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In this paper, the leader-following consensus problem for multi-agent systems is considered. Each agent is assumed to be modeled by a linear multi-input system. A novel (generalized homogeneous) consensus control protocol is designed under the assumption that there are some uncertainties in the dynamic of the leader. Some conditions (LMIs) are derived to select the control parameters in order to ensure the input-to-state stability and global finite-time stability of the consensus errors with desired homogeneity degrees. Some simulations are performed to illustrate the obtained results.

I. INTRODUCTION

T HE multi-agent system (MAS) has been a hot research object because multiple agents perform better working efficiency, reduced sensitivity to possible failures and increased flexibility during task execution. The research on MAS with coordinated control protocols has wide potential applications in many industrial scenarios, such as the control and optimization of unmanned aerial systems [START_REF] Guzey | Modified consensusbased output feedback control of quadrotor UAV formations using neural networks[END_REF], network security [START_REF] Zhai | Trusted-region subsequence reduction for designing resilient consensus algorithms[END_REF] and smart grids [START_REF] Hu | Branch-wise parallel successive algorithm for online voltage regulation in distribution networks[END_REF].

Consensus is one of the fundamental problems in MAS applications, and it requires the state of each individual agent to reach an agreement with the regulation of coordinated control protocols. The research on consensus issues can be traced back to the 1980s [START_REF] Tsitsiklis | On the complexity of decentralized decision making and detection problems[END_REF]- [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], and it becomes systematized until the concept of the solvability of consensus problems and consensus protocols are introduced by Olfati-Saber and Murray [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF]. After that, recent two decades have witnessed the launch of many results (e.g., [START_REF] Nedic | Constrained consensus and optimization in multi-agent networks[END_REF]- [START_REF] Ren | A survey of consensus problems in multi-agent coordination[END_REF]).

Homogeneity is a dilation symmetry. All linear and a number of nonlinear models for mathematical dynamics are homogeneous in a certain sense. Homogeneous systems have some useful properties which drive their wide applications in system analysis, regulation, and estimation (e.g., [START_REF] Kawski | Families of dilations and asymptotic stability[END_REF]- [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF]). To be specific, the local properties of homogeneous systems, such as local stability, can always be expanded into a global sense [START_REF] Kawski | Families of dilations and asymptotic stability[END_REF], [START_REF] Zubov | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF], [START_REF] Rosier | Homogeneous Lyapunov function for homogeneous continuous vector field[END_REF]. In addition, the homogeneous system is robust with respect to a large class of perturbations [START_REF] Hong | H∞ control, stabilization, and input-output stability of nonlinear systems with homogeneous properties[END_REF] and time delays [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF]. Moreover, the convergence rate of the homogeneous system is defined by its homogeneity degree, i.e., by adjusting the homogeneity degree, an asymptotic stable homogeneous system could achieve finite-time/asymptotic/fixedtime convergence [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], [START_REF] Zubov | Methods of A. M. Lyapunov and their applications[END_REF], [START_REF] Nakamura | Smooth Lyapunov functions for homogeneous differential inclusions[END_REF]. For learning more details about the mentioned properties, we recommend a recent survey [START_REF] Efimov | Finite-time stability tools for control and estimation[END_REF] and the book [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF] to the reader.

Given the merits of the homogeneous system, homogeneous control strategies are introduced to consensus issues. The pioneering work is carried out by Wang and Hong [START_REF] Wang | Finite-time consensus for multi-agent networks with second-order agent dynamics[END_REF], where a homogeneous consensus protocol, adapting the wellknown controller of Bhat and Bernstein [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], is designed for consensus under an undirected graph. For directed topologies, homogeneous consensus protocols are studied for MAS with and without velocity measurements [START_REF] Zheng | Finite-time consensus of heterogeneous multiagent systems with and without velocity measurements[END_REF], [START_REF] Zheng | Finite-time consensus of multiple second-order dynamic agents without velocity measurements[END_REF]. The case of switching topologies is studied in [START_REF] Guan | Finite-time consensus for leader-following second-order multi-agent networks[END_REF], [START_REF] Sun | Finite-time consensus for leader-following second-order multi-agent system[END_REF] for leaderfollowing consensus. The agent model of MAS in the abovementioned papers is double integrators, and consensus analysis is carried out with weighted homogeneity. Homogeneous consensus control protocols for MAS with high-order integrator dynamics are proposed, for example, in [START_REF] Zhou | Higher order finite-time consensus protocol for heterogeneous multi-agent systems[END_REF], [START_REF] Zuo | Fixed-time consensus tracking for multi-agent systems with high-order integrator dynamics[END_REF]. The main difficulty of their applicability is the absence of an efficient/simple procedure for controller tuning. The mentioned algorithms (as well as most of the algorithms of homogeneous stabilization, see e.g., [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF], [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF]) just guarantee the existence of an appropriate control provided that the homogeneity degree is close to zero (i.e., if a homogeneous control is close to a linear control). In this case, it is hard to guarantee any improvement compared with the linear control.

