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Summary

A static non-linear homogeneous feedback for a fixed-time stabilization of a linear
time-invariant (LTI) system is designed in such a way that the settling time is assigned
exactly to a prescribed constant for all nonzero initial conditions. The constant con-
vergence time is achieved due to a dependence of the feedback gain of the initial state
of the system. The robustness of the closed-loop system with respect to measure-
ment noise and exogenous perturbations is studied using the concept of Input-to-State
Stability (ISS). Both delay-free and input delay systems are considered. Theoretical
results are illustrated by numerical simulations.
KEYWORDS:
homogeneous system, fixed-time stabilization, robustness, input delay

1 INTRODUCTION

The problem of regulation of a system to a desired set-point in a finite time can be solved using, for example, the methods of finite-
time stabilization (see, e.g.,8 and references therein). Algorithms of finite-time regulation and stabilization for linear systems
are well-known since 1950s (see, for example,10,24,13,21,15,6,3). The settling time to a set-point may be uniformly bounded for
all initial conditions (see, e.g.,26,5,3). In35, such a property of finite-time stable systems was called fixed-time stability.

Both time-independent (static) feedback laws (see, e.g.,35,49) and time-dependent regulators (see, e.g.,42,47,32) are developed
for fixed-time stabilization and regulation of LTI plants. For controllable systems, the settling time can be tuned arbitrary small.
This immediately follows from the definition of controllability. For a control system topologically equivalent to the integrator
chain, very simple schemes for tuning of the settling time are given, for example, in42 and38. The time-dependent feedback42
is designed such that the closed-loop system converges to the origin exactly at a desired (prescribed) time 𝑇 > 0 independently
of the initial condition away from the origin. This property is, obviously, more strong than simply a fixed-time stabilization in
a prescribed time 𝑇 > 0. In the latter case, the system reaches the desired set-point no later than the time instant 𝑡 = 𝑇 . An
assignment of the exact constant settling time may be useful for certain control problems42,41.

The time-dependent prescribed-time regulators are designed for various finite dimensional42,16,1 and infinite dimen-
sional9,44,48 systems. Frequently (see, e.g.,42,9), the prescribed-time regulator has the form of a linear feedback with a
time-dependent gain tending to infinity as the time tends to the prescribed time 𝑇 > 0. This definitely impacts the robustness
properties of the closed-loop system despite that the closed-loop system satisfies the ISS1-like estimates42 on the prescribed
interval of time [0, 𝑇 ). In the delay-free case, the mentioned time-dependent controller rejects matched additive disturbances of
unknown magnitude42, but it is very sensitive with respect to measurement noise32,2. The main reason of such sensitivity is the
time dependence of the feedback gain which, independently of the stabilization error and the magnitude of the measurement
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noise, infinitely amplifies the noise as time tends to the prescribed time 𝑇 . To improve the robustness, a switching rule between
time-dependent prescribed-time regulator and a static finite-time (sliding mode) stabilizer has been suggested in32.

The fixed-time stabilizer presented in38 is a static (time-independent) nonlinear feedback, which can be interpreted as a linear
control with a state dependent feedback gain. This gain tends to infinity as the norm of the stabilization error tends to zero.
Such a control system admits a simple scheme for tuning of a required upper bound of the stabilization time, but it does not
allow us to assign an exact (prescribed) constant settling time for all initial conditions (like for time-varying algorithm). Due to
homogeneity, the static feedback controller is robust (in the ISS sense) with respect to a rather large class of perturbations3,49,37
including measurement noise. Moreover, comparing with the time-dependent stabilizer, it is expected to be less sensitive with
respect to measurement noise since the feedback gain (amplifying the noise) does not tend to infinity in this case (due to non-zero
stabilization error).

In this paper we design a global static feedback, which stabilizes the linear MIMO system such that the settling time of the
closed-loop system to zero equals exactly to a prescribed time 𝑇 for all non-zero initial conditions. To the best of authors’
knowledge, the static (time-independent) feedback laws solving the mentioned problem have never been designed before, prob-
ably due to the following reason. The finite-time stability with a constant settling time is impossible for continuous autonomous
ODE (Ordinary Differential Equation), since the settling-time function of any finite-time stable ODE is strictly decreasing along
non-zero trajectories of the system7, Proposition 2.4. So, it cannot be a constant for all non-zero initial conditions. Therefore, the
considered prescribed-time stabilization problem is infeasible by a conventional static nonlinear feedback. Inspired by38, to
overcome this fundamental obstacle, we define the gain of a static (time-invariant) nonlinear feedback as a function of the ini-
tial state. Formally, in this case, the closed-loop system becomes a Functional Differential Equation (FDE), since its right-hand
side depends on both current and previous (more precisely, initial) values of the state vector. However, this is a very particular
class of FDE, since for any fixed initial condition, the FDE becomes an ODE and can be analyzed in the conventional way. Our
design is essentially-based on an extension of homogeneity concept to such class of FDEs.

Homogeneity is a dilation symmetry widely utilized51,39,17,6,30,25,34,3,36 for finite-time stabilization and stability analysis.
Any asymptotically stable homogeneous system of negative degree is finite-time stable. This paper extends the homogeneity-
based analysis to a particular class of FDEs, which can be treated as autonomous ODEs with right-hand sides depended on the
initial state. In this case, the vector field (the right-hand side of the FDE) may be homogeneous with respect to dilation of both
actual and initial state vectors. We show that, under certain conditions, the asymptotically stable homogeneous FDE is fixed-
time stable with a constant settling-time function. This novel result extends the existing knowledge about convergence rates of
homogeneous systems.

In this paper, some novel static fixed-time controllers are designed for both delay-free and input delay LTI systems. In46,
the static fixed-time stabilizer (with non-constant settling time) for the integrator chain has been designed using transport PDE
(Partial Differential Equation) as a model of the input delay and the back-stepping transformation23,18. However, a similar PDE-
based analysis seems impossible for our fixed-time stabilizer due to its discontinuity. In the delay-free case, the analysis of
the closed-loop dynamics is based on the Filippov’s theory of discontinuous differential equations12. Its analog for PDEs with
discontinuous controllers is not yet well-developed, despite of some interesting recent contributions to this field31. We extend
the results obtained in the delay-free case to the input delay LTI system by means of the Artstein’s transformation4, which allows
both the stability and the robustness analysis of the closed-loop system to be realized easily.

The paper is organized as follows. First, the problem statement is presented. Next, some preliminary remarks about the
particular class of homogeneous FDEs are given. After that, a fixed-time stabilizer with a prescribed constant settling time is
designed for LTI system. Finally, the numerical simulation examples and conclusions are presented.

Notation. ℝ is the field of reals; ℝ𝑛
𝟎 = ℝ𝑛∖{𝟎}, where 𝟎 is the zero element of a vector space (e.g., 𝟎 ∈ ℝ𝑛 means that 𝟎 is the

zero vector); ‖ ⋅‖ is a norm in ℝ𝑛 (to be specified later); a function 𝜎 ∶ [0,+∞) → [0,+∞) belongs to the class  if 𝜎 is strictly
increasing and 𝜎(0) = 0; 𝜎 ∈ ∞ if 𝜎 ∈  and 𝜎(𝑠) → +∞ as 𝑠 → +∞; the function 𝛽 ∶ [0,+∞)×[0,+∞) → [0,+∞) belongs
to the class  if the function 𝑠 → 𝛽(𝑟, 𝑠) is decreasing to zero for any fixed 𝑟 ≥ 0, but the function 𝑟 → 𝛽(𝑟, 𝑠) belongs to the
class  for any fixed 𝑠 ≥ 0; the matrix norm for 𝐴 ∈ ℝ𝑛×𝑛 is defined as ‖𝐴‖ = sup𝑥≠𝟎

‖𝐴𝑥‖
‖𝑥‖

; 𝜆min(𝑃 ) denote a minimal eigenvalue
of a symmetric matrix 𝑃 = 𝑃 ⊤ ∈ ℝ𝑛×𝑛; 𝑃 ≻ 0 means that the symmetric matrix 𝑃 is positive definite; 𝐶1(Ω1,Ω2) denotes the
set of continuously differentiable functions Ω1 ⊂ ℝ𝑛 → Ω2 ⊂ ℝ𝑚; 𝐿∞(ℝ,ℝ𝑘) is the Lebesgue space of measurable uniformly
essentially bounded functions ℝ → ℝ𝑘 with the norm defined by the essential supremum, i.e., ‖𝑞‖𝐿∞

(𝑡0 ,𝑡)
= ess sup𝜏∈(𝑡0,𝑡) ‖𝑞(𝜏)‖

for 𝑞 ∈ 𝐿∞(ℝ,ℝ𝑘); 𝑊 1,∞(Γ,ℝ𝑛) = {𝜙 ∈ 𝐿∞(Γ,ℝ𝑛) ∶ �̇� ∈ 𝐿∞(Γ,ℝ𝑛)} is the Sobolev space of absolutely continuous functions
Γ ⊂ ℝ → ℝ𝑛; we write 𝑎.𝑒.

= (resp, 𝑎.𝑒.
≤ or 𝑎.𝑒.

∈ ) if an identity (resp., inequality or inclusion) holds almost everywhere.
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2 PROBLEM STATEMENT

Let us consider the system
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − 𝜏), 𝑡 > 0, 𝑥(0) = 𝑥0 ∈ ℝ𝑛, (1)

where 𝑥(𝑡) ∈ ℝ𝑛 is the state variable, 𝑢(𝑡 − 𝜏) ∈ ℝ𝑚 is the control signal, 𝐴 ∈ ℝ𝑛×𝑛 and 𝐵 ∈ ℝ𝑛×𝑚 are known matrices, the
time shift 𝜏 ≥ 0 models a delay of a transmission of the input signal to the plant. We restrict the class of admissible control
signals 𝑢 ∈ 𝐿∞((−𝜏,+∞),ℝ𝑚), so the differential equation in (1) is assumed to be fulfilled almost everywhere. Notice that 𝑢
has to be defined on the time interval (−𝜏,+∞) to guarantee the well-possedness of the system (1). The whole state vector 𝑥(𝑡)
is assumed to be available (measured or estimated) for the control purposes. The pair {𝐴,𝐵} is assumed to be controllable.

First, we study the delay-free case (𝜏 = 0). For a given constant 𝑇 > 0, we need to design a nonlinear feedback
𝑢(𝑡) = �̃�(𝑥(𝑡), 𝑥0)𝑥(𝑡), �̃� ∈ 𝐶1(ℝ𝑛

𝟎 ×ℝ𝑛,ℝ𝑚×𝑛) (2)
such that the closed-loop system (1), (2) is fixed-time stable with the constant settling time 𝑇 > 0. This means that the system is
Lyapunov stable and 𝑥(𝑡) = 𝟎, ∀𝑡 ≥ 𝑇 , ∀𝑥0 ∈ ℝ𝑛, but 𝑥(𝑡) ≠ 𝟎 for 𝑡 ∈ [0, 𝑇 ) if 𝑥0 ≠ 𝟎. Therefore, any trajectory of the system
initiated away from the origin will reach the origin exactly at the time instant 𝑡 = 𝑇 .

The second goal of the paper is to study the robustness (in the sense of Input-to-State Stability43) of the closed-loop system
with respect to additive disturbances and measurement noise (for 𝜏 = 0):

�̇�(𝑡)
𝑎.𝑒.
= 𝐴𝑥(𝑡) + 𝐵�̃�(𝑥(𝑡) + 𝑞1(𝑡), 𝑥0 + 𝑞0)(𝑥(𝑡) + 𝑞1(𝑡)) + 𝑞2(𝑡), 𝑡>0, 𝑥(0)=𝑥0, (3)

where 𝑞0 ∈ ℝ𝑛 models the measurement error of the initial state 𝑥(0) = 𝑥0, 𝑞1 ∈ 𝐿∞(ℝ,ℝ𝑘) is measurement noise of the state
𝑥(𝑡) for 𝑡 > 0 and 𝑞2 ∈ 𝐿∞(ℝ,ℝ𝑘) is the exogenous disturbance.

