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Abstract

In this paper, a novel energy-based trajectory tracking control strategy for under-actuated unmanned surface vessels (USVs)
in the presence of unknown environmental disturbances is presented. The port-Hamiltonian framework is utilized to propose a
passivity-based control model in body-fixed coordinates of the USVs. An adaptive disturbance estimation method is detailed
and used to accurately estimate the environmental disturbances affecting USV motion. Furthermore, a passive and Hamiltonian
structure-preserving controller is employed to achieve the desired trajectory of the USV system, and the stability of the desired
target dynamic system is rigorously proven. The effectiveness of the proposed controller is demonstrated through simulations
and experiments on a USV experimental platform, showcasing its capability of trajectory tracking performance and mitigating the
effects of disturbances.
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1. Introduction

In recent decades, differential-driven unmanned surface
vessels (USVs) have gained increasing popularity in military
and civilian applications due to their operational convenience
and simple mechanical structure. These types of USVs are typ-
ically considered under-actuated due to their mechanical con-
figuration. Differential-driven USVs typically feature only two
propellers installed in parallel on both sides of the vessel, with
each propeller providing independent thrust to enable the ves-
sel’s motion. Specifically, the surge translational motion is ob-
tained by calculating the sum of the thrust of the two propellers,
while the yaw rotational motion is achieved by calculating the
difference between the thrust of the two propellers. However,
the force in the sway direction cannot be provided, resulting in
under-actuation in differential-driven USVs.

Compared to fully actuated and over-actuated vehicles, the
tracking control problem of underactuated USVs presents a sig-
nificant challenge in the field of marine robotics. Differential-
driven USVs, in particular, face difficulties in accurately track-
ing desired trajectories due to their limited control inputs in re-
lation to their degrees of freedom. Most under-actuated systems
are not fully feedback linearizable and exhibit nonholonomic
constraints, which further complicates the control design pro-
cess. Many studies have been dedicated to the tracking control
of under actuated USVs. The Line-of-Sight(LOS)-based path
following control approach [1] for under-actuated unmanned
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vessels includes orienting the vessel toward the desired path,
following the path along straight line segments, and adjusting
the vessel’s orientation near each waypoint based on the next
waypoint to form a smooth curve. Thus, the control problem,
which initially has 3 DoFs (position, orientation, and speed),
is reduced to a 2-DoF problem involving only orientation and
speed. A linear time-varying control approach [2] that utilizes a
cascaded control strategy is presented, and this method is used
to design a controller for an under-actuated ship. The proposed
method employs a second-order integrator system, forming a
cascaded control structure to achieve the desired tracking per-
formance. The back-stepping control approach is also com-
monly employed to address the control challenges posed by
under-actuated USVs [3][4][5][6]. In [7], an adaptive switch-
ing supervisory control strategy that uses the backstepping tech-
nique is integrated with a non-linear Lyapunov-based tracking
control law to drive the position tracking error of a system to-
ward a neighborhood of the origin, which can be arbitrarily
small. In [8], the authors investigated the tracking control prob-
lem of a surface vessel following a desired trajectory generated
by a reference model vessel. The approach employed in this
study is the dynamic surface method, which is an approximate
back-stepping technique introduced to address the challenges of
differentiating virtual controls in the traditional back-stepping
method. In [9], sliding mode control is utilized to transform the
trajectory tracking problem into a velocity tracking problem.
Two sliding surfaces are employed to decouple the problem,
with one surface controlling the forward velocity and the other
surface controlling the lateral velocity. In addition to the men-
tioned technique, other control methods, such as proportional-
integral-differential (PID) control [10] and the Lyapunov direct
method [7], have also been applied in the trajectory tracking
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control of underwater USVs.
The port-Hamiltonian system (PHS) formulation [11] and

passivity-based control [12] have been widely used and demon-
strated to be effective for the modeling, analysis and control of
non-linear mechanical systems. The port-Hamiltonian frame-
work offers a systematic approach for interpreting control ac-
tions in terms of energy conservation and dissipation principles,
providing a clear physical interpretation of the control strategies
used in a system. Energy-based control, such as the intercon-
nection and damping assignment passivity-based control(IDA-
PBC)[12][13], is employed for the optimization of energy con-
trol. USVs are considered as efficient energy conversion de-
vices, capable of transforming input energy into output energy
effectively. The primary objective of employing the IDA-PBC
method is to optimize the input and output energy of the entire
system, with the ultimate goal of minimizing energy consump-
tion. Many studies have been dedicated to the IDA-PBC control
of physical systems [14][15][16][17][18]. The principal is to
utilize the principles of dissipation and energy shaping (ES) to
reconfigure the open-loop system into the desired dynamic sys-
tem while also preserving the port-Hamiltonian structure. The
control problem of USVs in the port-Hamiltonian framework
[19][20] has gained much attention in recent years. In [20], a
comprehensive survey on the motion control problem of marine
vehicles is provided , focusing on the application of the energy
shaping principle. A hybrid control law based on backstep-
ping and a passivity-based control technique is proposed for the
speed tracking of under-actuated USVs using the LOS method
[21]. The authors presented an observer-based state-error port-
Hamiltonian controller with a nonlinear disturbance observer
for the trajectory tracking problem in [22]. An IDA-PBC con-
troller with integral action was designed for fully actuated ma-
rine vehicles in [23]. A family of trajectory tracking controllers
for a fully actuated marine craft in the port-Hamiltonian (pH)
framework using virtual differential passivity-based control (v-
dPBC) was proposed in [24].

