
HAL Id: hal-04390676
https://hal.science/hal-04390676v1

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CADI: Contextual Anomaly Detection using an Isolation
Forest

Véronne Yepmo, Grégory Smits, Marie-Jeanne Lesot, Olivier Pivert

To cite this version:
Véronne Yepmo, Grégory Smits, Marie-Jeanne Lesot, Olivier Pivert. CADI: Contextual Anomaly
Detection using an Isolation Forest. The 39th ACM/SIGAPP Symposium On Applied Computing,
Apr 2024, Avila, Spain. �10.1145/3605098.3635969�. �hal-04390676�

https://hal.science/hal-04390676v1
https://hal.archives-ouvertes.fr


CADI: Contextual Anomaly Detection using an Isolation Forest
Véronne Yepmo

veronne.yepmo-tchaghe@irisa.fr
Université de Rennes - IRISA

Lannion, France

Grégory Smits
gregory.smits@imt-atlantique.fr
IMT Atlantique - Lab STICC

Brest, France

Marie-Jeanne Lesot
marie-jeanne.lesot@lip6.fr
Sorbonne Université - LIP6

Paris, France

Olivier Pivert
olivier.pivert@irisa.fr

Université de Rennes - IRISA
Lannion, France

ABSTRACT
Reconstructing the data inner structure and identifying abnormal
points are two major tasks in many data analysis processes. A step
beyond the decomposition of a data set as inliers and outliers, that
then may be interpreted as anomalies, is to distinguish local from
global outliers. This paper introduces a unified approach based
on a revised version of an isolation forest that allows for both
the reconstruction of dense regions of points, the identification
of anomalies and the generation of contextual explanations about
the abnormality of these points. To make the anomaly detection
more informative and reliable, anomalies are compared to the re-
constructed partition of the inliers so as to explain why they are
considered abnormal and from which local generation mechanism
they could originate from. Relying on a common data property,
namely the isolation of anomalies from dense groups of regulari-
ties, eases the understanding of the data set structure and makes
the provided explanations more informative than those provided
by two independent mechanisms, one for clustering and one for de-
tecting anomalies. Conducted experimentations show the relevance
of the structural knowledge extracted from the proposed isolation
forest and the effectiveness and robustness of the approach thanks
to the unified isolation-based data model to analyse different facets
of the data.
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1 INTRODUCTION
Detecting points that significantly deviate from the rest of the
data set is a crucial issue in many applicative contexts as these
outliers may correspond to anomalies, frauds, attacks or suspicious
behaviors. Many machine learning techniques are dedicated to
this task of separating outliers from the other points considered
as regularities (see e.g. [6, 33]). Most of these anomaly detection
approaches focus on calculating an anomaly score for each point to
quantify the extent to which the point globally deviates from the
rest of the data set. Other methods quantify how much the point
deviates from its neighborhood. However, anomaly detectors are
often embedded into decision-aid systems where their end users
require explanations in addition to these scores to be convinced
that an action has to be taken to deal with these anomalies. A way
to increase the trust in the automatic mechanism that has built this
separation of the data into two unbalanced classes (regular points
vs. anomalies), is to provide end users with explanations about the
reasons why a point is tagged as an anomaly [37].

Many anomaly detection algorithms acknowledge the existence
of local anomalies, which deviate only from a subset of the data
set (red circles on Fig. 1), as opposed to global anomalies which
deviate from all the other instances in the data set (red square on
Fig. 1). However, the distinction between local and global anomalies
is often forgotten in the outputs of anomaly detectors, and during
the explanation process. On the data set in Figure 1, even if the
detector is able to flag all red instances as anomalies, no existing
anomaly explanation method will intrinsically capture that 𝑥1 is
an anomaly for the blue cluster because of its value on 𝐴1. This
explanation can be produced only if some knowledge about the
groups of regularities in the data set is available, and that knowledge
is leveraged.

The COIN strategy introduced in [25] is an anomaly explanation
method that makes a step towards the extraction of these so-called
contextual explanations. The method identifies, for each outlier to
explain, its nearest groups of inliers and the outlying attributes wrt.
that neighborhood. However, COIN relies on an external anomaly
detector and an external clustering algorithm. It combines different
machine learning approaches to detect anomalies first, second to
locally analyze the data distribution, and then to generate data
structure aware explanations about each found anomaly. With such
a pipeline, the accuracy of each component depends on specific
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Figure 1: Illustrative example

hyper-parameters that have to be tuned and often on distances
that have to be carefully selected as well. The work proposed in
this paper suggests the encapsulation of these different steps in a
unified approach.

The main contribution of this work is to introduce a unified
approach leveraging an isolation-based data model both to identify
and explain local anomalies. This approach called CADI which
stands for Contextual Anomaly Detection using an Isolation for-
est, capitalizes on the advantages of the initial Isolation Forest (IF)
method introduced in [23], namely to be accurate and interpretable
with only few hyper-parameters to set and no distance measure
to choose. To go beyond the detection of anomalies, a density con-
straint is applied on the randomly generated separation lines to
ensure that they do not split dense regions whose identification is a
prerequisite to the reconstruction of the data inner structure. With
the identification of anomalies and the reconstruction of the data
inner structure, each anomaly is then explained wrt. the identified
clusters of regular data points, still using the knowledge embedded
in the IF.

The rest of the paper is organized as follows. Section 2 explores
the existing literature on the different components of CADI. Sec-
tion 3 presents the approach whose relevance is then confirmed by
experimentations conducted in Section 4.

2 RELATEDWORK
CADI aims at associating each detected anomaly with informative
descriptions about the strength of its abnormality and the reasons
for its classification as an anomaly according to its neighborhood.
This section thus positions CADI wrt. existing approaches in the
fields of anomaly detection and, in particular, anomaly explanation.