In this paper, we propose to develop a generalized homogeneous control protocol for MAS, where each agent is modeled as a linear multi-input system. This agent dynamic is rather general. The actively researched MAS with linear agent dynamics (e.g., first-order system [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]- [START_REF] Liu | Pulse-modulated intermittent control in consensus of multiagent systems[END_REF], second-order system [START_REF] Yu | Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[END_REF], [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF]- [START_REF] Li | Impulsive consensus control for general second-order multi-agent systems[END_REF] and high-order integrators [START_REF] Wieland | On consensus in multi-agent systems with linear high-order agents[END_REF]- [START_REF] Tian | Leader-follower fixed-time consensus of multi-agent systems with high-order integrator dynamics[END_REF]) are special cases of this model. In addition, the multi-input agent dynamic gives a considerable possibility for the experimental implementation of the MAS, since a large number of realistic objects can be modeled as multi-input systems, such as the well-known unicycle robot model [START_REF] Mera | A sliding-mode based controller for trajectory tracking of perturbed unicycle mobile robots[END_REF] and the car-like robot model [START_REF] Luca | Feedback control of a nonholonomic car-like robot[END_REF].

The generalized homogeneous consensus protocol is proposed by following the idea of an "upgrade" of the classical consensus protocol by Olfati-Saber and Murray [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF] to a homogeneous one [20, Chapter 9], [START_REF] Wang | Generalized homogenization of linear controllers: Theory and experiment[END_REF] in such a way that the control quality such as the convergence rates and the robustness can be improved. We show that such an upgrade is possible under the assumption that MAS has a supervisor, which can observe the whole system and broadcast a small amount of information to all followers simultaneously. The supervisor cannot be utilized as a centralized controller because its communication ability is assumed to be very limited and possibly sampled in time. A nonlinear consensus protocol is designed for MAS in such a way that the consensus error equation is generalized homogeneous of a desired degree. Under the assumption that there exist some bounded uncertainties in the dynamic of the leader, input-to-state stability (ISS) and uniform global finite-time stability are guaranteed by a proper selection of homogeneity degrees and control parameters. The control parameters are specified by Linear Matrix Inequalities (LMIs), which can be easily solved in MATLAB. Finally, simulations are performed to compare the classical linear and the homogeneous consensus protocol, and we can see the convergence performance is considerably improved although the homogeneous control protocol consumes more energy.

The rest of the paper is organized as follows. Section II gives some basic knowledge about graph theory, as well the definition of stabilities and generalized homogeneity. The problem to be studied is formulated in Section III. The motivation and the basic idea for upgrading the classical linear consensus protocol to a homogeneous one are shown in Section IV. The supervisor-based homogeneous control protocol is proposed and convergence results are obtained in Section V. Finally, in Section VI, we use some simulations to illustrate the effectiveness of obtained theories and compare the control energy consumption with the classical linear consensus protocol.

Notations:

• Numbers and Sets: R is the set of real numbers; R + is the set of positive real numbers; R ≥0 = {0} ∪ R + ; N + is the set of positive integers; exp(x) = e x , where e represents the Euler number; a series of positive integers 1, . . . , N is denoted as 1, N. • Vectors and Matrices: let n ∈ N + , R n and R n×n denote the n × 1 real vector and the n × n real matrix, respectively; I N is the N × N identity matrix; diag{σ i } N i=1 is the N × N diagonal matrix with the diagonal entry σ i ∈ R; 1 N is the N-dimensional vector whose elements are all ones; let P ∈ R n×n , λ max (P) and λ min (P) denote the maximum and minimum eigenvalue of P, respectively; P 0 (≺ 0) means that P is symmetric and positive (negative) definite; P is anti-Hurwitz if -P is a Hurwitz matrix; ⊗ represents the Kronecker product.

• Spaces and Norms: 2 2 dt; α ∈ L ∞ implies that it is a Lebesgue measurable bounded function with α L ∞ (t a ,t b ) := ess sup t∈(t a ,t b ) α(t) ∞ ; α ∈ W 1,∞ implies that its (weak) derivative up to order 1 has a finite L ∞ -norm, and α W 1,∞ := max i=0,1 α (i)

let x = [x 1 , . . . , x n ] ∈ R n , x i ∈ R, i = 1, n, x is a norm in R n ; x 2 = √ x x; x P = √ x Px; x ∞ = max i=1,n |x i |; let function α(t) : R ≥0 → R n , α ∈ L 2 implies that it is Lebesgue integrable, corresponding norm is defined as α L 2 (t a ,t b ) := t b t a α(t)
L ∞ , where α (i) is function α(t)'s derivative of order i. 