Finally, the third goal is to solve the above problems for the input delay system (1) with 𝜏 > 0. In this case, the control value
generated at time 𝑡 affects the system in the future instant of time 𝑡 + 𝜏. Since the plant model (1) is valid only for 𝑡 > 0, the
control signal 𝑢(𝑡) can be generated based on the state measurements (similarly to (2)) only for 𝑡 > 0, but for 𝑡 ∈ (−𝜏, 0) it has
to be initialized as follows:

𝑢(𝜃) = 𝜙(𝜃) for 𝜃 ∈ (−𝜏, 0), 𝜙 ∈ 𝐿∞((−𝜏, 0),ℝ𝑚), (4)
where, dependently of the control application, the initial control signal 𝜙 can be assumed to be uncertain or assigned as needed
for reaching the control goal. Due to the input delay, we restrict the desired settling time to 𝑇+𝜏. Below we show that the problem
of the fixed-time stabilization with a constant settling time 𝑇 + 𝜏 is feasible only if the control signal on (−𝜏, 0) is initialized by
the zero (𝜙 = 𝟎). Notice that, for an arbitrary selected or unknown initial function 𝜙 ≠ 𝟎, the fixed-time stabilization with the
prescribed time 𝑇 + 𝜏 remains possible. However, the constant value of the settling time cannot be guaranteed anymore. The
settling time can be just bounded by the prescribed constant 𝑇 + 𝜏 in this case.

3 PRELIMINARIES

3.1 Stability notions
Let us consider the system

�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝑥(𝑡0)), 𝑡 > 𝑡0, 𝑥(𝑡0) = 𝑥0 ∈ ℝ𝑛, (5)
where 𝑥(𝑡) is the system state and 𝑓 ∶ ℝ𝑛 × ℝ𝑛 → ℝ𝑛 is locally bounded. On the one hand, the system (5) is well-posed, since
it can be rewritten in the form of the conventional ODE

{

�̇� = 𝑓 (𝑥, 𝑟),
�̇� = 𝟎, 𝑡 > 𝑡0, 𝑥(𝑡0) = 𝑟(𝑡0) = 𝑥0. (6)

For simplicity, we assume that 𝑓 ∈ 𝐶(ℝ𝑛
𝟎×ℝ

𝑛,ℝ𝑛). However, the results presented in this section are also valid for discontinuous
equations and inclusions studied in12. If 𝑓 ∈ 𝐶(ℝ𝑛

𝟎 × ℝ𝑛,ℝ𝑛) so this system (as well as the system (5)) has classical (possible
non-unique) solutions 𝑡 → (𝑥(𝑡), 𝑟(𝑡)) on ℝ𝑛

𝟎 ×ℝ𝑛 and Filippov solutions on ℝ𝑛
𝟎 ×ℝ𝑛 provided that 𝑓 is locally bounded.

On the other hand, the differential equation (5) is not a dynamical system in the sense that its solutions do not satisfy the so-
called semi-group property28. Namely, if 𝑥(𝑡, 𝑡0, 𝑥0) with 𝑡 ≥ 𝑡0 denotes a solution of the system (5) then, in the general case,
𝑥(𝑡, 𝑠, 𝑥(𝑠, 𝑡0, 𝑥0)) ≠ 𝑥(𝑡+ 𝑠, 𝑡0, 𝑥0), where 𝑠 > 𝑡0. So, the classical results of the stability theory (such as the Lyapunov function
method) cannot be directly applied to the system (5). However, the stability notions can be introduced in the conventional way.
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Since, in this paper, we deal only with a global uniform stability, then, for shortness, we omit the words "global uniform" when
we discuss stability issues.
Definition 1. 8 The system (5) is said to be

• Lyapunov stable if there exists 𝜀 ∈  such that
‖𝑥(𝑡)‖ ≤ 𝜀(‖𝑥0‖), ∀𝑡 ≥ 𝑡0, ∀𝑥0 ∈ ℝ𝑛; (7)

• asymptotically stable if there exists 𝛽 ∈ 

‖𝑥(𝑡)‖ ≤ 𝛽(‖𝑥0‖, 𝑡 − 𝑡0), ∀𝑥0 ∈ ℝ𝑛, ∀𝑡 ≥ 𝑡0. (8)
• finite-time stable if it is Lyapunov stable and the exists a locally bounded function �̃� ∶ ℝ𝑛 → ℝ+ such that for any

𝑥0 ∈ ℝ𝑛∖{𝟎} it holds
𝑥(𝑡) = 𝟎, ∀𝑡 ≥ 𝑡0 + �̃� (𝑥0), (9)

for any solution 𝑥(𝑡) of (5) with 𝑥(𝑡0) = 𝑥0, but 𝑥(𝑡) ≠ 𝟎 for all 𝑡 ∈ [0, �̃� (𝑥0)), at least, for one solution 𝑥(𝑡) of (5) with
𝑥(𝑡0) = 𝑥0;

• fixed-time stable if it is finite-time stable and there exists 𝑇max > 0 such that
∃𝑇max > 0 ∶ �̃� (𝑥0) ≤ 𝑇max, ∀𝑥0 ∈ ℝ𝑛; (10)

The function �̃� from the above definition is known as the settling time function7 and its value �̃� (𝑥0) is referred to as the
settling time for the given initial state 𝑥0. In this paper, we study finite-time stable systems with constant settling-time functions,
i.e., �̃� (𝑥0) = const for all 𝑥0 ≠ 𝟎.

Let us consider the system
�̇�(𝑡)

𝑎.𝑒.
= 𝑓 (𝑥(𝑡), 𝑥0, 𝑞(𝑡)), 𝑡 > 𝑡0, 𝑥(𝑡0) = 𝑥0 ∈ ℝ𝑛, (11)

where 𝑥(𝑡) is the system state, 𝑞 ∈ 𝐿∞(ℝ,ℝ𝑘) and 𝑓 is a locally bounded measurable function such that the system (11) has a
Filippov solution12 for any 𝑥0 ∈ ℝ𝑛, any 𝑡0 ∈ ℝ and any 𝑞 ∈ 𝐿∞(ℝ,ℝ𝑘).
Definition 2. 43 A system is said to be Input-To-State Stable (ISS) if there exist 𝛽 ∈  and 𝛾 ∈  such that

‖𝑥(𝑡)‖ ≤ 𝛽(‖𝑥0‖, 𝑡 − 𝑡0) + 𝛾(‖𝑞‖𝐿∞
(𝑡0 ,𝑡)

), ∀𝑥0 ∈ ℝ𝑛, ∀𝑡 ≥ 𝑡0, ∀𝑞 ∈ 𝐿∞(ℝ,ℝ𝑘), ∀𝑡0 ∈ ℝ, (12)
where 𝑥 is a state of the system at the time 𝑡 ≥ 𝑡0, 𝑥0 is the initial state and 𝑞 is an exogenous input/perturbation.

In control theory, the ISS is frequently interpreted as a robustness of the system with respect to a perturbation, which is
modelled by an exogenous input 𝑞 in the right-hand side. Since the right-hand side of (11) depends on the initial condition then
the behavior of the perturbed system on the infinite horizon could also depend on the initial state 𝑥0. Therefore, in the case of
the system (11), the function 𝛾 in the ISS definition may depend on 𝑥0 as well.

3.2 Homogeneous Systems
3.2.1 Linear dilations
Let us recall that a family of operators 𝐝(𝑠) ∶ ℝ𝑛 → ℝ𝑛 with 𝑠 ∈ ℝ is a group if 𝐝(0)𝑥=𝑥, 𝐝(𝑠)𝐝(𝑡)𝑥=𝐝(𝑠+𝑡)𝑥, ∀𝑥∈ℝ𝑛,∀𝑠, 𝑡∈ℝ.
A group 𝐝 is
a) continuous if the mapping 𝑠 → 𝐝(𝑠)𝑥 is continuous, ∀𝑥∈ℝ𝑛;
b) linear if 𝐝(𝑠) is a linear mapping (i.e., 𝐝(𝑠) ∈ ℝ𝑛×𝑛), ∀𝑠 ∈ ℝ;
c) a dilation in ℝ𝑛 if lim inf

𝑠→+∞
‖𝐝(𝑠)𝑥‖ = +∞ and lim sup

𝑠→−∞
‖𝐝(𝑠)𝑥‖ = 0, ∀𝑥 ≠ 𝟎.

Any linear continuous group in ℝ𝑛 admits the representation33

𝐝(𝑠) = 𝑒𝑠𝐺𝐝 =
∞
∑

𝑗=1

𝑠𝑗𝐺𝑗
𝐝

𝑗!
, 𝑠 ∈ ℝ, (13)

where 𝐺𝐝 ∈ ℝ𝑛×𝑛 is a generator of 𝐝. A continuous linear group (13) is a dilation in ℝ𝑛 if and only if 𝐺𝐝 is an anti-Hurwitz
matrix36. In this paper we deal only with continuous linear dilations. The weighted dilation51 is the most popular dilation in
control theory39,17,30,25,3. It corresponds to the linear dilation with a diagonal generator (i.e., 𝐺𝐝 is a diagonal anti-Hurwitz
matrix). The standard (Euler) dilation is given by 𝐝(𝑠) = 𝑒𝑠𝐼𝑛, 𝑠 ∈ ℝ.
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A dilation 𝐝 in ℝ𝑛 is
i) monotone if the function 𝑠 → ‖𝐝(𝑠)𝑥‖ is strictly increasing, ∀𝑥 ≠ 𝟎;
ii) strictly monotone if ∃𝛽>0 such that ‖𝐝(𝑠)𝑥‖≤𝑒𝛽𝑠‖𝑥‖, ∀𝑠≤0, ∀𝑥 ∈ ℝ𝑛.

The monotonicity of the dilation guarantees the uniqueness of the homogeneous projection on the unit sphere36, i.e., for any
𝑥 ∈ ℝ𝑛

𝟎 there exists a unique par (𝑠0, 𝑥0) ∈ ℝ × 𝑆 such that 𝑥0 = 𝐝(𝑠0)𝑥, where 𝑆 = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ = 1}. Below we use this
simple property in order to design the so-called canonical homogeneous norm.

Since for the linear continuous dilation we have 𝑑
𝑑𝑠
𝐝(𝑠) = 𝐺𝐝(𝑠), 𝑠 ∈ ℝ, then the following result is the straightforward

consequence of the existence of the quadratic Lyapunov function for an asymptotically stable LTI system.
Corollary 1. A linear continuous dilation in ℝ𝑛 is strictly monotone with respect to the weighted Euclidean norm ‖𝑥‖ =
√

𝑥⊤𝑃𝑥 with 0 ≺ 𝑃 ∈ ℝ𝑛×𝑛 if and only if
𝑃𝐺𝐝 + 𝐺⊤

𝐝𝑃 ≻ 0, 𝑃 ≻ 0. (14)
This corollary implies that any continuous linear dilation in ℝ𝑛 is monotone with respect to a properly selected weighted

Euclidean norm.