The primary contribution of this paper is the development of
an energy-based trajectory tracking control strategy for under-
actuated USVs operating in the presence of unknown environ-
mental disturbances. A reduced PHS model in body-fixed coor-
dinates is proposed to accurately capture the system’s physical
characteristics for control purposes. By designing an adaptive
estimator, the disturbance is continuously updated and refined,
enhancing the accuracy of the overall control system. More-
over, the control strategy employs the IDA-PBC method, ac-
counting for the under-actuated nature of the system. Notably,
other approaches mentioned earlier are applicable in fully actu-
ated scenarios. We have

By using the port-Hamiltonian structure, we show that the
closed loop system is asymptotically stable. Furthermore, the
effectiveness of the proposed method is demonstrated through
simulation and experimental implementation, resulting in the
successful tracking of desired trajectories by the unmanned sur-
face vessel.

In Section 2, a concise summary of the existing results on
port-Hamiltonian systems and the IDA-PBC control method is
provided. In Section 3, a summary on the body-fixed coordi-

nates model of the differential-driven USV in the PH frame-
work is provided. In Section 4, the derivation of an adaptive
disturbance estimation method and the development of energy-
based control laws are presented. Additionally, the closed-loop
stability analysis is presented in the same section. In Section 5,
simulations and the experimental setup are utilized to validate
the proposed model and control law. The paper ends with some
conclusions and perspectives in Section 6.

2. Preliminaries

Port-Hamiltonian systems excel in modeling multi-physical
systems, where different physical domains interact. An elec-
trically driven USV is a common example of a system that
converts electrical energy into mechanical energy for motion.
Understanding these energy transformations is crucial to grasp
the system’s behavior. This physical insight provides a clear
interpretation of control behaviors , as controllers designed us-
ing passivity-based control account for the energy exchanges,
including interactions between different physical domains, and
between the system and its environment. Furthermore, through
stability and robustness analysis of passive systems, the im-
proved robustness and stability enhance the effectiveness of
closed-loop systems that employ energy-based control strate-
gies. This paragraph explaining the rationale and necessity
of utilizing Port-Hamiltonian Systems (PHS) has been incor-
porated into the article.This physical insight provides a clear
interpretation of control behaviors , as controllers designed us-
ing passivity-based control account for the energy exchanges,
including interactions between different physical domains, and
between the system and its environment. Furthermore, through
stability and robustness analysis of passive systems, the im-
proved robustness and stability enhance the effectiveness of
closed-loop systems that employ energy-based control strate-
gies.

In this section, a brief overview of the literature on port-
Hamiltonian systems and the IDA-PBC control methodology is
provided.

2.1. Port-Hamiltonian system

The port-Hamiltonian systems [25] are described as fol-
lows: {

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

(1)

where x ∈ Rn represents the system’s state, the input vari-
able u ∈ Rm represents the control input, and the output variable
y ∈ Rm represents the system’s output. The Hamiltonian func-
tion H(x, t) ∈ R captures the system’s energy, while the matri-
ces J ∈ Rn×n and R ∈ Rn×n are skew-symmetric and symmet-
ric semi-positive definite matrices, respectively. These matrices
arise from the expansion of Hamilton’s canonical equations and
are commonly used to describe fully actuated mechanical sys-
tems [11], including systems subject to certain nonholonomic
constraints.

2



2.2. IDA-PBC method

The main idea of IDA-PBC [12][13] is to match the dy-
namics of the open-loop system with a desired target system
using state feedback control, as depicted in figure 1. The con-
trol law enforces the desired storage function Hd on the closed-
loop system, thereby ensuring its passivity and subsequent sta-
bility. We briefly review the fundamental principles of the IDA-
PBC method. The approach is applied to an open-loop port-
Hamiltonian system described by Equation (1), with the objec-
tive of stabilizing it around a desired equilibrium point x∗.

Figure 1: Control design of closed loop system

The asymptotically stable PHS target system is defined as :

ẋ = (Jd − Rd)
∂Hd

∂x
(2)

with matrices Jd(x) = −Jd(x)T and Rd(x) = Rd(x)T ≤ 0, and the
desired Hamiltonian function Hd verifies the PDE:

g⊥(Jd − Rd)
∂Hd

∂x
= g⊥(J − R)

∂H
∂x

(3)

where g⊥ is a full rank left annihilator of g, i.e.,g⊥g = 0.
The PDE is a so-called matching condition. Additionally, the
Hamiltonian function Hd(x) needs to satisfy the following re-
quirements:

x∗ = argminHd(x). (4)

The closed-loop port-controlled Hamiltonian system is gov-
erned by the feedback law as follows:

u = β(x) = (gT g)−1gT ((Jd − Rd)
∂Hd

∂x
− (J − R)

∂H
∂x

) (5)

Moreover, this system exhibits local asymptotic stability at the
equilibrium point x∗. [12] can be referenced for comprehensive
explanations and proofs.