II. PRELIMINARIES

A. Graph Theory

Let G = {V , E , W } denote a fixed directed graph, where V = {1, . . . , N} is the set of nodes (agents); E = {(i, j)|i, j ∈ V } is the edge set, (i, j) ∈ E if i can receive the information from j; n i denotes the number of incoming edges of node i; W is the weighted adjacency matrix with elements w i j , i, j ∈ V , w i j > 0 if (i, j) ∈ E , and w i j = 0 otherwise. In this paper, the self-loop situation is excluded, i.e., w ii = 0. The element l i j , i, j ∈ V of the Laplacian Matrix L associated to the graph G is defined as: l i j = -w i j if i = j, and l i j = ∑ N k=1 w ik otherwise, which implies ∑ N k=1 l ik = 0. A directed path from node i to node j in the graph G is a sequence of nodes i 1 , i s , where i 1 = i, i s = j and (i κ+1 , i κ ) ∈ E , κ = 1, s -1. The root node (the leader) i L of G characterizes itself from the other nodes since it has at least one directed path to each of the rest node while (i L , j) / ∈ E for all j ∈ V .

B. Stability Notation

Definition 1: The system ẋ = f (x), t ≥ 0, x ∈ R n , x(0) = x 0 is said to be globally uniformly finite-time stable [START_REF] Orlov | Finite time stability and robust control synthesis of uncertain switched systems[END_REF] if it is Lyapunov stable and for all x 0 ∈ R n , there exists a locally bounded settling-time function T (x 0 ) : R n → R ≥0 , such that x(t) = 0 for all t ≥ T (x 0 ). Definition 2: The system ẋ = f (x, q), t ≥ 0, x ∈ R n , q ∈ R ω , x(0) = x 0 is said to be input-to-state stable (ISS) [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF] if there exist β ∈ K L and γ ∈ K such that

x(t) ≤ β ( x 0 ,t) + γ q L ∞ (0,t) , for any x 0 ∈ R n and any q ∈ L ∞ (R, R ω ).
Definition 3:

The system ẋ = f (x), t ≥ 0, x ∈ R n , x(0) = x 0
is said to be globally uniformly nearly fixed-time stable [START_REF] Efimov | Finite-time stability tools for control and estimation[END_REF] if it is Lyapunov stable and for all ϑ > 0, there exists T (ϑ ) > 0 such that x(t) < ϑ for all t ≥ T (ϑ ), where T (ϑ ) is independent of x 0 .

C. Dilation in R n

Homogeneity is an invariance (symmetry) of an object with respect to a class of transformations called dilations. Choosing a proper dilation group d(s), s ∈ R is an essential part of the homogeneity-based analysis, d(s) is supposed to satisfy the limit property: [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF]. The examples of dilations are given as follows:

lim s→±∞ d(s)x = exp(±∞) for x ∈ R n \ {0}. A dilation d is monotone if the function s → d(s)x is strictly increasing for x ∈ R n \ {0}
• Standard dilation (Leonhard Euler, 18th century): d(s) = exp(s)I, s ∈ R; • Weighted dilation [17]: Given r i > 0, i = 1, n, d(s) = diag{exp(sr i )}, s ∈ R.
• Linear dilation [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF]:

d(s) = exp(sG d ), s ∈ R, G d ∈ R
n×n is an anti-Hurwitz matrix known as the generator of dilation.

• Geometric dilation [START_REF] Khomenuk | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF], [START_REF] Kawski | Geometric homogeneity and stabilization[END_REF]: a flow generated by an unstable C 1 vector field.

D. Canonical Homogeneous Norm

Definition 4: The functional x d : R n → R ≥0 defined as 0 d = 0,

x d = exp(s x ), where s x ∈ R : d(-s x )x = 1, x ∈ R n \ {0} is called the canonical homogeneous norm in R n , where d is a linear monotone dilation.
The canonical homogeneous norm has the following properties [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF]:

• d(s)x d = exp(s) x d , for x ∈ R n and s ∈ R; • x d = -x d , x = 1 ⇔ x d = 1; • x d is locally Lipschitz continuous on R n \{0}; • if • ∈ C 1 (R n \{0}, R + ), then • d ∈ C 1 (R n \{0}, R + ); • if x = x P , where P satisfies P 0, PG d + G d P 0, then the linear dilation d(s) = exp(sG d ) is monotone and ∂ x d ∂ x = x d x d (-ln x d )Pd(-ln x d ) x d (-ln x d )PG d d(-ln x d )x , x ∈ R n \{0}.