3.2.2 Canonical homogeneous norm
Any linear continuous and monotone dilation in a normed vector space introduces also an alternative norm topology defined by
the canonical homogeneous norm36.
Definition 3 (Canonical homogeneous norm). Let a linear dilation 𝐝 in ℝ𝑛 be continuous and monotone with respect to a norm
‖ ⋅ ‖. A function ‖ ⋅ ‖𝐝 ∶ ℝ𝑛 → [0,+∞) defined as follows: ‖𝟎‖𝐝 = 0 and

‖𝑥‖𝐝 = 𝑒𝑠𝑥 , where 𝑠𝑥 ∈ ℝ ∶ ‖𝐝(−𝑠𝑥)𝑥‖ = 1, 𝑥 ≠ 𝟎 (15)
is said to be a canonical 𝐝-homogeneous norm in ℝ𝑛

The function ‖ ⋅ ‖𝐝 introduced by the above definition is a norm in a vector space homeomorphic to ℝ𝑛 (see,36, Theorem 7.1).
By construction, ‖𝑥‖𝐝 = 1 ⇔ ‖𝑥‖ = 1. Due to the monotonicity of the dilation, it holds ‖𝑥‖𝐝 < 1 ⇔ ‖𝑥‖ < 1 and
‖𝑥‖𝐝 > 1 ⇔ ‖𝑥‖ > 1.

For standard dilation 𝐝1(𝑠) = 𝑒𝑠𝐼𝑛 we, obviously, have ‖𝑥‖𝐝1 = ‖𝑥‖. In other cases, ‖𝑥‖𝐝 with 𝑥 ≠ 𝟎 is implicitly defined by
a nonlinear algebraic equation ‖𝐝(− ln ‖𝑥‖𝐝)𝑥‖ = 1, which always have a unique solution due to monotonicity of the dilation. In
some particular cases38, this implicit equation has explicit solution even for non-standard dilations. The basic properties (such as
local Lipschitz continuity and differentiability) of the canonical homogeneous norm are characterized by the following lemma
Lemma 1. 36 If a linear continuous dilation 𝐝 in ℝ𝑛 is monotone with respect to a norm ‖ ⋅ ‖ then

1) ‖ ⋅ ‖𝐝 ∶ ℝ𝑛 → ℝ+ is single-valued and continuous on ℝ𝑛;
2) there exist 𝜎1, 𝜎2 ∈ ∞ such that

𝜎1(‖𝑥‖𝐝) ≤ ‖𝑥‖ ≤ 𝜎2(‖𝑥‖𝐝), ∀𝑥 ∈ ℝ𝑛; (16)
3) ‖ ⋅ ‖ is locally Lipschitz continuous on ℝ𝑛∖{𝟎} provided that the linear dilation 𝐝 is strictly monotone
4) ‖ ⋅‖𝐝 is continuously differentiable on ℝ𝑛∖{𝟎} provided that ‖ ⋅‖ is continuously differentiable on ℝ𝑛∖{𝟎} and 𝐝 is strictly

monotone.
Below we use the canonical homogeneous norm as Lyaounov function for fixed-time stability analysis. In this case, it is

important to know how to compute the derivative of ‖⋅‖𝐝. For the 𝐝-homogeneous norm ‖𝑥‖𝐝 induced by the weighted Euclidean
norm ‖𝑥‖ =

√

𝑥⊤𝑃𝑥 we have36
𝜕‖𝑥‖𝐝
𝜕𝑥

= ‖𝑥‖𝐝
𝑥⊤𝐝⊤(− ln ‖𝑥‖𝐝)𝑃𝐝(− ln ‖𝑥‖𝐝)

𝑥⊤𝐝⊤(− ln ‖𝑥‖𝐝)𝑃𝐺𝐝𝐝(− ln ‖𝑥‖𝐝)𝑥
. (17)

3.2.3 Homogeneous vector field
Below we study various systems being symmetric with respect to linear dilations. The dilation symmetry introduced by the
following definition is known as a generalized homogeneity51,20,39,6,36.
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Definition 4. 20 A vector field 𝑔 ∶ ℝ𝑛 → ℝ𝑛 is 𝐝-homogeneous of degree 𝜇 ∈ ℝ if
𝑔(𝐝(𝑠)𝑥) = 𝑒𝜇𝑠𝐝(𝑠)𝑔(𝑥), ∀𝑠 ∈ ℝ, ∀𝑥 ∈ ℝ𝑛. (18)

The homogeneity of a mapping is inherited by other mathematical objects induced by this mapping. In particular, solutions
of 𝐝-homogeneous system2

�̇� = 𝑔(𝑥), 𝑡 > 0, 𝑥(0) = 𝑥0 ∈ ℝ𝑛 (19)
are symmetric with respect to the dilation 𝐝 in the following sense51,20,6

𝑥(𝑡,𝐝(𝑠)𝑥0) = 𝐝(𝑠)𝑥(𝑒𝜇𝑠𝑡, 𝑥0), (20)
where 𝑥(⋅, 𝑧) denotes a solution of (19) with 𝑥(0) = 𝑧 ∈ ℝ𝑛 and 𝜇 ∈ ℝ is the homogeneity degree of 𝑔. The mentioned symmetry
of solutions implies many useful properties of homogeneous system such as equivalence of local and global results. For example,
local asymptotic (Lyapunov or finite-time stability) is equivalent to global asymptotic (resp., Lyapunov or finite-time) stability.

3.2.4 Homogeneous FDE
It is well known50,29,6 that an asymptotically stable system (19) is finite-time stable provided that 𝑔 is 𝐝-homogeneous of
negative degree. The following theorem shows that a homogeneous FDE (5) may be fixed-time stable with a constant settling-
time function.
Theorem 1. Let 𝑓 ∈ 𝐶(ℝ𝑛

𝟎 ×ℝ𝑛,ℝ𝑛) be locally bounded on ℝ𝑛 ×ℝ𝑛 and the system
�̇� = 𝑓 (𝑥, 𝑟), 𝑡 > 0, 𝑥(0) = 𝑥0, 𝑟 ≠ 𝟎 (21)

be asymptotically stable for any 𝑟 ∈ ℝ𝑛
𝟎. Let 𝐝1,𝐝2 be linear dilations in ℝ𝑛 such that

• for any 𝑟 ∈ ℝ𝑛 the vector field
𝑥 → 𝑓 (𝑥, 𝑟) (22)

is 𝐝1-homogeneous of negative degree 𝜇 < 0;
• the vector field

(

𝑥
𝑟

)

→

(

𝑓 (𝑥, 𝑟)
𝟎

)

, 𝑥, 𝑟 ∈ ℝ𝑛 (23)
is 𝐝-homogeneous of degree 0, where

𝐝(𝑠) =
(

𝐝2(𝑠) 𝟎
𝟎 𝐝2(𝑠)

)

, 𝑠 ∈ ℝ. (24)

If the system (5) is Lyapunov stable then it is
• finite-time stable with a discontinuous (at least at 𝟎) settling-time function �̃� ∶ ℝ𝑛 → [0,+∞);
• fixed-time stable provided that �̃� is bounded on some compact set 𝑆 ⊂ ℝ𝑛

𝟎 such that ⋃

𝑠∈ℝ
𝐝2(𝑠)𝑆 = ℝ𝑛

𝟎, moreover, the
settling time is a constant for all 𝑥0 ≠ 𝟎 if and only if �̃� is constant on 𝑆.

Proof. On the one hand, since for any fixed 𝑟 ≠ 𝟎 the system (21) is asymptotically stable then 𝐝1-homogeneity with negative
degree 𝜇 < 0 implies its finite-time stability (see6,30), i.e., there exists a settling-time function 𝑇𝑟 ∶ ℝ𝑛 → ℝ+. This means
that 𝑇𝑥0(𝑥0) < +∞ for any 𝑥0 ≠ 𝟎. Hence, the Lyapunov stability of the system (5) implies its finite-time stability with the
settling-time function �̃� ∶ ℝ𝑛 → [0,+∞) defined as follows

�̃� (𝑥0) = 𝑇𝑥0(𝑥0) for 𝑥0 ≠ 𝟎 (25)
and �̃� (𝟎) = 𝟎.

On the other hand, 𝐝-homogeneity of the system (21) implies the following dilation symmetry of solutions
𝑥𝐝2(𝑠)𝑟(𝑡,𝐝2(𝑠)𝑥0) = 𝐝2(𝑠)𝑥𝑟(𝑡, 𝑥0), 𝑡 ≥ 0 (26)

2A system �̇� = 𝑔(𝑥) is 𝐝-homogeneous if it is governed by a 𝐝-homogeneous vector field 𝑔.
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where 𝑥𝑟(𝑡, 𝑧) denotes the solution of the system (21) with the initial condition 𝑥(0) = 𝑧 and the vector of parameters (in the
right-hand side) 𝑟 ∈ ℝ𝑛.

The discovered symmetry implies that the simultaneous scaling of 𝑥0 and 𝑟 by 𝐝2(𝑠) in (21) does not change the settling time
of the corresponding solution:

�̃� (𝐝2(𝑠)𝑥0) = 𝑇𝐝2(𝑠)𝑥0(𝐝2(𝑠)𝑥0) = 𝑇𝑥0(𝑥0) = �̃� (𝑥0) (27)
Therefore, the settling time function of the system (5) has a constant value along any homogeneous curve Γ𝐝2(𝑥0) = {𝑥 ∈ ℝ𝑛 ∶
𝑥 = 𝐝2(𝑠)𝑥0, 𝑠 ∈ ℝ}. In this case, �̃� is always discontinuous at zero since �̃� (𝟎) = 0 and �̃� (𝑥0) ≠ 0 for 𝑥0 ≠ 𝟎. However, taking
into account ⋃

𝑠∈ℝ
𝐝2(𝑠)𝑆 = ℝ𝑛

𝟎, a boundedness of �̃� on the compact 𝑆 implies the uniform boundedness of �̃� on ℝ𝑛, i.e., the
system is fixed-time stable. Moreover, if �̃� (𝑥0) =const for all 𝑥0 ∈ 𝑆 then, due to homogeneity, �̃� (𝑥0) =const for all 𝑥0 ∈ ℝ𝑛

𝟎.The proven theorem discovers a novel property of a homogeneous system. Namely, a homogeneous system with a right-hand
side dependent of the initial condition may be globally fixed-time stable and the settling-time function may be a constant (outside
of the origin). In the case the classical ODE, a fixed-time stability is possible for locally homogeneous system3,36.

Below we design a feedback law 𝑢 for the system (1) with 𝜏 = 0 such that the closed-loop system satisfies the above theorem
for 𝑆 = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ = 1} and 𝐝2(𝑠) = 𝑒𝑠𝐼𝑛, 𝑠 ∈ ℝ.

4 PRESCRIBED-TIME STABILIZATION BY STATIC HOMOGENEOUS FEEDBACK

4.1 Initial State Dependent Homogeneous Feedback
Inspired by38, let us consider the system (1) and define the homogeneous feedback as follows

𝑢 = 𝐾0𝑥 +𝐾𝐝(− ln 𝑇 )𝐝
(

− ln
‖

‖

‖

‖

𝑥
‖𝑥0‖

‖

‖

‖

‖𝐝

)

𝑥 for 𝑥0 ≠ 𝟎, (28)
where 𝐾0, 𝐾 ∈ ℝ𝑚×𝑛 are feedback gains to be defined, 𝐝 is a dilation in ℝ𝑛, 𝑇 > 0 is a prescribed settling time of the system,
‖ ⋅ ‖𝐝 is a canonical homogeneous norm induced by a norm ‖ ⋅ ‖ in ℝ𝑛 to be defined below. For 𝑥0 = 𝟎 we assign 𝑢 = 𝐾0𝑥.