3. Problem statement

3.1. Mathematical model and dynamics of USV in PH form

Figure 2: Coordinate system in 2D describing the motion of a differential-
driven USV

In marine craft modeling for guidance, navigation, and con-
trol, the body frame is commonly employed as a moving co-
ordinate frame that is fixed to the vessel, with its origin at the
center of gravity O. The body frame provides a concise and
convenient representation of the craft’s motion and dynamics
with respect to its own orientation and position. As shown in
Figure (2), the axes xb, yb, and zb point to the surge, sway di-
rection, and upward direction of the vessel, respectively. The
world frame is fixed to an inertial reference frame and provides
an absolute reference for the craft’s motion and dynamics. In
the context of marine craft motion, the world frame typically
has one axis pointing vertically downward and the other two
axes aligned with the geographic coordinate system. The axes
xE , yE , and zE point to the north, east, and vertically downward,
respectively, with E being the origin of the world frame.

The mathematical model of a USV [26],[27] typically rep-
resents a rigid body subject to external torques and forces with
its coordinate depicted in Figure 2:{

q̇ = J(q)v,
Mν̇ = −C(v) − D(v)v + τc + τd

(6)

where q =
[
x y ψ

]T
is the displacement vector in the earth

frame. x and y represent the positions along xE and yE in the
earth frame, respectively, while ψ denotes the heading orien-
tation of the USV. ν =

[
u v r

]T
denote the velocity vec-

tor in the body frame. u, v, and r are the linear velocity in
the surge and sway directions and the angular velocity, respec-
tively. M = diag(m11,m22,m33) is the inertia matrix accounting
for added mass, τc ∈ R3 is the vector for controlling forces and
moments, and τd ∈ R3 is the disturbance. J(q) ∈ R3×3 is the
rotation matrix:
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J(q) =

[
R(ψ) 02×1
01×2 1

]
,R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(7)

The Coriolis and centripetal matrix denoted as C(v) represents
the effects of the Coriolis force and centripetal force. The
damping matrix denoted as D(v) captures the damping effects
in the USV’s motion:

C(v) =

 0 0 −m22v
0 0 m11u

m22v −m11u 0

 ,D(v) =

d11 0 0
0 d22 0
0 0 d33

 (8)

The propulsion system of a USV consists of two electric-
powered motors that drive two propellers symmetrically in-
stalled at the stern of the vessel, as depicted in Figure 2. The
control of the two motors in a USV can be decomposed into
torque control in the surge direction and torque control in the
rotation direction:

τc =

τu

τv

τr

 =


F1 + F2

0
B(F1−F2)

2

 (9)

where F1 and F2 represent the propulsive forces generated by
the permanent magnet synchronous motors driving the pro-
pellers. B denotes the distance between the propellers.

According to the research of [23], the port-Hamiltonian
System (PHS) form for a full-actuated USV can be expressed
as follows:

[
q̇
ṗ

]
=

[
0 J(q)

−JT (q) −J2(p)

]  dH
dq
dH
dp

 + [03×3
I3

]
(τc + τd) (10)

with p = M
[
u v r

]T
and J2(p) = C(v)+ D(v)|v=M−1 p, J2(p)+

JT
2 (p) > 0

The Hamiltonian for the system is defined as H(p, q) =
1
2 pT M−1 p + V(q), where p denotes the generalized momenta, q
denotes the generalized coordinates, M denotes the inertia ma-
trix, and V(q) represents the potential energy caused by grav-
itational forces. The first term, 1

2 pT M−1 p, corresponds to the
system’s kinetic energy and characterizes its motion properties.
The second term, V(q), captures the potential energy associated
with the gravitational forces acting on the system.

3.2. PHS in body fixed frame

We propose a novel PH formulation for under-actuated
USVs for trajectory tracking control. First, the kinematic vari-
ables x and y are transformed from the world frame into the
body frame.

In the conventional modeling approach, the tracking er-
ror of the vessel’s trajectory (x, y, ψ) and the desired trajectory
(xd, yd, ψd) coordinates of the USV are typically computed with
respect to the world frame. To simplify the control process,
that is, to effectively control the surge and sway motion of the

USV, these trajectories are then transformed into the body-fixed
frame using transformation matrices R(ψ). It is feasible to ex-
press the surge displacement, denoted as s, and the sway dis-
placement, denoted as t, in terms of the xb and yb coordinates
in the body-fixed frame of the USV. This relationship between
the surge and sway displacements and the x and y coordinates
can be expressed mathematically as follows:

ηr =

[
s
t

]
= R(ψ)T

[
x
y

]
(11)

where ηr denote the translation displacement matrix.
By deriving Equation (11), the time derivatives of the surge

and sway displacements, denoted as ṡ and ṫ, respectively, can
be expressed in terms of the linear and angular velocities of the
USV as follows:

