂dir
k,i =

yk,i
max {φk, εφ}

, i = 1, 2, 3, (10)

where εφ > 0 is a small constant introduced to ensure the
feasibility of implementing the direct estimation for the
initial transients of (5).

In the sequel, we consider various filtering techniques
applied to the direct estimate (10) and compare them with
estimators applied to the element-wise linear regression
models (4). The results illustrate that fixed-time direct
estimation followed by filtering performs slightly better
than estimators with asymptotic convergence.

Used approaches

For the element-wise linear regression (4), we consider the
following two estimators for i = 1, 2, 3:

• the gradient estimator given by

θ̂gr
k,i = θ̂gr

k−1,i +
γ0

1 + γ0φ2
k

(
yk,i − φkθ̂gr

k−1,i

)
, (11)

where γ0 > 0 is the tuning coefficient;
• the least-squares estimator with forgetting given by

pk =
pk−1

λls + φ2
kpk−1

,

θ̂ls
k,i = θ̂ls

k−1,i + pkφk

(
yk,i − φkθ̂ls

k−1,i

)
,

(12)

with p0 > 0 and λls ∈ (0, 1) is the forgetting factor.

For the direct estimate, we consider the following filtering

methods applied to θ̂dir
k,i given in (10), i = 1, 2, 3:

• the low-pass filtering given by

θ̂low
k,i = %θ̂low

k−1,i + (1− %)θ̂dir
k,i , (13)

where % ∈ (0, 1) is the tuning coefficient;
• the moving-average filtering given by

θ̂ma
k,i =

1

N

N−1∑
j=0

θ̂dir
k−j,i, (14)

where N = min {k,Nma}, and Nma is the length of
the averaging window;

• the median filter given by

θ̂med
k,i = median

{
θ̂dir
k−N+1,i, . . . , θ̂

dir
k,i

}
, (15)

where N = min {k,Nmed}, and Nmed is the number
of samples used in the median computation,

• the Kalman filter given by

θ̂kal
k,i = θ̂kal

k−1,i +
Pk−1 +Q

Pk−1 +Q+Rk

(
yk
φk
− θ̂kal

k−1,i

)
,

Pk =
Rk

Pk−1 +Q+Rk
(Pk−1 +Q) ,

Rk =
R0

max
{
φ2
k, ε

2
φ

} ,
(16)

where Q ≥ 0 and R0 > 0 are the process and
observation noise covariances. When Q 6= 0, the case
of time-varying parameters can be treated.

Simulation results

Consider the model (8), where a0 = 0.73, a1 = −1.71, and
b0 = 0.12. The initial conditions are zero, y−1 = y−2 = 0.
The measurement noise v is chosen as a uniform random
variable, v ∼ U(−0.05, 0.05).

For the inputs signal (9), we choose A1 = 2, A2 = 1,
ψ1 = 0, ψ2 = π

3 , ω1 = 2π
132 , and ω2 = 2π

66 . Following

Remark 4, the value λ in (5) is chosen as λ = T1−1
T1

= 131
132 ,

where T1 := 2π
ω1

. The initial conditions in (5) are zeros,
Φ0 = 0, Y0 = 0.

For the direct estimation, the value εφ in (10) is chosen
as εφ = 10−6. The initial values in the estimators (11),
(12) and filters (13), (16) are zero; the initial values of
p in (12) and P in (16) equal to one. The parameters of
the estimators (11), (12) and filters (13), (14), (16) are
chosen to provide equal transient time in the ideal noise-
free scenario, where the transient time is measured as the
step number when the estimation errors decays to 5% of
the initial value. The values are γ0 = 585, λls = e−

3
28 ,

% = e−
3
80 , Nma = 84, and Q = 1 · 10−4, R0 = 2 · 10−3Q.

For the median filter (15), the number of used samples
is equal to the length of the averaging window in (14),
Nmed = Nma.

Figures 1, 2, and 3 depict the estimation error transients
for θ1, θ2, and θ3, respectively, of the considered methods
in the ideal noise-free scenario. The figures depict the di-

rect estimation θ̂dir (10), the gradient estimator θ̂gr (11),

the least-squares estimator θ̂ls (12), the low-pass filtering

θ̂low (13), the moving-average filtering θ̂ma (14), the me-

dian filtering θ̂med (15), and the Kalman filter θ̂kal (16).
The dashed line corresponds to 5% of the initial error
value; the estimators are tuned to have approximately
equal transient time.

Denote by Tfix, the step number when φk overcomes the
threshold εφ, where Tfix = 10 in the example. The direct
estimate (10) converges in the fixed time Tfix. The median
filter also has the fixed-time convergence property with
convergence time min

{
2Tfix, Tfix +

⌊
Nmed

2

⌋}
. The moving-

average filter converges in the fixed time Tfix + Nma − 1,
and other estimates converge asymptotically.

Figures 4, 5, and 6 depict the estimation error transients
of the considered methods for noisy measurements for θ1,
θ2, and θ3, respectively. As these figures focus on noise
attenuation, we omit the initial transients and present the
steady-state behavior of estimators. The results illustrate
that all considered methods have comparable performance
in alleviating the noise, where filtering of the direct
estimate, such as moving average or median filtering, has a
slightly better attenuation. These results are summarized
in Table 1, where the mean squared error (MSE) and the
mean absolute error (MAE) are given; these values are
computed over 106 samples after the transients.

7. CONCLUSION

In this work, we showed that using Kreisselmeier’s scheme
for the dynamic extension step of the DREM procedure,
the excitation of the original regressor is preserved. Then,
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Fig. 2. Estimation error transients in the noise-free case
for θ2
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for θ3

the DREM procedure generates a novel regressor, sepa-
rated from zero, after the initial time interval. This prop-
erty allows for a direct algebraic pointwise estimation of
unknown parameters, also providing the worst-case noise
propagation bound.
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Fig. 4. Estimation errors in the noised case for θ1
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Fig. 5. Estimation errors in the noised case for θ2
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Fig. 6. Estimation errors in the noised case for θ3

Finally, we demonstrated that such a direct estimate
combined with a (nonlinear) low-pass filter represents
a suitable alternative to the typical combination of the
DREM procedure with an iterative estimator, such as the
gradient of the least-squares one.



Table 1. MSE and MAE of selected methods

θ̂gr θ̂ls θ̂low θ̂ma θ̂med θ̂kal

θ1
MSE · 103 2.5 2.4 2.1 2.1 2.2 2.3
MAE · 102 4.0 3.9 3.7 3.7 3.7 3.8

θ2
MSE · 103 2.9 2.7 2.4 2.4 2.5 2.6
MAE · 102 4.3 4.1 3.9 3.9 4.0 4.1

θ3
MSE · 103 0.5 0.5 0.4 0.4 0.4 0.4
MAE · 102 1.8 1.7 1.6 1.6 1.6 1.7
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