The key difference between the feedback (28) and the homogeneous controller studied in49 is the dependence of the feedback
gain of the initial state 𝑥0 and the prescribed settling time 𝑇 > 0. As in49, the linear term 𝐾0𝑥 is selected such that the linear
vector field 𝑥 → (𝐴 + 𝐵𝐾0)𝑥 is 𝐝-homogeneous. Moreover, 𝐝 is constructed such that, for any fixed 𝑥0, the right-hand side
of the closed-loop system (1), (28) is 𝐝-homogeneous of degree 𝜇 = −1. The closed-loop system is standard homogeneous of
degree 0 with respect to simultaneous scaling of 𝑥 and 𝑥0 by 𝐝2(𝑠) = 𝑒𝑠𝐼𝑛, 𝑠 ∈ ℝ. Therefore, in the view of Theorem 1, the
asymptotic stability of the closed-loop system implies its fixed-time stability. Below we prove, by the direct Lyapunov method,
that the settling time of the system is equal to the constant 𝑇 > 0 for any initial state 𝑥(0) = 𝑥0 ≠ 𝟎. Since the feedback (28) is
discontinuous at 𝑥 = 𝟎 (for 𝑥0 ≠ 𝟎) then solutions of the closed-loop system (1), (28) are defined in the sense of Filippov12.

The dependence of the control gain on the initial state of the system simplifies the fixed-time control design. This can be
easily illustrated in the scalar case. Indeed, let us consider the controllable system (1) with 𝜏 = 0 and 𝑛 = 𝑚 = 1. In this case,
𝐴 ∈ ℝ, 𝐵 ∈ ℝ0, the linear dilation 𝐝 in ℝ is given by the standard dilation 𝐝(𝑠) = 𝑒𝑠 with 𝑠 ∈ ℝ, so ‖𝑥‖𝐝 = ‖𝑥‖ = |𝑥| with
𝑥 ∈ ℝ. According to49, to homogenize the system, the gain 𝐾0 ∈ ℝ has to be selected as 𝐾0 = −𝐴

𝐵
. Therefore, for 𝐾 = 1, the

closed-loop system (1), (28) in the considered case has the form
�̇� = −

|𝑥0|
𝑇

𝑥
|𝑥|

, 𝑡 > 0, 𝑥(0) = 𝑥0.

Hence, we derive |𝑥(𝑡)| = |𝑥0| −
|𝑥0|
𝑇
𝑡 as long as 𝑥(𝑡) ≠ 0 and 𝑥(𝑡) → 0 as 𝑡 → 𝑇 independently of 𝑥0 ≠ 𝟎. Therefore, the

controller (28) solves the problem of the fixed-time stabilization with the constant settling time 𝑇 > 0 at least in the scalar case.
The stability analysis in the vector case is essentially based on the homogeneity theory.
Lemma 2 (Well-posedness of delay-free control system). The feedback law (28) is locally bounded and for any 𝑥 ≠ 𝟎 it holds

𝑢 → 𝐾0𝑥 as 𝑥0 → 𝟎. (29)
For any 𝑥0 ≠ 𝟎, the closed-loop system (1), (28) has a global-in-time Filippov solution 𝑥 ∶ ℝ+ → ℝ𝑛 being a unique classical
solution as long as 𝑥(𝑡) ≠ 𝟎. For 𝑥0 = 𝟎, the closed-loop system has the unique zero solution.
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Proof. According to Filippov’s method12, to define a solution of the closed-loop system, the discontinuous feedback is
regularized at 𝑥 = 𝟎 as follows

𝑢 ∈ ‖𝑥0‖𝐾𝐝(− ln 𝑇 ) for 𝑥 = 𝟎, (30)
where  = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ ≤ 1} is the unit ball. The right-hand side of the closed-loop system (1), (28) becomes a differential
inclusion with an upper semi-continuous right-hand side, which is single-valued at 𝑥 ≠ 𝟎 and set-valued (compact- and convex-
valued) at 𝑥 = 0. In this case, the system has a Filippov solution (defined at least locally in time) for any 𝑥0 ≠ 𝟎 (see,12 for more
details). Since, by definition of the canonical homogeneous norm, we have ‖𝐝(− ln ‖𝑧‖𝐝)𝑧‖ = 1 then

‖𝑢 −𝐾0𝑥‖ℝ𝑚 ≤ ‖𝐾𝐝(− ln 𝑇 )‖𝑚 ⋅ ‖𝑥0‖ (31)
where ‖⋅‖ℝ𝑚 is a norm in ℝ𝑚, ‖⋅‖ is a norm utilized for the definition of ‖⋅‖𝐝 and ‖𝐾𝐝(− ln 𝑇 )‖𝑚 = sup

‖𝑥‖=1 ‖𝐾𝐝(− ln 𝑇 )𝑥‖ℝ𝑚 .
Moreover, since the canonical homogeneous norm ‖ ⋅ ‖𝐝 is locally Lipschitz continuous on ℝ𝑛

𝟎 then the right-hand side of the
closed-loop system (1), (28) is locally Lipschitz continuous away from the origin (𝑥 ≠ 𝟎). So, for any 𝑥0 ≠ 𝟎, the closed-loop
system has a classical solution 𝑥(𝑡), 𝑡 ≥ 0 defined uniquely as long as 0 < ‖𝑥(𝑡)‖ < +∞. Since the right-hand side of the
closed-loop system satisfies the estimate

‖𝐴𝑥 + 𝐵𝑢‖ ≤ ‖𝐴 + 𝐵𝐾0‖ ⋅ ‖𝑥‖ + ‖𝐵𝐾𝐝(− ln 𝑇 )‖ ⋅ ‖𝑥0‖ (32)
with respect to ‖𝑥‖ then, in the view of Winter’s theorem (see, e.g.,14), the solution 𝑥(𝑡) is defined globally in time (i.e., for all
𝑡 ≥ 0). For 𝑥0 = 𝟎, the (regularized) closed-loop system becomes linear �̇� = (𝐴 + 𝐵𝐾0)𝑥, 𝑡 > 0, 𝑥(0) = 𝟎, so it has the unique
zero solution.

Notice that, in the view of the proven lemma, Lyapunov stability of the zero solution should imply the uniqueness of all
solutions of the closed-loop system.
Theorem 2 (Homogeneous stabilization with constant settling time). For any controllable pair {𝐴,𝐵} one holds

1) the linear algebraic equation
𝐴𝐺0 − 𝐺0𝐴 + 𝐵𝑌0 = 𝐴, 𝐺0𝐵 = 𝟎 (33)

has a solution 𝑌0∈ℝ𝑚×𝑛, 𝐺0∈ℝ𝑛×𝑛 such that
– the matrix

𝐺𝐝=𝐼𝑛+𝜇𝐺0 (34)
is anti-Hurwitz for 𝜇≤ 1∕�̃�, where �̃�∈ℕ is a minimal number such that rank[𝐵,𝐴𝐵, ..., 𝐴�̃�−1𝐵] = 𝑛;

– the matrix 𝐺0 − 𝐼𝑛 is invertible and the matrix
𝐴0 = 𝐴 + 𝐵𝑌0(𝐺0 − 𝐼𝑛)−1 (35)

satisfies the identity
𝐴0𝐺𝐝 = (𝐺𝐝 + 𝜇𝐼𝑛)𝐴0 and 𝐺𝐝𝐵 = 𝐵; (36)

2) the linear algebraic system
𝐴0𝑋+𝑋𝐴⊤

0+𝐵𝑌 +𝑌 ⊤𝐵⊤+𝐺𝐝𝑋+𝑋𝐺⊤
𝐝 =𝟎, 𝐺𝐝𝑋 +𝑋𝐺⊤

𝐝 ≻ 0, 𝑋 = 𝑋⊤ ≻ 0 (37)
always has a solution 𝑋 ∈ ℝ𝑛×𝑛, 𝑌 ∈ ℝ𝑚×𝑛;

3) the closed-loop system (1), (28) with 𝜏 = 0, with
𝐾0 = 𝑌0(𝐺0 − 𝐼𝑛)−1, 𝐾 = 𝑌 𝑋−1, (38)

with the dilation 𝐝(𝑠) = 𝑒𝑠𝐺𝐝 and with the canonical homogeneous norm ‖ ⋅ ‖𝐝 induced by the formula (15) using the
weighted Euclidean norm

‖𝑥‖ =
√

𝑥⊤𝐝⊤(− ln 𝑇 )𝑋−1𝐝(− ln 𝑇 )𝑥, (39)
is fixed-time stable with the constant settling time 𝑇 > 0;

4) all solutions of the closed-loop system (1), (28) are unique.
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Proof. The claims 1) and 2) are proven in49. For any constant 𝑟 > 0, using the formula (17) we derive
𝑑
𝑑𝑡
‖𝑥∕𝑟‖𝐝 = ‖𝑥∕𝑟‖𝐝

(𝑥∕𝑟)⊤𝐝⊤(− ln ‖𝑥∕𝑟‖𝐝)𝐝⊤(− ln 𝑇 )𝑋−1𝐝(− ln 𝑇 )𝐝(− ln ‖𝑥∕𝑟‖𝐝)(�̇�∕𝑟)
(𝑥∕𝑟)⊤𝐝⊤(− ln ‖𝑥∕𝑟‖𝐝)𝐝⊤(− ln 𝑇 )𝑋−1𝐺𝐝𝐝(− ln 𝑇 )𝐝(− ln ‖𝑥∕𝑟‖𝐝)(𝑥∕𝑟)

. (40)
The identity (36) implies that

𝐴0𝐝(𝑠) = 𝑒𝑠𝐝(𝑠)𝐴0 and 𝐝(𝑠)𝐵 = 𝑒𝑠𝐵, ∀𝑠 ∈ ℝ (41)
Hence, for the closed-loop system (1), (28) with 𝑥0 ≠ 𝟎 we have

𝑑
𝑑𝑡

‖

‖

‖

‖

𝑥
‖𝑥0‖

‖

‖

‖

‖𝐝
= 𝑒− ln 𝑇 𝑥

⊤𝐝⊤(− ln ‖𝑥∕‖𝑥0‖‖𝐝)𝐝⊤(− ln 𝑇 )𝑋−1(𝐴0 + 𝐵𝐾)𝐝(− ln 𝑇 )𝐝(− ln ‖𝑥∕‖𝑥0‖‖𝐝)𝑥
𝑥⊤𝐝⊤(− ln ‖𝑥∕‖𝑥0‖‖𝐝)𝐝⊤(− ln 𝑇 )𝑋−1𝐺𝐝𝐝(− ln 𝑇 )𝐝(− ln ‖𝑥∕‖𝑥0‖‖𝐝)𝑥

. (42)
Using (37) we derive

𝑑
𝑑𝑡

‖

‖

‖

‖

𝑥
‖𝑥0‖

‖

‖

‖

‖𝐝
= − 1

𝑇
(43)

as long as 𝑥(𝑡) ≠ 𝟎. For 𝑡 = 0 and 𝑥(0) = 𝑥0 ≠ 𝟎 we have ‖𝑥(0)∕‖𝑥0‖‖𝐝 = 1. Since the derivative of the function 𝑡 →
‖𝑥(𝑡)∕‖𝑥0‖‖𝐝 is negative (for 𝑥(𝑡) ≠ 𝟎) then ‖𝑥(𝑡)∕‖𝑥0‖‖𝐝 ≤ 1 for all 𝑡 ≥ 0. This is equivalent to ‖𝑥(𝑡)‖ ≤ ‖𝑥0‖, so the
closed-loop system is Lyapunov stable. Moreover, the system is fixed-time stable such that 𝑥(𝑡) = 𝟎 for 𝑡 ≥ 𝑇 and 𝑥(𝑡) ≠ 𝟎 for
all 𝑡 ∈ [0, 𝑇 ) if 𝑥0 ≠ 𝟎. Finally, by Lemma 2 any solution of the system unique as long as 𝑥(𝑡) ≠ 𝟎, but the proven Lyapunov
stability guarantee the uniqueness of the solution after the reaching of the origin. The proof is complete.

By the proven theorem, for any controllable pair {𝐴,𝐵} the algebraic equations (34), (37) are feasible, and any controllable
linear plant can be stabilized to zero exactly in a prescribed time by means of the static homogeneous feedback (28).