η̇ =

 ṡṫ
ψ̇

 = Jη(η)

uvr
 (12)

with Jη(η) =

1 0 t
0 1 −s
0 0 1


The original PH form of the USV then becomes:

[
η̇
ṗ

]
=

[
0 Jη(η)

−JT
η (η) −J2(p)

]  dH
dη
dH
dp

 + [03×3
I3

]
(τc + τd) (13)

Remark 1. The proposed model is based on the Port-
Hamiltonian framework, which preserves the physical and non-
linear characteristics of the system. This enables us to em-
ploy under-actuated IDA-PBC control design methods. Fur-
thermore, by transforming the position error from the world co-
ordinate system to the body coordinate system, the generation
of velocity commands becomes more intuitive and aligned with
the ship’s motion in its local frame of reference as the two are
now all defined with respect to the body coordinate system.

4. Control design for under-actuated USV

The goal is to stabilize the under-actuated USV to track dif-
ferentiable reference trajectories ηrd by regulating τc. ηrd is de-
fined as follows:

ηrd =
[
sd td

]T
= R(ψ)T

[
xd

yd

]
(14)

where sd, rd, xd, and yd are the desired surge, sway displace-
ment and desired position along xE and yE in the earth frame,
respectively.

A control law of the USV system (13) using an IDA-PBC
design is proposed to ensure that:

lim
t→+∞

ηr(t) = ηrd(t) (15)

The closed-loop control schema is shown in Figure 3. The
tracking control problem of under-actuated unmanned surface
vessels is challenging due to the lack of control input in the
sway direction.
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Figure 3: Detailed control scheme of USV using Adaptive estimator + Error
IDA-PBC control

4.1. Adaptive estimator of the disturbances

The unknown disturbances are estimated from the open
loop dynamics using the immersion and invariance method
[28], as outlined in the following proposition.

Proposition 2. Considering the USV system (13), the estima-
tion τ̃d converges to the real disturbance asymptoticallyly with
the following adaptive estimation law:

τ̃d = −αp + α

∫
(−JT

η

∂H
∂η
− J2

∂H
∂p

+ τc − τ̃d)dt (16)

with the tuning parameter α > 0.

Proof. We define the vector of the estimation errors zτ, in which
the functions τ̂d and β(p) are the state-independent part and the
state-dependent part of the estimator τ̃d, as follows:

zτ = τ̃d − τd = β(p) + τ̂d − τd (17)

Computing the time derivative of (17) and substituting the
system dynamic yields :

żτ = ˙̂τd −∇pβ(−JT
η

∂H
∂η
− J2

∂H
∂p

+ τc + (−zτ + τ̃d +β))− τ̇d (18)

We define ˙̂τd = −α(−JT
ηr
∂H
∂ηr
− J2

∂H
∂p + τc + (τ̃d + β)) and

β = −αp, which correspond to the adaptation law (16). The
derivative of zτ gives domain of attractions

żτ = −αzτ − τ̇d (19)

The Lyapunov candidate function of the disturbance ob-
server is defined as follows:

Ve =
1
2

zT
τ zτ (20)

The time derivative of the Lyapunov candidate function be-
comes:

V̇e = zT
τ żτ = zT

τ (−αzτ − τ̇d) = −αzT
τ zτ − zT

τ τ̇d (21)

We have the following inequality:

4ε2zT
τ zτ + 4εzT

τ τ̇d + τ̇T
d τ̇d = (2εzτ + τ̇d)2 ≥ 0

⇒ −zT
τ τ̇d ≤ εzT

τ zτ +
1
4ε
τ̇T

d τ̇d (22)

where ε is a small positive constant. We have then:

V̇e ≤ −λmin(α)zT
τ zτ + εzT

τ zτ +
1
4ε
τ̇T

d τ̇d (23)

We assume that ||τ̇d || ≤ ξ; thus, the following can be ob-
tained:

V̇e ≤ −2(λmin(α) − ε)Ve +
ξ2

4ε
≤ −K0Ve + c (24)

with K0 = 2(λmin(α) − ε), c =
ξ2

4ε and λmin(α) is the smallest
eigenvalue of α.

To ensure that K0 > 0, we select the matrix K0 =

diag(k10, k20, k30) and parameter ε.
By solving the inequality (24), the condition V̇e ≤ 0 can be

verified when:

0 ≤ Ve ≤
c

K0
+ (V(0) −

c
K0

)e−K0t (25)

Moreover, the disturbance estimation error converges to
a neighborhood Ωb of the origin with the radius Rd =

ξ

2
√
ε(λmin(α)−ε)

.

4.2. Energy-based Robust tracking control of under-actuated
USV

We define the tracking errors in the body-fixed frame as

η̃r = ηr − ηrd (26)

Given Equation (9), the control variable torque in the yb

direction τv is null , which render control in this direction
unattainable because of the mechanical structure of the pro-
peller. To overcome this problem, we consider a fixed point
on the vessel body. This approach mitigates the matrix singu-
larity issues that may arise in subsequent controller calculations
due to underactuation. Further details regarding the redefinition
of state variables are provided in the Appendix.