2.1 Anomaly Detection
Many machine learning strategies have been proposed to address
specifically the issue of identifying anomalies from a data set [6].
The unsupervised case is the most attractive one because of the
unpredictability of anomalies and the difficulty of labeling data sets.
Considering that regular observations are largely predominant in a
data set, deep learning-based strategies identify as anomalies those
points that do not fit the concise representation of the training
data [38]. Local Outlier Factor (LOF) [4], One-Class Support Vector

Algorithm 1 Isolation Forest : 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 [23]
1: Inputs: a sample 𝐷 ⊂ D, the depth 𝑑 of the current node;
𝑑 = 0 during the first call of the method

2: Output: a node in an isolation tree
3: if |𝐷 | = 1 or 𝑑 > ℎ𝑙𝑖𝑚 then
4: Return 𝑛𝑜𝑑𝑒 (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝐷, 𝑑, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙) ⊲ Leaf (terminal

node)
5: else
6: 𝐴← 𝑟𝑎𝑛𝑑𝑜𝑚(A) ⊲ Random attribute selection
7: 𝑣 ← 𝑟𝑎𝑛𝑑𝑜𝑚( [min𝑥∈𝐷 𝑥 .𝐴,max𝑥∈𝐷 𝑥 .𝐴]) ⊲ Random

value selection
8: 𝐷𝑙 ← {𝑥 ∈ 𝐷/𝑥 .𝐴 < 𝑣}
9: 𝐷𝑟 ← {𝑥 ∈ 𝐷/𝑥 .𝐴 ≥ 𝑣}
10: Return 𝑛𝑜𝑑𝑒 (𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 (𝐷𝑙 , 𝑑 + 1), ⊲ Internal node
11: 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 (𝐷𝑟 , 𝑑 + 1), 𝐷, 𝑑,𝐴, 𝑣)
12: end if

Machines [2] and IF [23] are also among the most popular unsuper-
vised methods. They leverage the fact that anomalies are located in
low density subspaces and easily separable from the other points
to identify them. The Isolation Forest algorithm is very appealing
for anomaly detection because it is fast, interpretable at the tree
level and makes no assumption regarding the distribution of the
data set. Plus, the efficiency and the robustness of the approach
against the choice of the hyper-parameters have been confirmed
throughout the years by different benchmarks [7, 16]. As CADI
relies on a revisited version of an IF, a focus is now made on this
particular technique.

IF [23] identifies so called global anomalies corresponding to
points that can be easily separated from the rest of the data. It is an
ensemble-based algorithm as a forest is composed of 𝑡 trees built
on 𝑡 randomly drawn subsets of the data set D. As summarized
in Algorithm 1, a tree stems from recursive splits of a data subset
𝐷 on randomly chosen attributes and randomly chosen values 𝑣
in the range of values observed in 𝐷 for each chosen attribute 𝐴.
The points with a value lower than 𝑣 on attribute 𝐴 are transferred
to the left child of the current node, and the others to the right
child. This separation process is repeated recursively until one of
the following two conditions is met:

• the node is no longer separable (it contains a single point) ;
• the depth limit, a predefined hyper-parameter of the method,
is reached.

The algorithm depends on three hyper-parameters: the number
of trees in the forest 𝑡 , the sample size Ψ and the depth limit of a
treeℎ𝑙𝑖𝑚 . A node is formally defined by a sextuplet (𝐿𝑁, 𝑅𝑁, 𝐷,𝑑,𝐴, 𝑣),
where 𝐿𝑁 and 𝑅𝑁 are pointers to its left and right nodes respec-
tively,𝐷 ⊆ D,𝑑 ∈ N is its depth in the tree,𝐴 ∈ A and 𝑣 ∈ 𝑑𝑜𝑚(𝐴).
A denotes the set of all attributes and for each 𝐴 ∈ A, 𝑑𝑜𝑚(𝐴)
denotes its domain. In Algorithm 1, the method 𝑛𝑜𝑑𝑒 (𝑙𝑒 𝑓 𝑡_𝑐ℎ𝑖𝑙𝑑,
𝑟𝑖𝑔ℎ𝑡_𝑐ℎ𝑖𝑙𝑑, 𝐷, 𝑑, 𝐴, 𝑣) returns a new node.

Once the forest built, each point to evaluate is propagated to the
leaves of each tree in the forest and an anomaly score, function of
the average depth of the node containing the data point in each
tree, is computed as follows [23]:
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𝑠 (𝑥) = 2−
𝐸 (ℎ (𝑥 ) )
𝑐 (Ψ) , (1)

where 𝐸 (ℎ(𝑥)) is the average depth of the data point over the t trees.
𝑐 (Ψ) is a normalization factor corresponding to the average path
length of unsuccessful searches in a binary tree with Ψ nodes [23].

Several variants of the IF method have been proposed in the liter-
ature. Some focus on the calculation of the anomaly score, without
modifying the process of building the trees and the forest. This
is the case of [28] where five new functions to compute anomaly
scores are proposed. Others modify the construction of the trees but
not the calculation of scores. In [22] and [17], oblique separations
are used, but with different goals: detecting clusters of anomalies
for the former and improving score consistency for the latter. In [9],
the separations are not completely random and aim at minimiz-
ing the weighted standard deviation of the subtrees depth induced
by each separation. More generally, the variants proposed in the
literature focus on the outlier detection task [35].

The CADI approach proposed in this paper introduces a novel
usage of an IF as a unified data model to identify anomalies, re-
construct the inner structure of the regular points and provide
explanations about the found anomalies simultaneously.

2.2 Anomaly Explanation and Interpretation
In many applicative contexts, end users expect more than a de-
composition of the data into regular points vs. anomalies. Expla-
nations about the reasons for the abnormality of each anomaly
can indeed increase the trust and usability of the automatically
extracted knowledge. Because of the diverse nature of anomalies,
anomaly explanation deserves special treatment even though it has
benefited from XAI works dedicated to the explanation of classi-
fiers in general. A general categorization of explanation methods
in general and anomaly explanation methods in particular is the
model-agnostic vs. model-specific one. A model-agnostic method
provides an explanation to any anomaly detection algorithmwhile a
model-specific method is tailored for a particular detector. Recently,
more refined taxonomies of anomaly explanation methods have
been proposed. In [37], four categories of explanations are identi-
fied: attribute importance explanation, attribute value explanation,
point comparison explanation, and intrinsic data structure analy-
sis explanation. In [31], the following categories of explanations
are introduced: methods that rank anomalies, methods that reveal
causal relationships between anomalies, and methods that identify
attributes responsible for the abnormality of points or groups of
points. In both cases, it is stated that techniques returning important
attributes are the most common in the literature [15, 29]. However,
these techniques often ignore the local context of an outlier during
the explanation generation. A way to remedy this omission and to
go a step further is to link anomalies with the intrinsic structure of
the data set. A few methods thus consider the anomaly detection
as a part of a clustering process [21, 26] or a complement of it [34].