4.2 Robust stabilization of the delay-free LTI system
If 𝑥0 in (28) is replaced with a non-zero constant vector, then the corresponding closed-loop system (1) is homogeneous and ISS
(in the conventional sense43) with respect to measurement noise (in the view of results40,3). So, the obtained static feedback
has some ISS properties with respect to measurement noise, but the robustness (namely, the asymptotic gain 𝛾 in Definition 2)
depends essentially on the initial state 𝑥0. Indeed, considering the term

�̃�(𝑥, 𝑥0) = 𝐾0 +𝐾𝐝(− ln 𝑇 )𝐝
(

− ln
‖

‖

‖

‖

𝑥
‖𝑥0‖

‖

‖

‖

‖𝐝

)

(44)
as a state-dependent gain of the feedback 𝑢 = �̃�(𝑥, 𝑥0)𝑥 we conclude that �̃� → 𝐾0 as 𝑥0 → 𝟎. Since the matrix 𝐴 + 𝐵𝐾0 is
nilpotent then the stability margin3 of the matrix 𝐴 + 𝐵�̃�(𝑥, 𝑥0) tends to zero as 𝑥0 → 𝟎. This badly impacts the robustness of
the system. For example, the delay-free closed-loop system (1), (28) with matched additive exogenous perturbation and the zero
initial condition has the form

�̇� = (𝐴 + 𝐵𝐾0)𝑥 + 𝐵𝑞(𝑡), 𝑡 > 0, 𝑥(0) = 𝑥0 = 𝟎, 𝑞 ∈ 𝐿∞(ℝ,ℝ𝑚). (45)
Since the matrix 𝐴 + 𝐵𝐾0 is nilpotent and {𝐴,𝐵} is controllable then, for 𝑚 = 1, this system is equivalent to the perturbed
integrator chain 𝑦(𝑛)(𝑡) = 𝑞(𝑡), which has unbounded solution for any arbitrary small positive perturbation 𝑞.

To eliminate this drawback, we modify the feedback law (28) as follows
𝑢ct(𝑥, 𝑥0) = 𝐾0𝑥 +𝐾𝐝(− ln 𝑇 )𝐝

(

− lnmin
{

1, ‖‖
‖

𝑥
‖𝑥0‖

‖

‖

‖𝐝

})

𝑥 for 𝑥0 ≠ 𝟎 (46)
with

𝑢𝑐𝑡(𝑥, 𝟎) = 𝑢lin(𝑥) ∶= (𝐾0 +𝐾𝐝(− ln 𝑇 ))𝑥 for 𝑥0 = 𝟎. (47)
Obviously, for 𝑥 ≠ 𝟎, it holds

𝑢ct(𝑥, 𝑥0) → 𝑢lin(𝑥) as 𝑥0 → 𝟎. (48)
Since 𝑢ct(𝑥, 𝑥0) = 𝑢lin(𝑥) for ‖𝑥‖ ≥ ‖𝑥0‖, the above limit is uniform on any compact from ℝ𝑛

𝟎 and 𝑢ct ∈ 𝐶(ℝ𝑛
𝟎 ×ℝ𝑛,ℝ𝑚).

Such a modification of the controller allows us to improve the robustness of the feedback law (28) preserving all stability
properties of the closed-loop system.

3The stability margin of a Hurwitz matrix 𝑀 ∈ ℝ𝑛×𝑛 is the maximum of real parts of eigenvalues of 𝑀 .
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Theorem 3. Let the parameters of the control (28) be defined as in Theorem 2. Then the closed-loop system (1), (46) is fixed-
time stable with the constant settling time 𝑇 > 0 and it has a unique solutions for any 𝑥0 ∈ ℝ𝑛. All solutions of the perturbed
closed-loop system:

�̇�
𝑎.𝑒.
= 𝐴𝑥 + 𝐵𝑢ct(𝑥 + 𝑞1, 𝑥0 + 𝑞0) + 𝑞2, 𝑡>𝑡0, 𝑥(𝑡0)=𝑥0, 𝑞=(𝑞0, 𝑞1, 𝑞2)∈ℝ𝑛 × 𝐿∞(ℝ,ℝ𝑛) × 𝐿∞(ℝ,ℝ𝑛), (49)

admit the ISS-like estimate
‖𝑥(𝑡)‖ ≤ ‖𝑥0 + 𝑞0‖

(

𝛽
(

‖𝑥0‖
‖𝑥0+𝑞0‖

, 𝑡 − 𝑡0
)

+ 𝛾1

(

‖
𝑞1‖𝐿∞(𝑡0 ,𝑡)

‖𝑥0+𝑞0‖

)

+ 𝛾2

(

‖
𝑞2‖𝐿∞(𝑡0 ,𝑡)

‖𝑥0+𝑞0‖

))

for 𝑥0 + 𝑞0 ≠ 𝟎 (50)

where 𝛽 ∈  and 𝛾1, 𝛾2 ∈  are independent of 𝑥0 and 𝑞, but dependent on 𝑇 > 0. Moreover,
• there exist 𝐶𝑖 > 0 dependent of 𝑇 > 0 such that

‖𝑥0+𝑞0‖𝛽
(

‖𝑥0‖
‖𝑥0+𝑞0‖

, 𝑡 − 𝑡0
)

→‖𝑥0‖𝑒
−𝛼(𝑡−𝑡0) and ‖𝑥0+ 𝑞0‖𝛾𝑖

(

‖
𝑞𝑖‖𝐿∞(𝑡0 ,𝑡)

‖𝑥0+𝑞0‖

)

→𝐶𝑖
‖

‖

𝑞𝑖‖‖𝐿∞
(𝑡0 ,𝑡)

as ‖𝑥0+ 𝑞0‖→0, (51)

where 𝑖 = 1, 2 and 𝛼 = 1
2𝑇
𝜆min(𝑋−1𝐺𝐝 + 𝐺⊤

𝐝𝑋
−1);

• the system (49) is fixed-time stable with the settling time estimate 𝑇max = 𝜌𝑇
𝜌−1

for 𝜌 > 1 provided that 𝑞0 = 𝟎, 𝑞1 = 𝟎,
𝑞2 = 𝐵𝛾 and

‖𝐵𝛾(𝑡)‖ ≤ ‖𝑥0‖
𝜆min(𝑋−1∕2𝐺𝐝𝑋1∕2 +𝑋1∕2𝐺⊤

𝐝𝑋
−1∕2)

2𝜌𝑇
, ∀𝑡 ∈ ℝ. (52)

Proof. The identity 𝑑
𝑑𝑡
‖𝑥(𝑡)∕‖𝑥0‖|𝐝 = − 1

𝑇
proven in Theorem 2 holds also for the unperturbed closed-loop system (1), (28)

since ‖𝑥(𝑡)∕‖𝑥0‖‖𝐝 ≤ 1 for all 𝑡 ≥ 0. So, all conclusions of Theorem 2 remain valid.
Making the change of variables 𝑧 = 𝑥∕‖�̃�0‖ with �̃�0 = 𝑥0 + 𝑞0 ≠ 𝟎 we derive

{

�̇�
𝑎.𝑒.
= 𝐴𝑧 + 𝐵

(

𝐾0
(

𝑧 + 𝑞𝑥01
)

+𝐾𝑇𝐝
(

− lnmin
{

‖

‖

‖

𝑧 + 𝑞𝑥01
‖

‖

‖𝐝
, 1
})

(

𝑧 + 𝑞𝑥01
)

)

+ 𝑞𝑥02 ,
𝑧(0) = 𝑧0,

(53)

where 𝑞𝑥01 = 𝑞1
‖�̃�0‖

, 𝑞𝑥02 = 𝑞2
‖�̃�0‖

, 𝐾𝑇 = 𝐾𝐝(− ln 𝑇 ) and 𝑧0 =
𝑥0

‖�̃�0‖
. The system (53) is homogeneous in the bi-limit3(with the zero

degree in ∞-limit and negative degree in 0-limit. The unperturbed system (53) as well as its homogeneous approximations are
globally asymptotically stable. This implies ISS with respect to 𝑞𝑥01 and 𝑞𝑥02 in the view of the results3. Hence, we derive the
estimate (50). By construction, the stabilizer 𝑢ct(𝑥 + 𝑞1, 𝑥0 + 𝑞0) tends (uniformly on compacts from ℝ𝑛) to the linear feedback
𝑢lin(𝑥 + 𝑞1) = (𝐾0 +𝐾𝑇 )(𝑥 + 𝑞1) as 𝑥0 + 𝑞0 → 𝟎. Moreover, 𝑢ct(𝑥 + 𝑞1, 𝑥0 + 𝑞0) = 𝑢𝑙𝑖𝑛(𝑥 + 𝑞1) for ‖𝑥 + 𝑞1‖ ≥ ‖𝑥0 + 𝑞0‖ and

𝑑‖𝑥‖
𝑑𝑡

𝑎.𝑒.
= 𝑥⊤𝐝⊤(− ln 𝑇 )𝑋−1𝐝(− ln 𝑇 )(𝐴𝑥+𝑞2+𝐵(𝐾0+𝐾𝑇 )(𝑥+𝑞1)

‖𝑥‖

𝑎.𝑒.
≤ −𝛼‖𝑥‖ + ‖𝐵(𝐾0 +𝐾𝑇 )𝑞1‖ + ‖𝑞2‖ if ‖𝑥 + 𝑞1‖ ≥ ‖𝑥0 + 𝑞0‖,

where the identity (37) and the homogeneous identities 𝐝(− ln 𝑇 )(𝐴+𝐵𝐾0) = 𝑒− ln 𝑇 (𝐴+𝐵𝐾0)𝐝(− ln 𝑇 ), 𝐝(− ln 𝑇 )𝐵 = 𝑒− ln 𝑇𝐵
have been utilized to obtain the above estimate, and the norm ‖ ⋅ ‖ is defined as in Theorem 2. Hence, the property (51) holds.

Finally, assuming 𝑞0 = 𝟎, 𝑞1 = 𝟎 and 𝑞2 = 𝐵𝛾 we derive 𝑞0 = 𝟎, 𝑞𝑥01 = 𝟎 and 𝑞𝑥02 = 𝐵 𝛾
‖𝑥0‖

. In this case, repeating the proof of
Theorem 2 we derive

𝑑
𝑑𝑡

‖𝑧‖𝐝
𝑎.𝑒.
= − 1

𝑇
+

𝑧⊤𝐝⊤(− ln ‖𝑧‖𝐝)𝐝⊤(− ln 𝑇 )𝑋−1𝐝(− ln 𝑇 )𝐵 𝛾
𝑥0

𝑧⊤𝐝⊤(− ln ‖𝑧‖𝐝)𝐝⊤(− ln 𝑇 )𝑋−1𝐺𝐝𝐝(− ln 𝑇 )𝐝(− ln ‖𝑧‖𝐝)𝑧
(54)

Since ‖𝐝(− ln ‖𝑧‖𝐝)𝑧‖ = 1 or, equivalently,
𝑧⊤𝐝⊤(− ln ‖𝑧‖𝐝)𝐝⊤(− ln 𝑇 )𝑋−1𝐝(− ln 𝑇 )𝐝(− ln ‖𝑧‖𝐝)𝑧 = 1 (55)

then
𝑑
𝑑𝑡

‖𝑧‖𝐝
𝑎.𝑒.
≤ − 1

𝑇
+

2‖𝐵𝛾‖
‖𝑥0‖𝜆min(𝑋−1∕2𝐺𝐝𝑋1∕2 +𝑋1∕2𝐺⊤

𝐝𝑋
−1∕2)

≤ − 1
𝑇

+ 1
𝜌𝑇

= −
𝜌 − 1
𝜌𝑇

. (56)

Taking into account ‖𝑧(0)‖𝐝 = ‖

‖

‖

𝑥(0)
𝑥0

‖

‖

‖𝐝
= 1 we derive 𝑧(𝑡) = 𝟎 for 𝑡 ≥ 𝑇max.