By considering a position error δ with respect to the center
of mass in the surge direction, we define ∆ =

[
δ 0
]T

, and the
new tracking error is then:

ζ = η̃r − ∆ (27)

The objective is to design an energy-based controller so that
the closed-loop dynamics have the following desired tracking
error dynamic in the port-Hamiltonian form:[

ζ̇
˙̃p

]
=

[
S 11 S 12
−S T

12 S 22

]
∇Hd (28)

where p̃ = p − pd =
[
u − ud v − vd r − rd

]T
with pd =[

ud vd rd

]T
denotes the desired generalized momenta and
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the tracking error of the generalized momenta, with ud,vd and
rd being the desired linear velocity in the surge and sway direc-
tions and the desired angular velocity, respectively. S 11 a 2 × 2
matrix, S 12 a 2 × 3 matrix and S 22 a 3 × 3 are functions to be
selected. S 11 and S 22 are strictly negative.

The desired Hamiltonian function Hd is defined as follows:

Hd =
1
2

p̃T M−1 p̃ + Vd(ζ) (29)

The first term represents the kinetic energy, while the second is
the desired potential energy considering the added distance :

Vd = ζT Kdζ (30)

with Kd =

[
Kd1 0
0 Kd2

]
, Kd1 and Kd2 are positive defined.

The gradient of the Hamiltonian function and the desired
energy function is then defined as

∇Hd =

 ∂Hd
∂ζ
∂Hd
∂ p̃

 =

[
∇Vd

M−1 p̃

]
. (31)

∇Vd = 2Kdζ (32)

We design the control law as follows. First, we write the
dynamic of the position error by substituting the time derivative
of η̃r by the state equation (10) and the desired state equation:

In this case, we calculate ζ̇:

ζ̇ =
d
dt

(η̃r − ∆) = −S r(RT η̃r −

[
δ
0

]
) − S r∆ +

[
u
v

]
− RT

[
ẋd

ẏd

]
= − S r(RT η̃r −

[
δ
0

]
) +

[
1 0
0 −δ

]
︸   ︷︷   ︸

P

[
ud

rd

]
+

[
1 0
0 −δ

] [
ũ
r̃

]
+

[
0
v

]

− RT
[
ẋd

ẏd

]
≡S 11∇Vd + S 12M−1 p̃ (33)

with S r =

[
0 −r
r 0

]
We define S 12 =

[
1 0 0
0 0 −δ

]
to eliminate M−1 p̃, while

S 11 =

 −1 r
2Kd2

− r
2Kd1

−1

 to eliminate the algebraic ring term of

S r(RT η̃r −

[
δ
0

]
), with S 11 negatively defined.

[
ud

rd

]
= P−1(−2Kd(η̃r − ∆) −

[
0
v

]
+ RT

[
ẋd

ẏd

]
) (34)

with vrd =

[
ud

rd

]
= WM−1 pd.

In the second step of the design, we need to ensure that the
dynamics of p̃ are as desired by using Vd as the energy equation.

We then compute the time derivative of p̃:

˙̃p = ṗ − ṗd (35)
= −Jη(η)T∇V − J2(p)M−1 p + τc

+τ̃d − ṗd

≡ −S T
12∇Vd + S 22M−1 p̃ (36)

Due to the under-actuated nature of the system, the control
variable in the sway direction τv = 0. We multiply Equation
(35) by W. Then, by isolating

[
τu τv τr

]T
from (35), we

derive the control law that asymptotically tracks the trajectory
ηrd:

[
τu

τr

]
=W(J2(p)M−1 p − S T

12∇Vd + S 22M−1 p̃ − τ̃d) + W ṗd

=W(J2(p)M−1 p − S T
12∇Vd + 2KdS 12∆ + S 22M−1 p̃

− τ̃d) + WMW−1
[
u̇d

ṙd

]
(37)

4.3. Stability analysis
Proposition 3. We consider the under-actuated USV dynamics
(13) with the following control law:[

τu

τr

]
=W(J2(p)M−1 p − S T

12∇Vd + S 22M−1 p̃ − τ̃d) + W ṗd

=W(J2(p)M−1 p − S T
12∇Vd + 2KdS 12∆ + S 22M−1 p̃

− τ̃d) + WMW−1
[
u̇d

ṙd

]
(38)

with W =

[
1 0 0
0 0 1

]
The closed loop system is asymptotically stable with respect to
the disturbance τd.

Proof. The asymptotic stability of the under-actuated USV po-
sition vector ηr to the time-varying reference ηrd is estab-
lished by proving the asymptotically stability of the equilib-
rium. This is achieved by studying the derivative of the error
system Hamiltonian function Hd by considering it as a Lya-
punov candidate function.