CADI shares a same objective with the COIN (Contextual Outlier
INterpretation) approach [25], namely: to help end users understand
why a given point is flagged as an anomaly considering its context.
The additional information associated with each anomaly in the
COIN approach is a triplet containing i) an anomaly score, ii) a list
of attributes supporting the decision of considering the point as

abnormal and iii) a description of the local context of the anomaly.
Whereas COIN has to be combined with an anomaly detector and
a clustering method, the latter being applied on the neighborhood
of the anomalous point to explain, CADI provides a unified and
self-contained approach to reach the same goal. Another anomaly
explanation method, Attention-guided Triplet deviation network
for Outlier interpretatioN (ATON) [36] also includes some local
information when producing the explanations. It learns the devi-
ations between the outlier to explain and its regular neighbors in
an embedded feature space. However, unlike COIN, it only outputs
feature importance weights.

2.3 Outlier-Aware Clustering
Being able to reconstruct the data inner structure without being
affected by the presence of outliers makes CADI a robust cluster-
ing approach. The clustering task aims at decomposing a data set
into homogeneous, i.e. compact, and distinct, i.e. well separated,
subgroups in the data. As such, it can be seen as summarizing the
underlying data distribution and providing a legible overview of
the data content. Yet most clustering algorithms suffer from the
presence of outliers: the points that do not conform with the global
structure of the data most often hinder the identification of regular
clusters. The so-called robust clustering methods aim at addressing
this issue, providing data partitions that are not perturbed by out-
liers: they aim at outputting the same results as would be obtained
without outliers and without requiring to perform a preliminary
step of outlier detection and removal. Robust clustering can be
roughly categorized into two types of methods [3]: some of them
proceed by automatically down-weighting atypical data points [12],
using several approaches to define these weights, e.g. including
noise clustering [11], possibilistic clustering [30], replacing the tra-
ditional normal distributions by multivariate t-distributions [27] or
dedicated approaches [18]. Other methods propose to replace the
classical squared Euclidean distance, which is known to be highly
sensitive to outliers, by other distances [14]. Along the same lines,
some approaches are explicitly based on robust M-estimators in-
corporated in the cost function [10], the possibilistic c-means [19]
can be seen in this framework. These approaches define robustness
as the ability to ignore the outliers, possibly grouping them in a
specific cluster, as in the noise clustering approach for instance.

By aiming at providing a rich overview of the whole dataset,
including the regular points inner structure and the existing anom-
alies, CADI is related to the approaches introduced in [20], [8]
and [24] but leverages a common data structure (viz. an isolation
forest) to extract these two types of knowledge.

3 THE CADI APPROACH
This section details the CADI approach focusing first on the modi-
fication made on the IF construction algorithm to avoid splitting
dense subspaces that will then form clusters or parts of them. The
anomaly scoring function is also revisited to take into account
the impact of the density constraint on the isolation process. The
same IF is then used to reconstruct a partition of the regular data
points, and identify local anomalies to the found clusters. Finally,
the identified anomalies are explained wrt. the clusters of regular
data points.
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Table 1: Notations used throughout the paper

Notation Meaning
D Data set of 𝑁 points

A = {𝐴1, . . . , 𝐴𝑚} Descriptive attributes
𝑑𝑜𝑚(𝐴) Domain of attribute A

𝐼𝐴 Set of tested intervals on feature 𝐴 ∈ A
𝑥 ∈ D Data point
𝑥 .𝐴 Value for data point 𝑥 on attribute 𝐴
𝑡 Size of the forest F = {𝑇1, . . . ,𝑇𝑡 }
Ψ Size of the sample used to build a tree

ℎ𝑙𝑖𝑚 Depth limit
𝜂𝑖 (𝑥) Leaf containing 𝑥 in the 𝑖-th tree
𝛼 Margin width percentage
C Partition of D in 𝑘 clusters {𝐶1, . . . ,𝐶𝑘 }

𝑇 (𝑙) Tree containing the leaf 𝑙
𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 ) Deepest common ancestor between the

paths from the root of 𝑇 (𝑙𝑖 ) to 𝑙𝑖 and 𝜂𝑖 (𝑥)

3.1 Density-Aware Isolation Forest
As reminded in Sec. 2.1, in the classical IF approach, an isolation tree
is built through recursive splits of a data subset𝐷 . A split is a couple
(𝐴, 𝑣), where𝐴 is a randomly chosen attribute𝐴 ∈ A and 𝑣 a value
from its observed domain 𝑣 ∈ [min𝑥∈𝐷 𝑥 .𝐴,max𝑥∈𝐷 𝑥 .𝐴]. CADI
revisits this completely random process to keep only the splits that
fall in low density regions. Anomalies being by definition detached
from regular phenomenon materialized by dense subspaces, the ob-
jective of this revisited isolation algorithm is to find separation lines
in low density areas surrounding dense regions. To do so, a density-
based constraint is added and determines if a split is maintained or
discarded. The hypothesis is the following: if a significant number
of points are found in the neighborhood of the split, it is potentially
separating a cluster. In that case, the split is discarded and another
one is generated. The goal is to surround the clusters of regular
points by the separations, so that some leaves may contain a cluster,
or a significant portion of a cluster. One hyper-parameter denoted
𝛼 is introduced in addition to the IF hyper-parameters to control
the size of the margin around the separation which represents its
neighborhood. Alg. 2 details how density-aware isolation trees are
constructed and Fig. 2 illustrates an example of split selection. The
split (𝐴1, 𝑣1) on Fig. 2 is discarded as many points are located in
the margin surrounding the separation. It is not the case for the
split (𝐴2, 𝑣2) that is kept.