E. Homogeneous System

Definition 5:

A vector field f : R n → R n (resp. a function h : R n → R) is said to be d-homogeneous if there exists a µ ∈ R such that f (d(s)x) = exp(µs)d(s) f (x), s ∈ R, x ∈ R n (resp. h(d(s)x) = exp(µs)h(x), s ∈ R, x ∈ R n ),
where d is a dilation and the scalar µ is known as the homogeneous degree of f (resp. of h).

The following result is an adaption of [START_REF] Hong | H∞ control, stabilization, and input-output stability of nonlinear systems with homogeneous properties[END_REF], [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF] to the case of linear dilation and can be found in [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF].

Lemma 1: Assume a continuous vector field f :

R n+ω → R n+ω takes the form of f (x, q) = f (x,q) 0 , x ∈ R n , q ∈ R ω and d-homogeneous of a degree µ with respect to a dilation d = d x 0 0 d q in R n+ω . If the system ẋ = f (x, 0
) is asymptotically stable at the origin, then the system ẋ = f (x, q) is ISS.

The latter lemma shows that the robustness of a homogeneous perturbed system is equivalent to the asymptotic stability of the unperturbed system. This essentially simplifies the robustness analysis of homogeneous systems.

Lemma 2: Let f be a continuous d-homogeneous vector field of degree µ ∈ R. The system ẋ = f (x) is globally asymptotically stable if and only if there exists a positive definite d-homogeneous Lyapunov function V : R n → [0, +∞) of degree 1 such that V (x) ≤ -ρV 1+µ (x), ρ > 0. The latter lemma is a straightforward corollary of the Zubov-Rosier Theorem [START_REF] Zubov | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF], [START_REF] Rosier | Homogeneous Lyapunov function for homogeneous continuous vector field[END_REF]. It immediately implies that any asymptotically stable homogeneous system ẋ = f (x) is

• globally uniformly finite-time stable for µ < 0 with time estimate T (x 0 ) ≤ -1 ρ µ V -µ (x 0 ); • globally uniformly asymptotically stable for µ = 0;

• globally uniformly nearly fixed-time stable for µ > 0,

T (ϑ ) = 1 ρ µ ϑ -µ , ϑ > 0.

III. PROBLEM FORMULATION

Consider a MAS consisting of N + 1 agents, whose communication topology is described by a fixed digraph G = {V , E , W }, where the leader is represented by agent 0, and the rest agents labeled by 1, N are followers. The dynamic of the leader is an ordinary differential equation (ODE):

ξ0 (t) = f 0 (t, ξ 0 ), f 0 ∈ C(R × R n , R n ) (1)
and the dynamics of the followers are ξi

(t) = Aξ i (t) + Bu i (t), i = 1, N (2) 
where

A ∈ R n×n , B ∈ R n×m , ξ i (t) ∈ R n is the state vector, u i (t) ∈ R m is the control input. Assumption 1: The pair (A, B) is controllable. Assumption 2:
The state of the leader as well as whose first derivative are uniformly bounded, i.e.,

ξ 0 ∈ W 1,∞ (R, R n ).
In this paper, we assume that MAS has an external supervisor which can measure the states of all agents and it can broadcast (send) a common scalar signal back to the group. A concrete scenario of such a MAS is a swarm of drones observed by the camera of a supervisor. Positions of all drones can be detected/estimated by the supervisor which however cannot realize a centralized control due to communication constraints. Nevertheless, a broadcast of a common signal to the MAS is allowable (e.g., asking all of them to boost or slow down the motion). Mathematically such an assumption can be formalized as follows.

Assumption 3: All followers can receive a common scalar signal u g (t) ∈ R, which might depend on the state of the whole MAS and can be utilized for the control purpose.

Notice that even for m = 1 we cannot just select u i = u g and design a purely centralized control protocol, since the obtained large-scale system is not controllable. To achieve consensus, it is necessary to use as well the communication graph and local interactions of the agents. Such a combination, i.e., a common centralized scalar signal and the distributed information of local agents, leads to a "quasi-decentralized" consensus protocol.

Our first goal is to develop a generalized homogeneous consensus control protocol for the considered MAS. By definition, this means that, given µ ∈ R, we need to design a supervisor's signal u g and agents' control laws u i = ũi (u g , ξ i , ξ j 1 , . . . , ξ j n i ),

where j ζ ∈ V : (i, j ζ ) ∈ E , ζ = 1, n i , i = 1, N such that for e = [(ξ 1 -ξ 0 ) , . . . , (ξ N -ξ 0 )
] and for the error equation

ė = f (e, ξ 0 , ξ0 ), (3) 
with f : R Nn × R n × R n → R Nn ,

one holds

• ∃ d -a linear dilation in R Nn such that the vector field e → f (e, 0, 0) is d-homogeneous of degree µ; • the error equation (3) is ISS with respect to q = (ξ 0 , ξ0 ). Notice that the asymptotic stability of the homogeneous error equation (3) with ξ 0 = ξ0 = 0 implies its finite-time stability for µ < 0 and nearly fixed-time stability for µ > 0.