The ISS-like estimate (50) and the property (51) highlight the specific continuous dependence of solutions of the closed-loop
system on exogenous perturbations and measurement noise: the closer the noisy measurement of the initial state 𝑥0 + 𝑞0 to the
origin, the closer is the ISS property of the nonlinear system (1), (46) to the ISS properties of the linear system (1), (47).
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For small initial conditions the robustness properties of the closed-system (1) with the non-linear feedback (46) are close to
the system with the linear feedback 𝑢lin. However, the time-varying controller42 and the fixed-time controller36 are known to
be efficient in rejection of the matched additive disturbances. The estimate (52) shows that the static prescribed-time controller
(46) rejects the matched perturbation 𝛾 of a magnitude proportional ‖𝑥0‖.

The further modification of the obtained feedback law
𝑢fxt(𝑥, 𝑥0) = 𝐾0𝑥 +𝐾𝐝(− ln 𝑇 )𝐝

(

− lnmin
{

1, ‖‖
‖

𝑥
max{‖𝑥0‖,1}

‖

‖

‖𝐝

})

𝑥 for 𝑥0 ≠ 𝟎, (57)
allows us to enlarge a class of matched perturbations to be rejected, but, in the disturbance-free case, it guarantees just the fixed-
time stabilization (see Definition 1) with the prescribed upper bound 𝑇max = 𝑇 > 0 of the settling time. It is worth stressing that
the settling-time estimate is exact for ‖𝑥0‖ ≥ 1.
Theorem 4. Let the parameters of the control (28) be defined as in Theorem 2. The closed-loop system (1), (57) is fixed-time
stable such that the settling-time function admits the representation

�̃� (𝑥0) =
{

𝑇 if ‖𝑥0‖ > 1,
𝑇 ‖𝑥0‖𝐝 if ‖𝑥0‖ ≤ 1.

(58)
Moreover, the perturbed closed-loop system (49), (57) is

• ISS with respect to the additive measurement noise 𝑞1 ∈ 𝐿∞(ℝ,ℝ𝑛) and additive exogenous perturbations 𝑞2 ∈ 𝐿∞(ℝ,ℝ𝑛)
such that

‖𝑥(𝑡)‖ ≤ max{1, ‖𝑥0 + 𝑞0‖}

(

𝛽
(

‖𝑥0‖
max{1,‖𝑥0+𝑞0‖}

, 𝑡 − 𝑡0
)

+ 𝛾1

(

‖
𝑞1‖𝐿∞(𝑡0 ,𝑡)

max{1,‖𝑥0+𝑞0‖}

)

+ 𝛾2

(

‖
𝑞2‖𝐿∞(𝑡0 ,𝑡)

max{1,‖𝑥0+𝑞0‖}

))

(59)

for some 𝛽 ∈  and 𝛾1, 𝛾2 ∈ ∞;
• fixed-time stable with 𝑇max =

𝜌𝑇
𝜌−1

provided that 𝜌 > 1, 𝑞1 = 𝟎, 𝑞2 = 𝐵𝛾 ,

‖𝐵𝛾(𝑡)‖ ≤ max{1, ‖𝑥0‖}
𝜆min(𝑋−1∕2𝐺𝐝𝑋1∕2 +𝑋1∕2𝐺⊤

𝐝𝑋
−1∕2)

2𝜌𝑇
, ∀𝑡 ∈ ℝ. (60)

The proof of this theorem repeats the proof of Theorems 2 and Theorem 3 using the change of variables 𝑧 = 𝑥
max{1,‖𝑥0+𝑞0‖}instead of 𝑧 = 𝑥

‖𝑥0+𝑞0‖
, respectively.

4.3 Predictor-based stabilization of input delay LTI plant
The so-called predictor-based approach27,4,22,23,19 allows the delay-free control design ideas to be extended to input delay sys-
tems. The fixed-time stabilizer for the linear generalized homogeneous plant (the integrator chain) with input-delay has been
proposed in46 based on the technique developed in23,19, which consist in the modeling of the input delay using a transport PDE
(Partial Differential Equation). The control design based on PDE models has one technical limitation: the theory of partial dif-
ferential equations is not supported with a well-established common methodology for analysis and design of control systems
with state-dependent discontinuities such as to Filippov’s method12 for discontinuous ODEs and sliding mode control system45.
Some ideas for possible expansion of the sliding mode (discontinuous) control methodology to infinite dimensional system can
be found in31. However, this technique is far to be universal, well-recognized and easy-to-use. Since our controller (46) has the
discontinuity at the origin, then the PDE-based design of fixed-time input delay controller is expected to be complicated. How-
ever, for linear plants, the predictor-based control design can be easily done using the well-known Artstein’s transformation4:

𝑦(𝑡) = 𝑒𝐴𝜏𝑥(𝑡) +

0

∫
−𝜏

𝑒−𝐴𝜃𝐵𝑢(𝑡 + 𝜃)𝑑𝜃, 𝑡 ≥ 0, (61)
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where 𝜏 > 0 is the input delay. The variable 𝑦 is the so-called predictor variable, since it estimates the future state 𝑥(𝑡+ℎ) = 𝑦(𝑡)
of the system (1). Notice that if 𝑢 ∈ 𝐿∞((−𝜏,+∞),ℝ𝑚) then

�̇�(𝑡)
𝑎.𝑒.
= 𝑒𝐴𝜏 �̇�(𝑡) + 𝑑

𝑑𝑡

⎛

⎜

⎜

⎝

𝑒𝐴𝑡
𝑡

∫
𝑡−𝜏

𝑒−𝐴𝜎𝐵𝑢(𝜎)𝑑𝜎
⎞

⎟

⎟

⎠

(62)

𝑎.𝑒.
= 𝑒𝐴𝜏(𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − 𝜏)) + 𝐴𝑒𝐴𝑡

𝑡

∫
𝑡−𝜏

𝑒−𝐴𝜎𝐵𝑢(𝜎)𝑑𝜎 + 𝑒𝐴𝑡 𝑑
𝑑𝑡

𝑡

∫
𝑡−𝜏

𝑒−𝐴𝜎𝐵𝑢(𝜎)𝑑𝜎 (63)

𝑎.𝑒.
= 𝐴

⎛

⎜

⎜

⎝

𝑒𝐴𝜏𝑥(𝑡) + 𝑒𝐴𝑡
𝑡

∫
𝑡−𝜏

𝑒−𝐴𝜎𝐵𝑢(𝜎)𝑑𝜎
⎞

⎟

⎟

⎠

+ 𝑒𝐴𝜏𝐵𝑢(𝑡 − 𝜏) + 𝑒𝐴𝑡𝑒−𝐴𝑡𝐵𝑢(𝑡) − 𝑒𝐴𝑡𝑒−𝐴(𝑡−𝜏)𝐵𝑢(𝑡 − 𝜏). (64)

Therefore, the dynamics of the predictor variable is governed by the ODE
�̇�(𝑡)

𝑎.𝑒.
= 𝐴𝑦(𝑡) + 𝐵𝑢(𝑡), 𝑡 ≥ 0, 𝑦(0) = 𝑦0, (65)

where 𝑦0 = 𝑒𝐴𝜏𝑥0+∫ 0
−𝜏 𝑒

−𝐴𝜎𝜙(𝜎)𝑑𝜎 and 𝜙 ∈ 𝐿∞((−𝜏, 0),ℝ𝑚) defines the control signal 𝑢 (see, (4)) on the time interval [−𝜏, 0].
The Artstein’s transformation reduces the problem of a control design for the input delay system to the same problem in

the delay free case. By Theorem 3, the fixed-time stabilizer for the delay-free system (65) can be designed in the form of the
discontinuous feedback (46). Following the Filippov regularization technique (see Lemma 2) we define

𝑢(𝑡)
𝑎.𝑒.
∈ �̄�ct(𝑦(𝑡), 𝑦0) ∶=

{

𝑢ct(𝑦(𝑡), 𝑦0) if 𝑦(𝑡) ≠ 𝟎,
‖𝑦0‖𝐾𝐝(− ln 𝑇 ) if 𝑦(𝑡) = 𝟎, (66)

where 𝑢ct is given by (46) and  = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ ≤ 1} is the unit ball.
Lemma 3 (Well-posedness of the input delay control system). For any 𝑥0 ≠ 𝟎 and any 𝜙 ∈ 𝐿∞((−𝜏, 0),ℝ𝑚), there exists a
tuple (𝑥, 𝑦, 𝑢) ∈ 𝑊 1,∞

loc (ℝ+,ℝ𝑛) ×𝑊 1,∞
loc (ℝ+,ℝ𝑛) × 𝐿∞

loc((𝜏,+∞),ℝ𝑚) satisfying (1), (4), (66), (61).
Proof. By Lemma 2 the system (65),(66) is well-posed and has a Filippov solution 𝑦 ∶ ℝ+ → ℝ𝑛. The Filippov’s lemma11
about measurable selector guarantees that there exists a measurable function 𝑢 ∈ 𝐿∞

loc(ℝ+,ℝ𝑚) such that
{

�̇�(𝑡)
𝑎.𝑒.
= 𝐴𝑦(𝑡) + 𝐵𝑢(𝑡),

𝑢(𝑡)
𝑎.𝑒.
∈ �̄�ct(𝑦(𝑡), 𝑦0),

𝑡 ≥ 0. (67)

Let us extend the signal 𝑢 to the time interval (−𝜏,+∞) using the initial condition (4). Applying the inverse Artstein’s
tranformation 𝑥(𝑡) = 𝑒−𝐴𝜏

(

𝑦(𝑡) − ∫ 0
−𝜏 𝑒

−𝐴𝜎𝑢(𝑡 + 𝜎)𝑑𝜎)
)

we derive 𝑥(0) = 𝑥0 and

�̇�(𝑡) = 𝑒−𝐴𝜏
⎛

⎜

⎜

⎝

�̇� − 𝑑
𝑑𝑡

⎛

⎜

⎜

⎝

𝑒𝐴𝑡
𝑡

∫
𝑡−𝜏

𝑒−𝐴𝜎𝐵𝑢(𝜎)𝑑𝜎
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= 𝑒−𝐴𝜏
⎛

⎜

⎜

⎝

𝐴𝑦(𝑡) + 𝐵𝑢(𝑡) − 𝑑
𝑑𝑡

⎛

⎜

⎜

⎝

𝑒𝐴𝑡
𝑡

∫
𝑡−𝜏

𝑒−𝐴𝜎𝐵𝑢(𝜎)𝑑𝜎
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − 𝜏).

Therefore, the constructed tuple (𝑥, 𝑦, 𝑢) satisfies (1), (4), (66), (61).
The following theorem proves that the closed-loop input-delay system is fixed-time stable with a constant settling time.