Compared to the initial IF algorithm, a cost overhead is undeni-
ably induced by this split selection, as in the original IF approach
the splits are randomly drawn. However, to learn from the discarded
splits and to avoid generating separations in intervals that have
already been discarded because they contain many data points,
the set of tested intervals on each attribute J = {𝐼𝐴1 , . . . , 𝐼𝐴𝑚 }
(𝐼𝐴 being the set of tested intervals on attribute 𝐴) is stored and
passed as a parameter through the recursive calls to the build_tree
function (line 20 in Alg. 2). If the method was not able to find a
valid separation in the whole interval of values of an attribute (line
10), this attribute is discarded (line 11). The discarded attributes
are therefore also stored, in the variable 𝐶 . If the method is unable
to find a valid separation on any attribute (line 3), then a terminal

Figure 2: Example of a discarded separation line (𝐴1, 𝑣1)
falling in a dense area (dashed line) and a validated sepa-
ration (𝐴2, 𝑣2) (plain line)

Algorithm 2 CADI : 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒
1: Inputs: data sample 𝐷 ⊂ D, depth 𝑑 of the current node,

margin width percentage 𝛼 , set of tested intervals J =

{𝐼𝐴1 , . . . , 𝐼𝐴𝑚 }, set of covered attributes 𝐶 ; J and 𝐶 are empty
when the method is first called, and 𝑑 = 0

2: Output: a node in an isolation tree
3: if 𝐶 = A or |𝐷 | = 1 or 𝑑 > ℎ𝑙𝑖𝑚 then
4: Return 𝑛𝑜𝑑𝑒 (𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝐷, 𝑑, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙) ⊲ returns a leaf
5: else
6: 𝐴← 𝑟𝑎𝑛𝑑𝑜𝑚(A \𝐶) ⊲ random attribute selection
7: 𝑣 ← 𝑟𝑎𝑛𝑑𝑜𝑚( [𝑚𝑖𝑛𝑥∈𝐷𝑥 .𝐴,𝑚𝑎𝑥𝑥∈𝐷𝑥 .𝐴] \ ∪𝐽 {𝐽 ∈ 𝐼𝐴})

⊲ random value selection
8: 𝑚𝑎𝑟𝑔← 1

2𝛼 (max𝑥∈𝐷 𝑥 .𝐴 −min𝑥∈𝐷 𝑥 .𝐴)
9: 𝐼𝐴 ← 𝐼𝐴 ∪ [𝑣 −𝑚𝑎𝑟𝑔, 𝑣 +𝑚𝑎𝑟𝑔]
10: if ∃𝐽 ∈ 𝐼𝐴 𝑠𝑡 . [min𝑥∈𝐷 𝑥 .𝐴,max𝑥∈𝐷 𝑥 .𝐴] ⊆ 𝐽 then
11: 𝐶 ← 𝐶 ∪ {𝐴} ⊲ A is entirely scanned
12: end if
13: 𝐷𝑚 ← {𝑥 ∈ 𝐷/𝑥 .𝐴 ∈ [𝑣 −𝑚𝑎𝑟𝑔, 𝑣 +𝑚𝑎𝑟𝑔]} ⊲ points in

the margin
14: if |𝐷𝑚 | ≤ 𝛼 × |𝐷 | then
15: 𝐷𝑙 ← {𝑥 ∈ 𝐷/𝑥 .𝐴 < 𝑣}
16: 𝐷𝑟 ← {𝑥 ∈ 𝐷/𝑥 .𝐴 ≥ 𝑣}
17: Return 𝑛𝑜𝑑𝑒 (𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 (𝐷𝑙 , 𝑑 + 1, 𝛼, ∅, ∅),
18: 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 (𝐷𝑟 , 𝑑 + 1, 𝛼, ∅, ∅), 𝐷, 𝑑,𝐴, 𝑣)

⊲ return an internal node
19: end if
20: Return 𝑏𝑢𝑖𝑙𝑑_𝑡𝑟𝑒𝑒 (𝐷,𝑑, 𝛼,J ,𝐶) ⊲ select another split
21: end if

node is returned (line 4), the current set of points being considered
as inseparable.

In a tree generated by CADI a leaf may be of three different
types depending on the termination condition that yields it. An
Isolation Node (IN) stores a data point that has been isolated from
the rest of the dataset, it is generated when |𝐷 | = 1. A terminal node
is called aDense Node (DN) if it gathers a set of inseparable points,
formally if |𝐷 | > 1 and 𝐶 = A (l.3 in Alg. 2). Finally, a Depth-
Limit Node (DLN) is such that 𝑑 = ℎ𝑙𝑖𝑚 and 𝐶 ≠ A. Whereas
the classical IF algorithm yields only nodes of type IN and DLN,
the nodes of type DN induced by the density constraint applied on
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the randomly generated splits are particularly informative in the
prospect of reconstructing the data inner structure (Sec. 3.2).

As compared to a classical IF, a CADI forest induces an additional
cost related to the storage of the excluded intervals. As they are
stored only for one node at a time, this overhead is a constant. The
time complexity differs from that of a classical IF by the selection
of the separations. This difference is, in the worst case, linear with
respect to the number of attributes: O(|A|).

3.2 Clustering from an IF
A CADI forest has three types of terminal nodes: IN, DN, and DLN.
IN leaves contain potential anomalies, as the data points were iso-
lated. DLN leaves are those containing points which have not been
separated after a certain number of splits, just like in IF. DN leaves
contain points that cannot be separated no matter the attribute.
They therefore gather dense group of points, corresponding to clus-
ters or portions of clusters. As a result, in order to obtain a partition
of the data set, these leaves need to be combined.

The combination strategy of CADI’s DN leaves is inspired by
grid-based clustering [1] where the feature space is first partitioned
by a grid. Each cell of the grid is a combination of intervals on
the attributes in A, and contains some points. Then, contiguous
dense cells are merged to form clusters. In practice, a graph G =

(V, E) is built. Each vertex of the graph is a cell and there is an
edge 𝐸 between two vertices 𝑉1,𝑉2 ∈ V if the corresponding cells
are contiguous. The connected components of the graph are later
extracted, and each connected component is a cluster. Like cells
in grid-based clustering, DN leaves in CADI contain data points
and delimitate dense regions of the data space. However, there are
some major differences between the two units. First, DN leaves
coming from different trees may have some points in common
(because of the sampling), whereas grid cells are disjoint in terms
of points. Second, the subspaces delimitated by DN leaves may
overlap. As a result, instead of adding an edge between two vertices
if the corresponding leaves are contiguous, an edge 𝐸 is created
if the two leaves are somewhat similar in terms of points. This
similarity is measured by the Jaccard index between the two leaves
and corresponds to the weight of 𝐸:

𝑤𝐸 =
|𝑉1 ∩𝑉2 |
|𝑉1 ∪𝑉2 |

,

with 𝐸 = (𝑉1,𝑉2). 𝑉1 and 𝑉2 are the sets of points contained is
the respective leaves. Each connected component is a cluster. This
strategy allows to automatically discover the number of clusters
in the data set, just like in grid-based clustering. The data points
not assigned to a cluster, because they were not part of any sample
used to build the forest, are propagated through each tree until
they reach a terminal node. A majority vote is then performed
among the clusters of the corresponding DN leaves. Before the
extraction of the connected components, a preprocessing step is
applied: the leaves included in other leaves are deleted fromV to
remove redundancies.