First, we analyze the equilibrium point of the closed-loop
error system (28), which is determined by:[

ζ̇
˙̃p

]
=

[
S 11 S 12
−S T

12 S 22

] [
2Kdζ
M−1 p̃

]
= 0 (39)

From Equation (39), it is straightforward to determinate
that the only equilibrium of the closed-loop error system is[
ζ p̃

]T
=
[
0 0
]T

.
We recall the desired Hamiltonian function by substituting

Vd by equation (30) and demonstrate its positivity :

Hd =
1
2

p̃T M−1 p̃ + ζT Kdζ (40)

The matrix M is positive by definition. Consequently, the
first term associated with kinetic energy, represented by the
quadratic form 1

2 p̃T M−1 p̃, also maintains a positive value.

6



Let us examine the second term within the desired Hamil-
tonian function. The desired potential energy, denoted as Vd =

ζT Kdζ, where Kd is positively defined. The quadratic form Vd

is consequently also positively defined.
The desired Hamiltonian function of closed-loop system

Hd = 1
2 p̃T M−1 p̃ + ζT Kdζ is minimum when p̃ = 03×1 and

ζ = 02×1.
We compute the derivative of Hd with respect to time along

the trajectories of the dynamics as follows:

Ḣd =
[
( ∂Hd
∂ζ

)T ( ∂Hd
∂p̃ )T
] [ζ̇

˙̃p

]
= (

∂Hd

∂ζ
)T (S 11∇Vd + S 12M−1 p̃)

+(
∂Hd

∂p̃
)T (−S T

12∇Vd + S 22M−1 p̃)

= (
∂Hd

∂ζ
)T S 11

∂Hd

∂ζ
+ (

∂Hd

∂ζ
)T S 12

∂Hd

∂p̃

+(
∂Hd

∂p̃
)T (−S T

12)
∂Hd

∂ζ
+ (

∂Hd

∂p̃
)T S 22

∂Hd

∂ p̃

= (
∂Hd

∂ζ
)T S 11

∂Hd

∂ζ
+ (

∂Hd

∂p̃
)T S 22

∂Hd

∂p̃
= 4ζT KdS 11Kdζ + p̃T M−1S 22M−1 p̃ (41)

Given that matrices S 11 and S 22 are negatively defined, the
two quadratic terms in Equation (41) are strictly negative. Con-
sequently, Ḣd is strictly negative.

To simplify the demonstration, we consider z =
[
ζ p̃

]T
.

From the preceding proof, we can conclude that for the unique
equilibrium z = 05×1 :


Ḣd < 0 ,∀z , 05×1

Ḣd = 0 , z = 05×1

(42)

Thus Hd is a Lyapunov function candidate for the closed
loop system. Using the positivity of Hd we can write:


limt→∞ Hd(z) = 0

limt→∞ z = 05×1

(43)

We conclude that the closed loop system of under-actuated
USV using the non linear state feedback (38) is globally asymp-
totically stable. By definition, the domain of attraction of the
controller is z ∈ R5, indicating that for all physically attainable
state variables, the closed-loop system demonstrates asymptotic
stability.

Proposition 4. Consider the USV system described by Equa-
tion (6) in the presence of external disturbances. When the
robust controller specified in Equation (38), incorporating the
estimator (16), is employed for the closed-loop system, the en-
tire system’s stability is guaranteed to be uniformly ultimately
bounded (UUB) by appropriately tuning selected parameters.

Proof. The stability of the entire system, taking external distur-
bances into account, is determined by the Lyapunov candidate
function as follows:

V = Hd + Ve (44)

Differentiating the function (44) alone the whole system
with the proposed controller (38) and estimators (16), we have
:

V̇ = Ḣd + V̇e (45)

In Proposition 2, we have shown that the condition V̇e ≤ 0
is satisfied under the following condition:

0 ≤ Ve ≤
c

K0
+ (V(0) −

c
K0

)e−K0t (46)

We recall that c =
ξ2

4ε , where ε is a small positive constant,
ξ represents the upper bound of ||τ̇d ||. K0 = 2(λmin(α) − ε),
where λmin(α) is the smallest eigenvalue of the estimator turning
parameter α.

This equation always holds true in condition that the turn-
ing parameter α is correctly chosen, as elaborated in detail in
Section 4.1.

With regard to the Lyapunov function of the proposed con-
troller, we have recently demonstrated that with appropriately
tuning selected parameters S 11 S 22 and Kd :

Ḣd < 0 ,∀z , 05×1 (47)

In conclusion, the validity of V̇ ≤ Ḣd + V̇e implies that we
can achieve uniformly ultimately bounded (UUB) tracking er-
rors by appropriately tuning selected control parameters S 11,
S 22, Kd, and the estimator parameter α. Therefore, the stability
of the desired system can be assured.

5. Simulation and experimental validation

In this section, through simulations and experimentation,
we present the performances of the closed-loop system with
the designed trajectory tracking control for the under-actuated
USV. The control objective here is to stabilize the system to
follow the trajectory reference defined.

5.1. Numerical simulations under the influence of time-varying
disturbances.

The efficacy of the proposed control algorithm is assessed
through numerical simulations. In this section, the simulation
environment and results are presented.