Our second goal is to design a generalized homogeneous consensus control protocol such that the error equation (3) is globally uniformly finite-time stable provided that the upper estimate of ξ 0 W 1,∞ is known and the leader has the same model as other agents, i.e., in (1),

f 0 (t, ξ 0 ) = Aξ 0 (t) + Bu 0 (t). (4) 
Usually, such a property can be guaranteed only using a sliding mode control technique (see, e.g., [START_REF] Defoort | Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics[END_REF]), which may lead to a "chattering" during the transition phase (i.e., before reaching a consensus). Using the input u g we design a consensus control protocol in such a way that the sliding mode arises only at the consensus point (i.e., when e = 0). Since the supervisor is an external "agent" with respect to our MAS then it is hard to guarantee a stable communication channel for transmission of the signal u g in a real-life scenario. Our third goal is to analyze the stability and robustness of the control system in the case of a sampled (possibly aperiodic) transmission of the control signal u g .

IV. THE MOTIVATION AND BASIC IDEA TO THE HOMOGENEOUS CONSENSUS PROTOCOL

The conventional linear consensus protocol can only guarantee asymptotic consensus (see, e.g., [START_REF] Yu | Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[END_REF], [START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF], [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF]). This means consensus can be achieved as time goes to infinity. Such a long-term transient process may influence the control performance. However, the design of the consensus protocol with fast convergence rates may involve challenges and complexities. Recall (see Section I and II) that homogeneous systems can be finite-time stable or even fixed-time stable. This motivates us to find the approach to get some novel consensus protocol that can ensure the closed-loop consensus error equation (3) to be homogeneous of a desired degree. Then, the fast convergence could be performed by the MAS.

To demonstrate our basic idea, let us consider first the design of the well-known linear consensus control protocol [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF].

Lemma 3: Let Assumption 1, 2 hold. Let (X,Y ) ∈ R n×n × R m×n be a solution of the linear matrix inequality X 0, I N ⊗ (AX +XA )+ L ⊗BY +( L ⊗BY ) ≺ 0, [START_REF] Tsitsiklis | Problems in decentralized decision making and computation[END_REF] where

L =    -l 11 . . . -l 1N . . . . . . . . . -l N1 . . . -l NN    . (6) 
Let the linear consensus protocol be

u i = K ∑ N j=0 w i j (ξ j -ξ i ), i = 1, N (7) 
with K = Y X -1 . Then the error equation ( 3) is ISS with respect to q = (ξ 0 , ξ0 ).

Although the proof of the above lemma is straightforward, we still give the detailed proof in Appendix A since we will reuse it later for the homogeneous design.

Let us recall the basic idea of upgrading a linear control to a homogeneous one. The simplest scalar control system ẋ = u, x ∈ R, u ∈ R with the linear control u = -kx, k ∈ R + is globally asymptotically stable. If the control u is transformed to the homogeneous controller u = -k|x| 1+µ sign(x), then for µ = 0 we will have the original linear controller, for µ <0 the closed-loop system is finite-time stable, and for µ >0 is nearly fixed-time stable. Similarly, for a multi-input system

ẋ = Ax + Bu, x ∈ R n , u ∈ R m , A ∈ R n×n , B ∈ R n×m
it can be shown [START_REF] Wang | Generalized homogenization of linear controllers: Theory and experiment[END_REF] that the linear stabilization controller u = Kx, K ∈ R m×n can be transformed ("upgraded") to the homogeneous form

u = K 0 x + x µ+1 d (K -K 0 )d(-ln x d )x, K 0 ∈ R m×n (8)
such that the closed-loop multi-input system is finite-time stable for µ < 0 and nearly fixed-time stable for µ > 0, where d is a linear dilation in R n and • d is the canonical homogeneous norm. In this paper we generalize this upgrading approach to the consensus control of MAS.

V. SUPERVISOR-BASED HOMOGENEOUS CONSENSUS PROTOCOL

In this section, a generalized homogeneous consensus protocol is designed by upgrading the classical linear one. The main result shows that such an upgrade is feasible if there is a supervisor who monitors the MAS and can broadcast a scalar signal u g simultaneously to all followers. With this homogeneous control scheme, the ISS and the global finitetime stability of the consensus errors can be guaranteed by tuning the homogeneity degree.