3.3 Anomaly Interpretation
In the COIN [25] approach, an outlier explanation is composed of:

(1) a quantification of the point abnormality,

(2) a local positioning wrt. its surrounding regularities, which is
equivalent for the method to a set of the clustered neighbors
of the point,

(3) a subset of attributes weighted by their relative contribution
to the abnormality of the suspicious point.

Similarly to COIN, the CADI approach provides for each outlier:
(1) a quantification of the point abnormality,
(2) a quantification of its deviation wrt. each identified cluster,
(3) a subset of attributes weighted both by their relative contri-

bution to bringing the suspicious point closer to each cluster
and their relative contribution to the abnormality of the
suspicious point wrt. each cluster.

Anomaly Score. Leveraging the property that it is more likely to
isolate anomalies than regularities using random splits, the anomaly
score of a given point is computed in the original IF approach as
a function of its depth of isolation in the different trees of the
forest. Using the CADI approach, and due to the density constraint
imposed on the randomly generated splits, a dense region may be
completely scanned without increasing the depth of the tree, thus
leading to a leaf of type DN containing a high number of inseparable
points located at low depth. To differentiate leaves of type IN from
those of type DN, it thus makes more sense to define an anomaly
score based on the cardinality of the set of points isolated in a same
leaf instead of its depth. Equation 2 is used to calculate an anomaly
score for a given point 𝑥 that depends on the cardinality of the node
it is isolated in:

𝑠𝑖 (𝑥) = 1 − |𝜂𝑖 (𝑥) | − 1
Ψ

, (2)

where 𝜂𝑖 (𝑥) is the node containing 𝑥 in the 𝑖-th tree. The score
𝑠𝑖 (𝑥) varies in ]0, 1] taking its maximum value when 𝑥 is isolated
alone in an IN leaf and is close to 0 when the whole data subset
ends in a same leaf. The latter situation occurs when no separation
line can be validated on the whole universe: the dataset consists of
a single indivisible cluster.

The global anomaly score is the average over the whole forest
containing 𝑡 trees:

𝑠 (𝑥) = 1
𝑡

𝑡∑︁
𝑖=1

𝑠𝑖 (𝑥). (3)

Local Structure-Aware Anomalies. In its original version, an IF de-
tects points that may be easily separated from the rest of the dataset,
leading to so-called global anomalies. Local anomalies may also be
identified by an IF, but no distinction between local and global anom-
alies is made in the output of the method. Many recent works (see
Sec. 2.2) focus on providing users with more informative descrip-
tions of the data set, especially through a local contextualization
of the found anomalies. It is now shown that a forest generated by
CADI embeds all the necessary structural knowledge to identify
possible links between anomalies and clusters.

Let 𝑥 be a point whose anomaly score 𝑠 (𝑥) is sufficiently high
to be considered as an anomaly. The next step is to determine for
each cluster 𝐶 ∈ C whether 𝑥 can be considered as an abnormal
deviation of the regular phenomenonmodelled by𝐶 . Let {𝑙1, . . . , 𝑙𝑝 }
be the set of DNs making up 𝐶 , and 𝑇 (𝑙𝑖 ), 𝑖 = 1 . . . 𝑝 be the tree in
which 𝑙𝑖 is found. Still using the structural knowledge embedded in
𝑇 (𝑙𝑖 ) only, viz. without having to choose an appropriate distance
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(a) Clusters𝐶1 and𝐶2

(b) Deepest common ancestors (blue octogons) between
𝑥 and the 𝑙𝑖s (green squares). Partial trees are displayed.

Figure 3: Contextual/Local anomaly detection: leveraging
CADI trees and DN leaves

measure, a contextual score denoted by 𝑐 (𝑥,𝐶) is computed as an
aggregation of the comparisons between 𝑥 and the 𝑙𝑖s forming𝐶 . In
a tree, e.g.𝑇 (𝑙𝑖 ), the path from the root to the leaf 𝑙𝑖 implies different
separations each narrowing the subspace originally enclosed by the
root. As a result, if 𝑥 and the points in 𝑙𝑖 are found in the same node
deep in the tree, they are more likely to be close from each other in
the feature space. In that case, if 𝑥 is separated from the points in 𝑙𝑖 ,
it is more likely to be deviating from 𝑙𝑖 . By applying this principle to
all the 𝑙𝑖s in a cluster𝐶 , a score corresponding to the local deviation
of 𝑥 wrt.𝐶 is computed. This contextual score depends on the depth
of the deepest common ancestor (𝑑𝑐𝑎) between the node containing
𝑥 in the 𝑖-th tree 𝜂𝑖 (𝑥), and each 𝑙𝑖 in the corresponding 𝑇 (𝑙𝑖 ):

𝑐 (𝑥,𝐶) = 1
𝑝

𝑝∑︁
𝑖=1

ℎ(𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 ))
ℎ𝑙𝑖𝑚

, (4)

where 𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 ) refers to the deepest common ancestor of 𝜂𝑖 (𝑥)
and leaf node 𝑙𝑖 , and ℎ(𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 )) is its depth.

The process described above is illustrated on Figure 3. On Fig. 3a,
two clusters 𝐶1 and 𝐶2 have been identified: 𝐶1 = {𝑙1, 𝑙2} and 𝐶2 =
{𝑙3, 𝑙4, 𝑙5}. The contextual score of 𝑥 with each cluster is computed
using the depth of the deepest common ancestor between 𝑥 and
each 𝑙𝑖 (Fig. 3b). These contextual scores are therefore given by:
𝑐 (𝑥,𝐶1) = (5/ℎ𝑙𝑖𝑚 + 4/ℎ𝑙𝑖𝑚)/2 = 9/2ℎ𝑙𝑖𝑚 and 𝑐 (𝑥,𝐶2) = (2/ℎ𝑙𝑖𝑚 +
1/ℎ𝑙𝑖𝑚 + 1/ℎ𝑙𝑖𝑚)/3 = 4/3ℎ𝑙𝑖𝑚 . As a conclusion, 𝑥 is a local anomaly
of 𝐶1.