Theorem 5. If all parameters of the control (66) are defined as in Theorem 2 then any solution of the system (1) with the control
signal generated by the formulas (4), (66), (61) satisfies

𝑥(𝑡) = 𝟎, ∀𝑡 ≥ 𝑇 + 𝜏 (68)
independently of 𝑥0 ∈ ℝ𝑛. Moreover, if 𝜙 = 𝟎 then the system (1), (4), (66), (61) is fixed-time stable (in the sense of Definition
1) with the constant settling time 𝑇 + 𝜏 and 𝑥(𝑡) ≠ 𝟎 for all 𝑡 ∈ [0, 𝑇 + 𝜏) provided that 𝑥0 ≠ 𝟎.
Proof. Let (𝑥, 𝑦, 𝑢) ∈ 𝑊 1,∞

loc (ℝ+,ℝ𝑛) ×𝑊 1,∞
loc (ℝ+,ℝ𝑛) × 𝐿∞

loc([−𝜏,+∞),ℝ𝑚) satisfy (1),(4), (61), (66). Then, due to Artstein’s
transformation, 𝑦 satisfies the following differential inclusion

�̇�(𝑡)
𝑎.𝑒.
∈ 𝐴𝑦(𝑡) + 𝐵𝑢𝑐𝑡(𝑦(𝑡), 𝑦0), 𝑡 ≥ 0, 𝑦(0) = 𝑦0. (69)

Since, by Theorem 3, the system is fixed-time stable with a constant settling time 𝑇 > 0 and has the unique solution:
𝑦(𝑡) = 𝟎 for all 𝑡 ≥ 𝑇
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and 𝑦(𝑡) ≠ 𝟎 for all 𝑡 ∈ [0, 𝑇 ) and all 𝑦0 ∈ ℝ𝑛
0. Since 𝑦(𝑡) = �̇�(𝑡) = 𝟎,∀𝑡 > 𝑇 then, in the view of the equation (65), we have

𝐵𝑢(𝑡)
𝑎.𝑒.
= 𝟎, 𝑡 > 𝑇 . Therefore,

⎧

⎪

⎨

⎪

⎩

𝟎
𝑎.𝑒.
= 𝐵𝑢(𝑡),

𝟎 = 𝑒𝐴𝜏𝑥(𝑡) +
0
∫
−𝜏

𝑒−𝐴𝜃𝐵𝑢(𝑡 + 𝜃)𝑑𝜃,
∀𝑡 ≥ 𝑇 ⇒ 𝑥(𝑡) = 𝟎, ∀𝑡 ≥ 𝑇 + 𝜏. (70)

The identity 𝑥(𝑡) = 𝑦(𝑡 − 𝜏) holds for all 𝑡 ≥ 𝜏, i.e., 𝑥(𝑡) = 𝟎,∀𝑡 ≥ 𝑇 + 𝜏.
Moreover, if 𝜙 = 𝟎 then 𝑦0 = 𝑒𝐴𝜏𝑥0 and 𝑥0 ≠ 𝟎 ⇒ 𝑦0 ≠ 𝟎, so 𝑦(𝑡) ≠ 𝟎 for all 𝑡 ∈ [0, 𝑇 ) independently of 𝑥0 ∈ ℝ𝑛

𝟎. To prove
the constant convergence time, we just need to show that 𝑥0 ≠ 𝟎 ⇒ 𝑥(𝑡) ≠ 𝟎 for all 𝑡 ∈ [0, 𝜏]. Suppose the contrary, i.e., for
some 𝑥0 ≠ 𝟎 there exists 𝑡∗ ∈ (0, 𝜏] such that

𝑥(𝑡∗) = 𝟎. (71)
On the one hand, since 𝑥(𝑡∗) = 𝑒−𝐴𝜏

(

𝑦(𝑡∗) −
0
∫
−𝜏

𝑒−𝐴𝜃𝐵𝑢(𝑡∗ + 𝜃)𝑑𝜃

)

then

𝑦(𝑡∗) =

𝑡∗

∫
0

𝑒𝐴(𝑡∗−𝜎)𝐵𝑢(𝜎)𝑑𝜎. (72)

On the other hand, since 𝜙 = 𝟎 and 𝑦 is satisfies (69), then, by Cauchy formula, we have

𝑦(𝑡∗) = 𝑒𝐴𝑡∗𝑦0 +

𝑡∗

∫
0

𝑒𝐴(𝑡∗−𝜎)𝐵𝑢(𝜎)𝑑𝜎. (73)

Hence, we derive 𝑒𝐴𝑡∗𝑦0 = 𝟎, but this is possible if an only if 𝑦0 = 𝟎 (or, equivalently, 𝑥0 = 𝟎). We derive the contradiction.
Finally, since the system (69) is Lyapunov stable then there exists �̄� ∈  such that ‖𝑦(𝑡)‖ ≤ �̄�(‖𝑦0‖),∀𝑡 ≥ 0. Taking into

account
‖𝑢ct(𝑦, 𝑦0)‖ℝ𝑚 ≤ (‖𝐾0‖ + ‖𝐾𝐝(− ln 𝑇 )‖) ⋅ (‖𝑦0‖ + ‖𝑦‖). (74)

and using (61), we derive

‖𝑥(𝑡)‖ ≤ ‖𝑒−𝐴𝜏‖�̄�(‖𝑦0‖) +

0

∫
−ℎ

‖𝑒−𝐴𝑠‖𝑑𝑠 ⋅ (‖𝐾0‖ + ‖𝐾𝐝(− ln 𝑇 )‖) ⋅ (‖𝑦0‖ + �̄�(‖𝑦0‖). (75)

Since 𝑦0 = 𝑒𝐴𝜏𝑥0 then there exists �̄� ∈  such that ‖𝑥(𝑡)‖ ≤ �̄�(‖𝑥0‖),∀𝑡 ≥ 0. The proof is complete.
Notice that it is impossible to assign the constant settling time for all 𝑥0 ≠ 𝟎 if 𝜙 ≠ 𝟎. Indeed, since the pair {𝐴,𝐵} is

controllable then ∫ 0
−𝜏 𝑒

−𝐴𝜃𝐵𝜙(𝜃)𝑑𝜃 ≠ 𝟎 for 𝜙 ≠ 𝟎. In this case, taking 𝑥0 = −𝑒−𝐴𝜏 ∫ 0
−𝜏 𝑒

−𝐴𝜃𝐵𝜙(𝜃)𝑑𝜃 ≠ 𝟎 we derive that
the unique solution of the closed-loop system satisfies 𝑥(𝜏) = 𝑦0 = 𝟎. Hence, 𝑥(𝑡) = 𝟎 for all 𝑡 ≥ 𝜏. However, if 𝑥0 =
−2𝑒−𝐴𝜏 ∫ 0

−𝜏 𝑒
−𝐴𝜃𝐵𝜙(𝜃)𝑑𝜃 ≠ 𝟎 and 𝑥(𝜏) ≠ 𝟎 for any fixed-time stabilizing controller. Therefore, at least, the two different

non-zero initial vectors 𝑥0 ≠ 𝟎 corresponds two different settling times of the system to zero.
To analyze a robustness with respect to perturbations (such as measurement noise, additive disturbances, computational errors

for the predictor variable, etc) we consider the system
⎧

⎪

⎨

⎪

⎩

�̇�(𝑡)
𝑎.𝑒.
= 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − 𝜏) + 𝑞2(𝑡),

𝑦(𝑡) = 𝑒𝐴𝜏𝑥(𝑡) + ∫ 0
−𝜏 𝑒

−𝐴𝜃𝐵𝑢(𝑡 + 𝜃)𝑑𝜃,
𝑢(𝑡)

𝑎.𝑒.
∈ �̄�ct(𝑦(𝑡) + 𝑞1(𝑡), 𝑦(0) + 𝑞0),

𝑡 ≥ 0, 𝑥(0) = 𝑥0, (76)

where 𝑢ct is given above, 𝑞0 ∈ ℝ is the estimation error of the predictor’s initial state, 𝑞1 ∈ 𝐿∞(ℝ,ℝ𝑛) models measurement
noise and computational errors of the predictor variable 𝑦, but 𝑞2 ∈ 𝐿∞(ℝ,ℝ𝑛) is additive perturbations of the plant.
Theorem 6. Under the conditions of Theorem 5 and 𝜙 = 𝟎, any solution of the system (76), (4) satisfies the ISS-like estimate

‖𝑥(𝑡)‖ ≤ ‖𝑒𝐴𝜏𝑥0 + 𝑞0‖

(

𝛽
(

‖𝑒𝐴𝜏𝑥0‖
‖𝑒𝐴𝜏𝑥0 + 𝑞0‖

, 𝑡 − 𝑡0

)

) + 𝛾1

(

‖
𝑞1‖𝐿∞(𝑡0 ,𝑡)

‖𝑒𝐴𝜏𝑥0+𝑞0‖

)

+ 𝛾2

(

‖
𝑞2‖𝐿∞(𝑡0 ,𝑡)

‖𝑒𝐴𝜏𝑥0+𝑞0‖

))

, (77)

where 𝛽 ∈  and 𝛾1, 𝛾2 ∈  are independent of 𝑥0, but depend on 𝑇 > 0 and 𝜏 > 0. Moreover, 𝛽, 𝛾1, 𝛾2 satisfy the property
(51).
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Proof. For 𝜙 = 𝟎, the predictor dynamics is described by
{

�̇�(𝑡) = 𝐴𝑦(𝑡) + 𝐵𝑢(𝑡) + 𝑒𝐴𝜏𝑞2(𝑡), 𝑡 > 0, 𝑦(0) = 𝑒𝐴𝜏𝑥0,
𝑢(𝑡) ∈ �̄�ct(𝑦(𝑡) + 𝑞1(𝑡), 𝑒𝐴𝜏𝑥0 + 𝑞0).

(78)
The ISS of this system is studied in Theorem 3, where it is shown that there exist 𝛽𝑦 ∈ , 𝛾𝑦1 , 𝛾

𝑦
2 ∈  such that

‖𝑦(𝑡)‖ ≤ ‖𝑒𝐴𝜏𝑥0 + 𝑞0‖

(

𝛽𝑦
(

‖𝑒𝐴𝜏𝑥0‖
‖𝑒𝐴𝜏𝑥0 + 𝑞0‖

, 𝑡 − 𝑡0

)

+ 𝛾𝑦1

(

‖
𝑞1‖𝐿∞(𝑡0 ,𝑡)

‖𝑒𝐴𝜏𝑥0+𝑞0‖

)

+ 𝛾𝑦2

(

‖
𝑒𝐴𝜏𝑞2‖𝐿∞(𝑡0 ,𝑡)

‖𝑒𝐴𝜏𝑥0+𝑞0‖

))

. (79)

and 𝛽𝑦, 𝛾𝑦1 , 𝛾
𝑦
2 satisfy the property (51). On the other hand, by Cauchy formula, we have

𝑦(𝑡) = 𝑒𝐴𝜏𝑦(𝑡 − 𝜏) +

0

∫
−𝜏

𝑒−𝐴𝜃𝐵𝑢(𝑡 + 𝜃)𝑑𝜃 +

0

∫
−𝜏

𝑒−𝐴𝜃𝑞2(𝑡 + 𝜃)𝑑𝜃, 𝑡 ≥ 𝜏, (80)

so
‖

‖

‖

‖

‖

‖

‖

0

∫
−𝜏

𝑒−𝐴𝜃𝐵𝑢(𝑡 + 𝜃)𝑑𝜃
‖

‖

‖

‖

‖

‖

‖

≤ ‖𝑦(𝑡)‖ + ‖𝑒𝐴𝜏‖
(

‖𝑦(𝑡 − 𝜏)‖ + ‖𝑞2‖𝐿∞
(𝑡0 ,𝑡)

𝜏 sup
𝜃∈[0,𝜏]

‖𝑒𝐴𝜃‖
)

. (81)

On the one hand, using the formula (61) we derive

‖𝑥(𝑡)‖ ≤ ‖𝑒−𝐴𝜏‖
⎛

⎜

⎜

⎝

‖𝑦(𝑡)‖ +
‖

‖

‖

‖

‖

‖

‖

0

∫
−𝜏

𝑒−𝐴𝜃𝐵𝑢(𝑡 + 𝜃)𝑑𝜃
‖

‖

‖

‖

‖

‖

‖

⎞

⎟

⎟

⎠

≤ (82)

‖𝑒−𝐴𝜏‖
(

2‖𝑦(𝑡)‖ + ‖𝑒𝐴𝜏‖
(

‖𝑦(𝑡 − 𝜏)‖ + ‖𝑞2‖𝐿∞
(𝑡0 ,𝑡)

𝜏 sup
𝜃∈[0,𝜏]

‖𝑒𝐴𝜃‖
))

, ∀𝑡 ≥ 𝜏. (83)
On the other hand, since ‖𝑢(𝑡)‖ ≤ (‖𝐾0‖ + ‖𝐾𝐝(− ln 𝑇 )‖)(‖𝑦(𝑡)‖ + ‖𝑒𝐴𝜏𝑥0 + 𝑞0‖),∀𝑡 ≥ 0 then, taking into account 𝜙 = 𝟎, by
the Artstein’s transformation, we derive

‖𝑥(𝑡)‖ ≤ ‖𝑒−𝐴𝜏‖
(

‖𝑦(𝑡)‖ + 𝐶1‖𝑒
𝐴𝜏𝑥0 + 𝑞0‖ + 𝐶2 sup

𝜎∈[0,𝑡]
‖𝑦(𝜎)‖

)

, ∀𝑡 ∈ [0, 𝜏]. (84)
for some 𝐶1, 𝐶2 > 0. Therefore, using (79) we derive that the ISS-like estimate (77) holds for 𝑡 ≥ 0 under a properly defined
functions 𝛽 ∈  and 𝛾1, 𝛾2 ∈ .