Let the pair (G 0 ,Y 0 ) ∈ R n×n × R m×n be a solution of the following algebraic equations

AG 0 -G 0 A + BY 0 = A, G 0 B = 0, (9) 
such that the matrix G 0 -I n is invertible. Then the matrix G d = µG 0 + I n is anti-Hurwitz for any µ ≤ 1/n with

A 0 G d = (µI n + G d )A 0 , G d B = B, (10) 
matrix A 0 = A + BK 0 is nilpotent, where

K 0 = Y 0 (G 0 -I n ) -1 . ( 11 
)
Remark 1: According to [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF], [START_REF] Zimenko | Robust feedback stabilization of linear MIMO systems using generalized homogenization[END_REF], if Assumption 1 is fulfilled, i.e., the pair (A, B) is controllable, then (A 0 , B) is controllable, and such a solution of (9) always exists. In addition, K 0 = 0 if matrix A is already nilpotent.

Theorem 1: Let Assumption 1, 2, 3 hold. Let (X,Y ) ∈ R n×n × R m×n be a solution of the linear matrix inequality

I N ⊗ (A 0 X + XA 0 ) + L ⊗ BY + ( L ⊗ BY ) ≺ 0, G d X + XG d 0, X 0, (12) 
where A 0 = A + BK 0 , K 0 is given in [START_REF] Yu | Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[END_REF], L is defined in [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF], G d = µG 0 +I n is anti-Hurwitz with G 0 satisfying (9), µ ≤ 1/n. Let e d be the canonical homogeneous norm induced by the norm e P = √ e Pe, P = I N ⊗ X -1 . Then the error equation (3) with u g = e d, K = Y X -1 and

u i = K 0 ξ i + u µ+1 g Kd(-ln u g ) ∑ N j=0 w i j (ξ j -ξ i ), i = 1, N (13)
has the following properties:

• d-homogeneous of degree µ ∈ [-1, 1/n] if ξ 0 = ξ0 = 0, d(s) = exp(sG d) = I N ⊗ d(s) and d(s) = exp(sG d );
• globally asymptotically stable for ξ 0 = ξ0 = 0;

• ISS with respect to q = (ξ 0 , ξ0 ) for µ ∈ (-1, 1/n];

• globally uniformly finite-time stable if µ = -1, f 0 satisfies (4), A 0 ξ 0 -ξ0 L ∞ ≤ U max , and

U max < U 0 := λ min (Π 1 ) 2 √ Nnλ max (X -1 ) , (14) 
with

Π 1 = -P 1 2 (I N ⊗ (A 0 X +XA 0 )+ L ⊗BY +( L ⊗BY ) )P 1 2 .
The settling time is estimated as

T (e(0)) ≤ e(0) dλ max (Π 2 ) 2(U 0 -U max ) √ Nnλ max (X -1 ) , (15) 
where

Π 2 = P 1 2 (I N ⊗(G d X +XG d ))P 1 2
. The detailed proof is provided in Appendix B. The following corollary follows from the asymptotic stability and d-homogeneity of the error equation (3) for ξ 0 = ξ0 =0.

Corollary 1: Let all conditions of Theorem 1 be fulfilled. Let ξ 0 = ξ0 = 0. Then the error equation ( 3) is

• globally uniformly finite-time stable for µ < 0;

• globally uniformly asymptotically stable for µ = 0;

• globally uniformly nearly fixed-time stable for µ > 0.

It is worth stressing that for µ =-1 the control protocol ( 13) is a high-order sliding mode algorithm having a discontinuity at e = 0 (i.e., when the consensus is reached). The use of the input u g in the consensus protocol allows us to avoid large (infinite) gains in the transient phase (before reaching consensus). This reduces overshoots [START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF] and numerical chatterings which are typical for sliding mode algorithms [START_REF] Acary | Implicit euler numerical scheme and chattering-free implementation of sliding mode systems[END_REF]. Moreover, for µ =-1 the control inputs of all controlled agents are bounded.

Corollary 2:

Let u = [u 1 , . . . , u N ] , if µ = -1 then we have u 2 ≤ K 0 2 ξ 2 + λ max (P -1/2 ) K KP -1/2 , ( 16 
)
where By the definition of the canonical homogeneous norm we have e d (ln e d)P d(ln e d)e = 1. Hence, the inequality ( 16) can be obtained.

Remark 2: If K 0 = 0 (i.e., matrix A is nilpotent) and µ = -1 then u is globally uniformly bounded (see the formula ( 16)).

In some cases, a MAS is already regulated by some linear control protocol. The following corollary presents an algorithm for its upgrading to a locally homogeneous one.