Common andDiscriminating Attributes. In addition to the contextual
scores computed between an anomaly 𝑥 and each cluster𝐶 ∈ C, it is
possible and particularly interesting to determine which attributes

make of 𝑥 a contextual anomaly of a given cluster𝐶 . Each attribute
𝐴 is thus associated with a couple of weights forming the vector
𝑒 (𝐴, 𝑥,𝐶). The first item of the couple indicates how much the
value possessed by 𝑥 on 𝐴 (𝑥 .𝐴) is shared by other members of
𝐶 . The second item of the couple quantifies how much 𝐴 makes
𝑥 an anomaly of 𝐶 . To compute these weights, the paths in each
𝑇 (𝑙𝑖 ) from its root to 𝜂𝑖 (𝑥) and 𝑙𝑖 respectively are analyzed like
in Fig. 3b. In a tree 𝑇 (𝑙𝑖 ), the attribute involved in 𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 ),
attribute denoted by 𝐴(𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 )) in Equation 5, is considered
as an explanation of the reason why 𝑥 is an anomaly, whereas
the other attributes involved in the path from the root of 𝑇𝑙𝑖 to
𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 ) (𝑑𝑐𝑎 excluded) describe the context shared by 𝑙𝑖 and
𝑥 . The couple represented by the vector 𝑒𝑙𝑖 (𝐴, 𝑥) quantifies the
contribution of attribute 𝐴 to explain 𝑥 as a local anomaly of the
dense subset of points gathered in the leaf 𝑙𝑖 .

𝑒𝑙𝑖 (𝐴, 𝑥) =
(

𝜔 (𝐴)
1 if 𝐴 = 𝐴(𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 )) and 0 otherwise

)
(5)

where 𝜔 (𝐴) is the number of times attribute 𝐴 is used as a sepa-
ration attribute in the path from the root of 𝑇 (𝑙𝑖 ) to 𝑑𝑐𝑎(𝜂𝑖 (𝑥), 𝑙𝑖 )
(𝑑𝑐𝑎 excluded).

At the forest and cluster levels, the weight vector attached to
an attribute 𝐴 to quantify its contribution to explain why 𝐴 is an
anomaly of 𝐶 is computed as follows:

𝑒 (𝐴, 𝑥,𝐶) = 1
𝑝

𝑝∑︁
𝑖=1

𝑒𝑙𝑖 (𝐴, 𝑥). (6)

4 EXPERIMENTS
The objective of this section is to evaluate the proposed CADI
approach. Answers to the following questions are sought: 1) Is
CADI able to accurately detect anomalies in a data set? 2) Is CADI
able to provide an accurate partition of the data set? 3) Is CADI
able to identify contextual anomalies wrt. clusters of regular data
points? 4) Is CADI able to provide accurate contextual explanations
for the anomalies? Each component of CADI is therefore evaluated.

4.1 Data Sets and Experimental Setup
As anomaly detection has been extensively explored in the liter-
ature, several real-world data sets for the assessment of this task
exist. Eleven real-world and two synthetic data sets [32], described
in Table 2, are used to evaluate the anomaly detection step.

Unfortunately, there is no information neither on the presence
of clusters in these data sets, the locality of anomalies, nor on the
ground-truth explanations. In general, evaluating an explanation
on real-world data sets is not an easy task, because of this absence
of ground-truth. With some knowledge about the data, it is possible
to have an insight on these ground-truth explanations. In the anom-
aly explanation literature, a common practice is to add controlled
noise attributes [5, 25]. The hypothesis behind this practice is that
true explanations should lie among the original (viz. not noise)
attributes. We believe that an evaluation using this scheme is not
faithful enough, since the true outlying attributes must be part of
the original ones. This scheme therefore only evaluates the ability
of a method to provide non-aberrant explanations. In [36], another
technique to generate ground-truth explanations on real-world
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Table 2: Real-world data sets

Data set D |A| |D| # anomalies

Annthyroid 6 7200 534
Arrhythmia 271 420 57
Breast 9 683 239
Cover 10 286048 2747
HBK 4 75 14
HTTP 3 567498 2213
Ionosphere 32 351 126
Mammography 6 11183 260
Pima 8 768 268
Satellite 36 6435 2036
Shuttle 9 58000 3511
SMTP 3 95156 30
Wood 6 20 4

data sets is proposed. The outlying degree/score of real outliers in
every possible subspace of the original feature space is computed.
The ground-truth explanation is the subspace where the anomaly
receives the highest score. Three different anomaly detectors are
used, among which IF. Depending on the detector used, there are
different ground-truth outlying attributes that are used separately
during the evaluation. With this scheme, there is no information
regarding the possible clusters of regular data points.

In contrast to real-world data sets, the true outlying attributes are
known during the generation of synthetic data sets. Furthermore,
since the generation process is known, data sets containing clusters
and local anomalies can be produced. Since the best usage of CADI
is this setting, only synthetic data sets are used for the evaluation
of the subsequent components of the method. We follow a strategy
similar to the one described in [25] for the generation of synthetic
data sets. In the first synthetic data set, each anomaly is close to
only one cluster. The outlying attributes wrt. the corresponding
cluster constitue the ground-truth. In the second data set, some
anomalies share some attributes values with more than one cluster.
The third data set contains anomalies that deviate from all the
clusters. The last cluster contains, in addition to local and global
anomalies, a cluster of anomalies. To evaluate the ability of CADI
to discover non-spherical clusters, the second and third data sets
contain stretched clusters. In addition to that, the fourth data set
is the moons data set generally used to evaluate clustering. It is
composed of two interleaving half circles, to which we manually
added outliers. Information about the synthetic data sets generated
are summarized in Table 3.

To enhance the reproducibility of our experimental results, the
code and the synthetic data sets along with the ground truths are
publicly available 1.