The matched perturbation 𝑞2 = 𝐵𝛾 becomes mismatched for the predictor system (78), so it cannot be completely rejected
as it was done in the delay-free case. Therefore, in the input delay case, the robustness of the prescribed-time stabilizers with
respect to additive perturbations is proven only in the ISS-like sense.

5 NUMERICAL EXAMPLE

5.1 Prescribed-time stabilization of the harmonic oscillator in the delay-free case
As an example, let us design the prescribed-time stabilizer for the harmonic oscillator in the delay-free (𝜏 = 0) case

𝐴 =
(

0 1
−1 0

)

, 𝐵 =
(

0
1

)

(85)
The parameters of the prescribed-time stabilizer (46) are designed according to Theorem 2:

𝐾0 = (1 0), 𝐺𝐝 =
(

2 0
0 1

)

, 𝐾 = (−5.5 − 3), 𝑋 =
(

1 −2
−2 5.5

)

, 𝑇 = 1. (86)
The simulation has been done in MATLAB using the zero-order-hold method and the consistent discretization of the homoge-
neous controller (46) realized in Homogeneous Control Systems Toolbox4 for MATLAB. The consistent discretization (see37)
allows the convergence rate (e.g., finite-time or fixed-time convergence) of the continuous-time control system to be preserved
in the case of the sampled-time implementation of the controller. The sampling period for the simulation is ℎ = 0.01. The simu-
lation results show the prescribed-time convergence of the closed-loop system with 𝑇 = 1. Indeed, independently of the selected

4https://gitlab.inria.fr/polyakov/hcs-toolbox-for-matlab



15

0 0.5 1 1.5 2
-2

-1

0

1

2
n=2

0 0.5 1 1.5 2
-5

0

5
HPC,m=1

Figure 1 Stabilization at the prescribed-time 𝑇 = 1 for 𝑥0 = (0.2 0)⊤ and 𝜏 = 0

0 0.5 1 1.5 2
-2

-1

0

1

2
n=2

0 0.5 1 1.5 2
-5

0

5
HPC,m=1

Figure 2 Stabilization at the prescribed-time 𝑇 = 1 for 𝑥0 = (0.7 0)⊤ and 𝜏 = 0

initial condition (see Figures 1 and 2) the state of the closed-loop system converges to zero with the precision of the machine
epsilon (≈ 10−16) at the time instant �̃� = 1.01, which perfectly corresponds to the prescribed settling time 𝑇 = 1 (up to the
sampling period). The simulations have been done for various initial conditions up to ‖𝑥0‖ = 105. The settling time remains
equal to 1 (up to the sampling period ℎ) in all simulation and various ℎ < 𝑇 . Notice that the settling-time error �̃� − 𝑇 is pro-
portional to the sampling period ℎ for any real ℎ > 0 (see37). So, to have a reasonable precision of the settling time in practice,
the sampling period of the controller must be essentially less than the required settling time.

To study robustness properties of the closed-loop system, the simulations have been done, first, for the system with matched
additive perturbation𝐵 sin(5𝑡). As claimed in Theorem 3, such a perturbation cannot be rejected by the prescribed-time controller
(46) if the initial state is too small (see Figure 3). The larger initial condition, the larger matched perturbation can be rejected
(see Figure 4). However, according to Theorem (3), the settling time is increased 𝑇max = 𝑇 𝜌

𝜌−1
, 𝜌 > 1 in this case. The fixed-time

stabilizer (57) rejects the considered matched perturbation for all initial conditions.
The ISS with respect to noisy measurements is quite opposite to the case of ISS with respect to additive perturbations in the

sense that the smaller initial state 𝑥0, the less sensitive closed-loop system with respect to measurement noise (see Figures 5 and
6). The numerical simulations for this case have been done by adding a noise 𝜂 of the magnitude 0.01 to the state measurements
�̂� = 𝑥 + 𝜂. The noise is simulated by MATLAB as a uniformly distributed (pseudo-)random variable 𝜂 ∈ [−0.01, 0.01]. All
state measurements (including the initial state 𝑥0) are corrupted by the noise.

5.2 Prescribed-time stabilization of the input delay system
Let the model of the controller harmonic studied above have the input delay 𝜏 = 0.5. In this case, the prescribed-time feedback
has to be calculated using the predictor variable 𝑦 given by (61). To implement the method of consistent discretization37 to the
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Figure 3 The case of matched additive disturbance 𝐵 sin(5𝑡) for 𝑥0 = (0.2 0)⊤ and 𝜏 = 0
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Figure 4 The case of matched additive disturbance 𝐵 sin(5𝑡) for 𝑥0 = (0.7 0)⊤ and 𝜏 = 0
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Figure 5 The case of noisey measurements for 𝑥0 = (0.2 0)⊤ and 𝜏 = 0

system (65), (66), the predictor variable has to be calculated exactly at the time instances
𝑡𝑖 = 𝑖ℎ, 𝑖 = 0, 1,… , (87)

where ℎ = 0.01 is the sampling period. Since the control signal is a piece-wise constant function with the sampling period
ℎ = 0.01, the integral term in (61) admits the following exact representation

0

∫
−𝜏

𝑒−𝐴𝜃𝑢(𝑡𝑖 + 𝜃)𝑑𝜃 =
𝑁
∑

𝑗=1

⎛

⎜

⎜

⎝

−(𝑗−1)ℎ

∫
−𝑗ℎ

𝑒−𝐴𝜃𝑑𝜃
⎞

⎟

⎟

⎠

𝑢(𝑡𝑖 − 𝑗ℎ) =
𝑁
∑

𝑗=1
𝐴−1(𝑒𝑗ℎ𝐴 − 𝑒(𝑗−1)ℎ𝐴)𝑢(𝑡𝑖 − 𝑗ℎ), (88)
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Figure 6 The case of noisy measurements for 𝑥0 = (0.7 0)⊤ and 𝜏 = 0
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Figure 7 Stabilization at the prescribed-time 𝑇 = 1.5 for 𝑥0 = (0.2 0)⊤ and the input delay 𝜏 = 0.5
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Figure 8 Stabilization at the prescribed-time 𝑇 = 1.5 for 𝑥0 = (0.7 0)⊤ and the input delay 𝜏 = 0.5

where 𝑁 = 𝜏
ℎ
= 50 and 𝐴−1 = −𝐴 (for our model of the harmonic oscillator). Let the control for the predictor equation (65) be

designed as for the delay-free system considered above. Due to the input delay the control signal generated at the time 𝑡 impacts
on the system at the time instant 𝑡 + 𝜏. The control signal as well as the predictor variable converge to a steady state (e.g., to
zero) at the prescribed-time 𝑇 = 1, but the expected settling time of the system is 𝑇 + 𝜏 = 1.5. The numerical simulations show
this prescribed converge time (see, Figures 7 and 8) for the closed-loop system.

Notice that the matched additive perturbation 𝐵 sin(5𝑡) of the original system becomes the mismatched additive perturbation
𝑒𝐴𝜏𝐵 sin(5𝑡) in the predictor equation (78). So, this perturbation cannot be rejected by the predictor-based stabilizer and just ISS
with respect the additive perturbations can be guaranteed (see Figure 9 and 10). The conclusions about sensitivity with respect
to measurement noise are the same as in the delay free case.



18

0 0.5 1 1.5 2 2.5 3
-2

-1

0

1

2
n=2

0 0.5 1 1.5 2 2.5 3
-5

0

5
HPC,m=1

Figure 9 The case of matched additive disturbance 𝐵 sin(5𝑡) for 𝑥0 = (0.2 0)⊤ and the input delay 𝜏 = 0.5
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Figure 10 The case of matched additive disturbance 𝐵 sin(5𝑡) for 𝑥0 = (0.7 0)⊤ and the input delay 𝜏 = 0.5

5.3 Comparison time-varying and static feedback laws in the delay-free case
Inspired by42, we design the time-varying feedback (prescribed-time) regulator in the form

𝑢(𝑡) = (𝐾0 +𝐾𝐝(ln𝜇(𝑡)))𝑥(𝑡), 𝜇(𝑡) = 𝑇
𝑇 − 𝑡

, 𝑡 ∈ [0, 𝑇 ), (89)
where the matrices 𝐾0, 𝐾 and the linear continuous dilation 𝐝 are defined as before (see the formula (86)). Such a feedback
steers the state of the system (1), (85) with 𝜏 = 0 to zero in the prescribed time 𝑇 > 0. In the disturbance-free case, both
regulators provide a good enough precision (see Fig. 11). A small error of the time-varying algorithm in the delay-free case is
caused by the sampled-time implementation of the feedback law. The sampling period is as before ℎ = 0.01. In the case of the
noisy measurements, the quality of the time-varying prescribed-time regulator degrades drastically (see Fig. 12). As before, the
noise is simulated as a random variable uniformly distributed on [−0.01, 0.01]. The obtained simulation results strongly support
our claim that the static prescribed-time regulator is less sensitive with respect to the measurement noise than the time-varying
prescribed-time algorithm.

6 CONCLUSIONS

In this paper, new fixed-time stabilizers are designed for LTI systems. The key feature of the new stabilizers is the dependence of
the feedback gain on the initial condition. This allows the settling time of the closed-loop to have a prescribed constant settling
time for all non-zero initial conditions. The obtained stabilizer does not have a time varying gain which tends to infinity as
time tends to the settling time. This essentially improves the robustness properties of the closed-loop system with respect to
measurement noise comparing to well-known time-varying prescribed-time stabilizers (like42. The control laws are designed
for both delay-free and input-delay cases. The theoretical results are illustrated by numerical simulations.
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Figure 11 Comparison of time-varying (left) and static (right) controllers in the noise-free case
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Figure 12 Comparison of time-varying (left) and static (right) controllers in the noisy case

The designed controller (46) steers the state of the system to zero exactly at the given instant of time 𝑇 > 0 (independently
of nonzero initial state). This means that the closed-loop system with nonzero initial condition cannot reach the origin before
the desired instant of time 𝑡 = 𝑇 . Such a problem statement may be motivated by a rendezvous problem, where some object
must meet an other object exactly at the given place and the given instant of time, while the reaching of the meeting point before
the given instant of time is prohibited. To the best of authors knowledge, the controller (46) is the only static feedback solving
such a problem of fixed-time stabilization with the exact constant settling time. This controller is designed for linear MIMO
plant and applicable to nonlinear system topologically equivalent to the linear one. A similar method of the control gain scaling
dependently of the initial state seems to be possible for other homogeneous control systems. The rigorous study of this issue is
the interesting problem for the future research.
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