We choose the initial position at
[
x(0), y(0)

]
=
[
2m,−4m

]
.

Furthermore, we select the initial velocity vector[
u(0), v(0), r(0)

]
as
[
0m/s, 0m/s, 0rad/s

]
. The disturbance

observer’s initial state is set to τ̃d =
[
0, 0, 0

]
.

The desired reference trajectory is considered to be a bow
shape in the X-Y plane rather than a circular one, which demon-
strate the controller’s effectiveness by accommodating bidirec-
tional rotations. The trajectory is defined by the equations:
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[
xd

yd

]
=

[
5 sin(0.1πt)

−5 sin(0.2πt) + 5

]
(48)

The external environmental disturbances are produced by
the following equation:

τd =

0.01 sin(0.01t)
0.01 cos(0.01t)
0.01 sin(0.02t)

 (49)

Meanwhile, the disturbance represents the USV system due
to slowly varying winds, currents, and waves. We consider the
estimator gain α = diag[500, 500, 500]. In Figure (4), the er-
ror between the estimated disturbances τ̃d and the external en-
vironmental disturbances τd in xb,yb and the rotation direction
are shown. It is obviously shown that the designed disturbance
observer can quickly track unknown disturbances as the error
converges to 0 quickly.
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Figure 4: Disturbances estimation (Estimation errors of disturbance in surge
direction zτ1 : red solid line, Estimation errors of disturbance in sway direction
zτ2 : blue solid line, Estimation errors of disturbance in angular direction zτ3 :
black solid line).

We use the control method described in (38) to stabilize the
under-actuated USV and track the desired trajectory reference
(48) with the disturbance. The design parameters are taken as
follows: the damping injection is S 22 = [−500, 0,−1700], and
the controller gain is Kd = diag[0.65, 0.65].

In the upper part of Figure(5), the red solid line repre-
sents the simulation result, while the blue dashed line repre-
sents the reference trajectory. Starting from an initial position
of
[
2m,−4m

]
, we observe that the USV rapidly converges to

the desired reference trajectory. In the lower part of (5), we
observe that the errors on X and Y converge asymptotically to
zero, which involves the asymptotic convergence of displace-
ment variables to the desired trajectory.
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Figure 5: Bow shape trajectory tracking (Upper figure, Reference: blue dashed
line, USV position: red solid line) and tracking errors (Lower figure, Error on
X: red solid line, Error on Y: blue dashed line).

5.2. Choice of control parameter

In this subsection, we discuss the selection criteria for con-
trol parameters through a closed-loop simulation aiming to
form a circular trajectory in the X-Y plane.

Firstly, we investigate the effect of varying the gain
Kd while keeping the damping injection matrix S 22 =

diag[−500, 0,−1700] fixed. The simulation results are visual-
ized with red and black solid lines, while the reference trajec-
tory is represented by a blue dashed line. Starting from the same
initial position. We can notice that in Figure (6) increasing the
gain from 2.5 to 0.5 leads to faster convergence of the system,
but it may also introduce minor oscillations. This behavior can
be analogized to stiffness in a mass-spring system.
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Figure 6: Trajectory tracking with different parameter Kd (Reference: blue
dashed line, USV position with Kd = 2.5 : red dashed line, USV position with
Kd = 0.5 : black solid line).

Secondly, we analyse the impact of the damping injection
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matrix S 22. While maintaining the controller gain at Kd =

diag[0.5, 0.5], S 22 is then turned from diag[−500, 0,−500] to
diag[−1500, 0,−1500]. A reduction in S 22 results in an increase
in oscillations, as shown in Fig 7.
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Figure 7: Trajectory tracking with different parameter S 22(Reference: blue
dashed line, USV position with S 22 = diag[−1500, 0,−1500] : red dashed line,
USV position with S 22 = diag[−500, 0,−500] : black solid line).

5.3. Experiment validation

Figure 9 illustrates the under-actuated differential-driven
USV experimental platform, while the overall system structure
is depicted in Figure 8. The USV is outfitted with a 32-bit
STM32F407 micro-controller unit (MCU) based on the ARM
Cortex-M4 architecture, which is responsible for motion con-
trol and sensor data collection. Regarding the control scheme
implementation, an on-board computer with an Intel J4125
CPU and 8 GB RAM is employed, running the Robot Operat-
ing System (ROS) Neotic for sensor data processing and mes-
sage communication. The IMU is used to provide the MCU
with angular velocity enabling the determination of r and ac-
celeration information. Meanwhile, the GNSS module with the
real-time kinematic carrier phase differential technique (RTK)
is utilized to obtain the position and, speed information, allow-
ing for the direct determination of x, y. The integration of ac-
celerometer data from the IMU, combined with differential po-
sition data from GNSS, is subjected to sensor fusion through
Kalman filtering to derive a highly dependable velocity u and v.
Subsequently, IMU angular velocity data, in conjunction with
angular information derived from RTK, undergoes a compara-
ble Kalman filtering process to achieve a more precise angular
estimation ψ. These signals are updated at a frequency of 5 Hz.