The parameters of CADI are set to these default values: 𝑡 = 100,
Ψ = 256, ℎ𝑙𝑖𝑚 = 8 and the margin size is 𝛼 = 5% of the attribute’s
initial range. The default values of 𝑡 , Ψ and ℎ𝑙𝑖𝑚 are the same as
for IF. The intuition behind a fixed value of 𝛼 is the following :
if two points are separated by less than that 𝛼 × 𝑟𝑎𝑛𝑔𝑒 (𝐴) on an
attribute 𝐴, they should remain together during the tree building
1https://gitlab.com/yveronne/cadi

process. However, the value of that parameter can be adjusted with
some knowledge about the data. For example, if the user wants
to keep together data points having a difference in values on a
specific attribute 𝐴 less than a quantity 𝛽 , then the value of 𝛼
for this attribute can be set to 𝛽/𝑟𝑎𝑛𝑔𝑒 (𝐴). This fixed value of 𝛼
causes an update on l.14 in Alg. 2. If the data distribution is uni-
form, then𝑚𝑎𝑟𝑔/(max𝑥∈𝐷 𝑥 .𝐴 −min𝑥∈𝐷 𝑥 .𝐴) × |𝐷 | points should
be expected in the margin. Nevertheless, 𝛼 is an upper bound of
the quantity 𝑚𝑎𝑟𝑔/(max𝑥∈𝐷 𝑥 .𝐴 − min𝑥∈𝐷 𝑥 .𝐴), as the quantity
(max𝑥∈𝐷 𝑥 .𝐴−min𝑥∈𝐷 𝑥 .𝐴) decreases with separation. l.14 is there-
fore not modified in the implementation and the experiments.

4.2 Anomaly Detection
This part of the experiments aims at evaluating CADI in terms
of anomaly detection. To this end, the real-world and synthetic
data sets are used. For each data set, the ground-truth anomalies
are known. The Area under the Receiver Operating Characteristic
curve (AUC/AUROC) is computed. AUC is an appealing method for
anomaly detection evaluation because it is independent of the outly-
ing degree threshold. It represents the probability that an anomaly
receives a higher score than a regular data point. CADI is compared
to the classical IF method in terms of AUC. For comparison between
IF and other anomaly detection algorithms, some benchmarks, like
[16], are available. The means and standard deviations of the AUC
after ten runs of CADI and IF are reported in Table 4.

In general, there is no significant difference between CADI and
IF. However, CADI performs much better than IF on two data sets
in particular: mammography and the synthetic data set wood. That
performance increase is due to the fact that these data sets contain
regular data points located in sparse regions of the feature space. As
CADI combines the separability information and the local density
information during the split selection, the method is able to make
a better distinction than IF between regular data points located in
sparse subspaces and isolated anomalies. IF in contrast uses only
the separability information when computing the anomaly score,
leading to a less precise distinction between regular data points
located in sparse subspaces and anomalies. Another observation is
that the standard deviations of the anomaly score with CADI are
generally lower, implying that the results obtained are more stable.
This stability is caused by the non-completely random selection of
the separations in CADI.

4.3 Clustering Evaluation
To evaluate the clustering component of CADI, a forest is built
for each synthetic data set. Anomalies are identified by choosing a
score threshold of 0.95. Then, a partition of the regular data points is
extracted by the procedure described in Sec. 3.2. For each synthetic
data set, the true clustering labels of each data point are known.
As a result, the Adjusted Rand Index (ARI) is used as evaluation
metric. To have a ground-truth partition for computing the ARI,
we assign all the known anomalies to a cluster, and the regular
instances are assigned to their respective true cluster. CADI is com-
pared with the density-based clustering algorithm DBSCAN [13]
and the robust clustering algorithm 𝑘−means-- [8]. The choice of
DBSCAN for comparison is motivated by three main reasons: 1)
DBSCAN identifies not only the clusters of regular data points but
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Table 3: Synthetic data sets

Data set D |A| # clusters |D| # anomalies Description

D1 2 2 900 25 Spherical clusters. Local anomalies only.
D2 2 3 1508 8 Two spherical and one stretched clusters. Local and global anomalies.

D3 3 4 408 8 Four stretched clusters. Each pair of clusters located in only two dimensions
Local and global anomalies.

D4 2 2 517 17 Two moons. One anomaly cluster. Local and global anomalies.

Table 4: Anomaly detection performance: AUC

Data set CADI IF

Annthyroid 0.772 ± 0.014 0.819 ± 0.013
Arrhythmia 0.812 ± 0.007 0.775 ± 0.045
Breast 0.994 ± 0.001 0.981 ± 0.004
Cover 0.832 ± 0.027 0.873 ± 0.022
HBK 1.0 ± 0.0 1.0 ± 0.0
HTTP 0.998 ± 0.002 0.999 ± 0.001
Ionosphere 0.827 ± 0.009 0.855 ± 0.005
Mammography 0.844 ± 0.011 0.645 ± 0.037
Pima 0.702 ± 0.007 0.684 ± 0.010
Satellite 0.700 ± 0.014 0.699 ± 0.016
Shuttle 0.992 ± 0.002 0.995 ± 0.001
SMTP 0.883 ± 0.011 0.889 ± 0.008
Wood 0.956 ± 0.061 0.868 ± 0.069
D1 0.999 ± 0.001 0.999 ± 0.001
D2 0.965 ± 0.005 0.979 ± 0.004
D3 0.974 ± 0.005 0.995 ± 0.002
D4 0.990 ± 0.001 0.972 ± 0.005

Mean AUC 0.8965 0.8839

also the anomalies. 2) DBSCAN, as CADI, automatically discovers
the number of clusters and therefore does not require it as an input
parameter. 3) DBSCAN is able to discover non-elliptical clusters.
𝑘−means-- are a variant of the classic 𝑘−means clustering algo-
rithm. The approach has two parameters: the number 𝑘 of clusters
to discover and the number 𝑙 of outliers in the data set. The 𝑙 far-
thest points are discarded during the cluster centers updates. We
set the values of 𝑘 and 𝑙 to their true values for each dataset. The
default parameters of DBSCAN are used on D1,D2 and D3. The
most important parameter of DBSCAN is 𝜖 which controls the size
of the neighborhood. OnD4, the default value of 𝜖 does not produce
good results. It was fine-tuned. On that same data sets, the weakest
edges were removed by CADI to obtain two clusters. The best ARI
obtained when using CADI, DBSCAN and 𝑘−means-- on the data
sets are reported in Table 5.

𝑘−means-- obtain the best ARI on D1 and D2. This behavior
was expected, since the classic 𝑘−means algorithm is efficient for
extracting spherical clusters. On D3 and D4, 𝑘−means-- struggles,
just like the original 𝑘−means struggles on these data sets in the
absence of anomalies. DBSCAN and CADI on the other hand do
not struggle to discover non-elliptical clusters. CADI obtains the
best ARI in average.