Corollary 3: Let all conditions of Theorem 1 be fulfilled. Then the error equation ( 3) with u g = e d, K = Y X -1 and

u i = K 0 ξ i + K ∑ N j=0 w i j (ξ j -ξ i ) u g > 1, u µ+1 g Kd(-ln u g ) ∑ N j=0 w i j (ξ j -ξ i ) u g ≤ 1, (17) 
i = 1, N, has the following properties:

• d-homogeneous of degree µ ∈ [-1, 1/n] for u g ≤ 1;
• globally asymptotically stable for ξ 0 = ξ0 = 0; • ISS with respect to q = (ξ 0 , ξ0 ) for µ ∈ (-1, 1/n]; • globally uniformly finite-time stable if µ =-1, f 0 satisfies (4), A 0 ξ 0 -ξ0 L ∞ ≤U max , where U max is given in [START_REF] Kawski | Families of dilations and asymptotic stability[END_REF].

Proof: With the control ( 17), the closed-loop error equation ė= f (e, ξ 0 , ξ0 ) coincides with a d-homogeneous system of degree µ = 0 (linear system) for u g ≥ 1 and a d-homogeneous system of degree µ ∈ [-1, 1/n] for u g ≤ 1.

Since the mapping u g → d(ln u g ) is uniformly continuous, and for u g = 1 we have e d = e Pe = 1 and Since the function V is locally Lipschitz continuous on R n \{0} then combining the constructions of Lemma 3 and Theorem 1 we can complete the proof. The possible fragility of the proposed scheme is related to the use of a supervisor, which is considered as an external object with respect to MAS. The existence of a robust communication channel for broadcasting of the supervisor's signal u g seems to be a rather restrictive assumption in some cases. That is why it is important to investigate the robustness of the proposed control scheme with respect to losses and/or aperiodic sampling of the supervisor's control signal u g .

u µ+1 g Kd(-ln u g ) ∑ N j=0 w i j (ξ j -ξ i ) = K ∑ N j=0 w i j (ξ j -ξ i ),
Corollary 4: Let t 0 = 0 < t 1 < t 2 . . . be an arbitrary sequence of time instances such that t k → +∞ as k → +∞. Let the control protocol be defined by Theorem 1 and

u g (t) = e(t k ) d, t ∈ [t k ,t k+1 ).

Then the error equation (3) is

• globally asymptotically stable for ξ 0 = ξ0 = 0; • ISS with respect to q = (ξ 0 , ξ0 ) for µ ∈ [-1, 1/n].

Proof: For t ∈ [t k ,t k+1 ), let us consider the function e(t) → V k (e(t)) defined as follows

V k (e(t)) = e (t) d (-ln e(t k ) d)P d(-ln e(t k ) d)e(t).
Notice that V k (e(t)) = 1 for t : e(t) d = e(t k ) d. The time derivative of V k along error equation (3) with ξ 0 = ξ0 = 0 satisfies the inequality Vk (e(t)) ≤ -λ min (Π 1 ) e(t k )

µ d V k , for t ∈ [t k ,t k+1
). The latter means V k (e(t k+1 )) < 1 and e(t k+1 ) d < e(t k ) d. Let us show that the monotone sequence e(t k ) d converges to zero as k → +∞. Suppose the contrary, i.e., there exists q * > 0 such that e(t k ) d → q * as k → +∞. Let us consider the function e → V * (e) defined as V * (e) = e d (ln q * )P d(ln q * )e.

Notice that V * (e(t k )) → 1 as e(t k ) d → q * . Denoting δ i = u i - K 0 ξ i -q µ+1 * Kd(-ln q * ) ∑ N j=0 w i j (ξ j -ξ i ), i = 1, N we derive V * ≤ -λ min (Π 1 )q µ * V * + 2 √ NV * λ max (B X -1 B) q * max i=1,N δ i (t) 2 .
Since sup t∈[t k ,t k+1 ) δ i (t) 2 converges to zero as k → +∞ and V * (e(t k )) → 1 as k → +∞ then there exists k * ≥ 1 and c * > 0 such that V * (e(t)) ≤ -c * for all t ≥ t k * . The latter means that V * (e(t)) → 0 as t → +∞. Based on the obtained estimates, the ISS with respect to q = (ξ 0 , ξ0 ) can be proven using the ISS Lyapunov function technique [START_REF] Sontag | New characterizations of input-to-state stability[END_REF]. Remark 3: Corollary 4 has no restriction (like a dwell time) to the sampling period t k+1t k . So, the consensus error with the presented consensus protocol would remain asymptotically stable and robust in the case of sampled broadcasting of the supervisor's signal. Even in the worst case, when the signal u g is lost (i.e., u g = const for all t ≥ t * , t * is the moment u g is lost), the system will be simply governed by a linear consensus protocol. In other words, the system will not crash if the supervisor's signal will be damaged, sampled, or completely lost. Therefore, the presence of the supervisor does not increase the fragility of the MAS in comparison with the case of the classical linear consensus protocol.