Figure 8: The USV experimental platform

The control signal is represented by the PWM duty cycles
of the two propeller motors, which can be directly determined
from the propulsive forces F1 and F2 according to the propeller
model in [29]. F1 and F2 can be calculated from Equation (9),
where F1 is given by τu

2 + τr
B and F2 is given by τu

2 −
τr
B .

The damping matrix and the Coriolis matrix are derived
through hydrodynamic analysis conducted using COMSOL
software, see the details in [30]. All the geometric and mass
properties pertaining to the USV experimental platform are ac-
cessible and presented in Table 1.

Table 1: Geometric and Mass Parameters of the Under-Actuated USV

Width 1 m
Length 1.5 m
Height 0.8 m
Weight 60 kg

Draft (Depth) 0.1 m

Figure 9: The system structure of experimental platform
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In our experimental setup, we consider the desired refer-
ence trajectory as a bow shape in the X-Y plane, defined by the
equations: [

xd

yd

]
=

[
5 sin(0.1πt)

−5 sin(0.2πt) + 5

]
(50)

Initially, we employ estimation techniques (16) to assess the
unknown disturbance denoted as τd, resulting in the acquisition
of τ̃d. Subsequently, considering the estimated disturbance, we
implement the control law (38), with all parameters provided,
measured, and estimated through software.

After experimental tuning, the design parameters are de-
termined as follows: the damping injection values are set as
S 22 = diag[−500, 0,−300], and the controller gain is defined as
Kd = diag[0.5, 0.5].

In upper part of Figure 10, the X-Y plane depicts a bow
shape serving as the reference trajectory. The desired reference
trajectory is represented by the blue dashed line while the red
solid line denotes the real trajectory.

The lower part of Fig 10 depicts the tracking error in earth
frames x − xd and y − yd, which serve as indicators of the accu-
racy of the control law. The tracking error is minimal, indicat-
ing a high level of precision in the practical control process.
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Figure 10: Bow shape trajectory tracking (Upper figure, Reference: blue
dashed line, USV position: red solid line) and tracking errors (Lower figure,
Error on X: red solid line, Error on Y: blue dashed line).

Figure 11: Bow shape trajectory tracking captured by an aerial drone at Qizhen
Lake in Zhejiang University.

6. Conclusion

In this paper, we introduced a novel energy-based trajec-
tory tracking control strategy for under-actuated USVs in the
presence of unknown environmental disturbances. A passivity-
based control model in body-fixed coordinates is developed in
the PH framework. An adaptive disturbance estimation method
is proposed to accurately estimate the environmental distur-
bances affecting the motion of USVs. The effectiveness of
the proposed controller is demonstrated through simulations
and experiments on a USV experimental platform. The results
demonstrate the controller’s capability to enhance the trajectory
tracking performance and effectively counteract the impact of
disturbances. The stability of the desired target dynamic system
is rigorously proven, highlighting the robustness and reliability
of the approach. Overall, the presented control strategy offers a
promising solution for enhancing the trajectory tracking capa-
bilities of under-actuated differential-driven USVs in real-world
scenarios.

The selection of control parameters relies on the physical
nature of the system, such as its stiffness and damping phe-
nomena. Our future work aims to design an adaptive law that
can automatically tune the control parameters. This adaptive
law will enable the control system to autonomously adjust the
parameters based on real-time system feedback. During exper-
imental trials, uncertainties in the model have presented several
challenges, although they were addressed by adjusting the con-
trol parameters. Moreover, we propose integrating Bayesian
optimization into the passivity-based control of under-actuated
unmanned surface vessels. By utilizing Bayesian optimization,
we can dynamically adjust the model parameters and continu-
ously update and refine the model.
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Appendix A. Underactuated USV state variables redefini-
tion

Given three degrees of freedom and only two control vari-
ables, control becomes a challenging task. Our objective was
to control two degrees of freedom using two control variables.
Initially, we considered to omit the dynamics of ψ. However,
this would eliminate rotational information in x and y dynam-
ics. Therefore, we involved a fixed reference point δ to incor-
porate rotation information into x and y dynamics. The logic
behind this problem is as follows:

Let us redefine this position
[
xr yr

]T
in the earth frame :

xr = x + δcosψ

yr = y + δsinψ

thus the dynamics of position become :

ẋr = ucosψ − vsinψ − rδsinψ

ẏr = usinψ − vcosψ − rδcosψ

We calculate the surge and sway displacements, denoted as s
and t, using the above equations, and considering the desired
position in the Earth frame :

s = (xr − xd)cosψ + (yr − yd)sinψ

t = (yr − yd)cosψ + (xr − xd)sinψ

ṡ = rt + u − ẋdcosψ − ẏsinψ

ṫ = −rs + v + δr + ẋd sinψ − ẏdcosψ

With this distance between the center of mass and the fixed
point, the dynamics of r becomes coupled with the dynamics
of x and y then s and t, allows the omission of the dynamics
of ψ and reduce the system. This operation aids us in address-
ing the underactuation issue and formulating an energy-based
control method for underactuated systems.
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