Table 5: Clustering performance: ARI

Data set CADI DBSCAN 𝑘−means--

D1 0.986 0.914 1.0
D2 0.970 0.963 0.994
D3 0.936 0.971 0.333
D4 0.992 0.999 0.287

Mean 0.971 0.962 0.653

Table 6: Contextual anomaly detection performance

Data set Precision Recall

D1 1.0 1.0
D2 1.0 1.0
D3 0.875 0.875
D4 0.941 1.0

4.4 Contextual Anomaly Detection
In addition to identifying anomalies and groups of regular data
points, CADI provides some insight about the cluster(s) from which
each anomaly may be deviate. As, to the best of our knowledge, no
method in the literature is able to do so, there is no baseline for
comparison. However, since the true cluster assignments are known
for each anomaly in the generated data sets, the performance of
CADI regarding the contextual anomaly detection can be evaluated.
To do so, for each outlier 𝑜 , let P be the set of predicted clusters for
𝑜 , i.e the set of clusters from which 𝑜 may be deviating according
to CADI. Let T be the set of ground-truth clusters for 𝑜 , i.e the set
of clusters from which 𝑜 is deviating. The precision and recall are
computed as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = |P ∪ T |/|P| and 𝑟𝑒𝑐𝑎𝑙𝑙 = |P ∪ T |/|T |.
For each data set, the precisions and recalls are averaged over the
outliers. The results are shown in Table 6. CADI performs well on
all the data sets, with perfect precision and recall on D1 and D2.
The method is more challenged on D3 as this data set contains
several data points deviating from more than one cluster.

4.5 Contextual Explanations
The last part of CADI’s assessment concerns the generated contex-
tual explanations. CADI outputs for an outlier 𝑜 a list of discriminat-
ing feature weights wrt. each identified cluster (second items of the
pairs in Eq. 6). COIN [25] also outputs a list of feature weights, but
with respect to the local context of 𝑜 only, and not the set of clusters
in the data set. ATON [36] on the other hand does not take the local



CADI: Contextual Anomaly Detection using an Isolation Forest SAC’24, April 8 –April 12, 2024, Avila, Spain

context of 𝑜 into account, but still outputs a list of feature weights.
Both COIN and ATON need as input the outlier 𝑜 to explain. It is
not the case for CADI which performs anomaly detection prior to
the explanation. COIN and ATONwill nonetheless serve as baseline
for the evaluation. In addition to these two, CADI is compared to
the ground-truth explanation extraction procedure introduced in
[36] and detailed in Section 4.1. The IF is used as detector for this
method called ATON-GT from here onwards. ATON-GT outputs
for each specified outlier 𝑜 , the subspace in which it receives the
highest anomaly score. The implementations of COIN, ATON and
ATON-GT were kindly made available by their respective authors.

Considering all the above-mentioned differences across CADI,
COIN, ATON and ATON-GT, we propose the following evaluation
procedure to provide a fair comparison:

• Since COIN, ATON and ATON-GT do not identify outliers
per se, explanations for true outliers only are requested from
all the four methods. This allows to also evaluate the ability
of CADI to provide accurate explanations even for outliers
the method was not able to identify as such.
• The ground-truth explanations are a list of discriminating
attributes wrt. each cluster. As a result, for the methods out-
putting feature importance scores (CADI, COIN and ATON),
the top 𝑘 discriminating features are retrieved, with 𝑘 being
the length of the true explanatory subspace.
• For all four methods, the precision and recall of the expla-
nations are computed in a similar manner as for contextual
anomaly detection performance evaluation. This procedure
is also used in [36]. For each data set, the precision and recall
over all the outliers are computed.
• As CADI should not only produce the good cluster(s) but
also the good explanatory subspaces wrt. these clusters, the
two information should match. Consequently, during the
precision and recall computation, the predicted cluster is
compared to the ground-truth cluster first, before comparing
the explanatory subspaces.
• For COIN, ATON and ATON-GT, the generated explanatory
subspace is compared with the explanatory subspace of 𝑜
wrt. the true cluster(s) from which it is deviating, as these
methods do not indicate from which cluster 𝑜 may be devi-
ating.

The precision and recall for each data set and each method are
shown in Table 7.

CADI has a high precision and recall on all the data sets, meaning
that it is able not only to identify the cluster(s) from which an
instance is deviating, but also to provide a faithful explanation wrt.
these clusters in terms of discriminating attributes. COIN performs
better than ATON on D1, D2 and D4. This may be because of the
clustering step of COIN that allows to mitigate the influence of
different groups of points on the attributes importance. ATON and
ATON-GT perform better than COIN onD3. In this data set, clusters
are located in different subspaces and local anomalies can also
be identified in these subspaces. As ATON-GT explores different
subspaces during the explanation generation process, it has a slight
advantage. CADI is also able to discover clusters (and consequently
outliers) in subspaces because of the split generation procedure. As
a result, it does not fall far behind ATON-GT in terms of precision

Figure 4: Data set D1. For the outlier represented by a red
square, ATON-GT returns as explanatory subspace the full
feature space.

on D3. In general, ATON-GT has a high recall, because it tends
to overestimate the size of the explanatory subspace. For example,
on data set D1, the explanatory subspace returned by ATON-GT
for the red square outlier on Figure 4 is the full attribute space.
Although feature 𝐴1 is sufficient (regardless of the local context
or not), that outlier is more easily isolated in the full feature space
than in 𝐴1.

5 CONCLUSION AND FUTUREWORK
This paper presented a unified model for contextual and inter-
pretable anomaly detection. The proposed method, called CADI
proposes a revised version of the IF as a basis to identify outliers,
groups of regular data points and to provide explanations of both
global and local anomalies wrt. clusters, without relying on external
algorithms to perform the different tasks. Conducted experiments
show that CADI is indeed able not only to identify the anomalies
as well as classical IF on real-world data sets, but also to provide
meaningful and accurate explanations regarding the abnormality of
an instance wrt. a group of points in synthetic data sets containing
clusters and local anomalies. The main limitation of this work is the
absence of evaluation of the explanation component on real-world
data and higher dimensional data sets. This will require some work
to provide adequate ground-truths and is the main direction for
further research.
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