VI. SIMULATION RESULTS

We consider the MAS (2) with 4 agents regulated by the locally homogeneous consensus protocol [START_REF] Zubov | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF]. The communication topology, as depicted in Fig. 1, is fixed. The agents are labeled by i = 0, 3, where the agent 0 is the leader and the agent 1, 3 are followers. Here we let the dynamic of the leader be (4) and the followers be (2). The dynamic system matrix A and B are randomly chosen provided the pair (A, B) is controllable:

A =   11 -11 5 11 -11 4 1 2 0   , B =   1 1 0 1 0 2   . Let u 0 = ϒξ 0 + 0.2 • [sin(25t) cos(25t)] with ϒ = 0 16 -1 -16 1 -4 .
According to equation ( 9) and ( 11), we obtain K 0 = 3.3134 -3.7867 0.2622 -3.4293 2.3477 -1.1159 .

Let µ = -1, we have

G d =  
1.0000 1.0366 -0.5183 0.0000 1.7210 -0.3605 0.0000 -0.5580 1.2790   .

Let the agent state vector and the consensus error vector be ξ = [ξ 0 , ξ 1 , ξ 2 , ξ 3 ] and e = [e 1 , e 2 , e 3 ] , respectively. Let e (ς ) i denote the ς th , ς = 1, 3 component of e i . Let w i j = 1, (i, j) ∈ E , then we have

L =   -1 0 0 0 -1 0 1 1 -2   .
We obtain 

X =   2 
G d = I 3 ⊗ G d .
The trajectory of A 0 ξ 0 -ξ0 is as Fig. 2, which is bounded by U 0 = 0.7, where U 0 is obtained according to [START_REF] Kawski | Families of dilations and asymptotic stability[END_REF]. Let the initial states of the considered MAS be ξ (0) = [0, 0, 0, 0.95, 1.00, 0.75, 1.25, 0.65, 1.20, 0.70, 0.73, 1.15] . The implicit Euler method is employed with step h = 0.001s to solve the closed-loop error equation ( 3), [START_REF] Zubov | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF] on MATLAB. Meanwhile, we employ the classical linear consensus protocol [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF] as the reference. Comparison simulation results on e (ς ) i , ς = 1, 3 are presented in Fig. 345. In the case of the linear consensus protocol, the consensus error asymptotically converges to a zone located in the neighborhood of the origin, while with the homogeneous control protocol, the error converges to zero in a finite time. The evolution trajectory of u g is as Fig. 6, which implies the locally homogeneous control protocol [START_REF] Zubov | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF] switches from the linear case to the homogeneous case at t ≈ 0.535s. The evolution trajectories of the norm of the control signals are depicted in Fig. 7. 

i for i = 1, 3 with (a) the linear control protocol (7); (b) the locally homogeneous control protocol [START_REF] Zubov | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF].

Based on the obtained simulation results, we propose to further evaluate the energy consumption and the control performance improvement using the L 2 -norm and the L ∞norm of the linear/homogeneous consensus errors and the linear/homogeneous control inputs. They are computed numerically for

x(t) = [x 1 (t), . . . , x Γ (t)] ∈ R Γ , Γ ∈ N + where t ∈ (t a ,t b ), let h = t i -t i-1 , i = 1, M, t 0 = t a , t M = t b , by the following formulas x(t) L 2 (t a ,t b ) ≈ h∑ M i=1 x (t i )x(t i ), x(t) L ∞ (t a ,t b ) ≈ max{|x γ (t i )|, γ = 1, Γ, i = 1, M}.
Calculated results are presented in Tables I-III. Firstly, from 0s to 4s, the L 2 -norm of the errors for MAS with homogeneous consensus protocol is about 20.20% lower than for MAS with linear consensus protocol, and this proportion becomes even more pronounced in the time interval of 1s to 4s, reaching 98.62%. Furthermore, the L ∞ -norm of homogeneous errors is about 85 times less than the linear from 1s to 4s, this is mainly attributed to the robustness property of the homogeneous control respect to the bounded perturbation. However, it is clear that to guarantee such an improvement the homogeneous consensus protocol consumes about 20% more energy, and needs about 25% higher magnitude in the steady state.

Therefore, we conclude that even in the presence of bounded uncertainties in leader dynamics, the MAS regulated by the locally homogeneous control protocol [START_REF] Zubov | On systems of ordinary differential equations with generalized homogenous right-hand sides[END_REF] with µ = -1 achieves finite-time leader-following consensus. This level of consensus cannot be attained through linear control methods alone. However, the implementation of the proposed homogeneous control protocol comes at the cost of increased energy consumption.

VII. CONCLUSION

A leader-following consensus issue for MAS with agents being general linear plants is addressed in this paper. A novel nonlinear control protocol is proposed by upgrading the classical linear consensus control protocol with the concept of generalized homogeneity. With uncertainties in the dynamic of the leader, ISS and finite-time stability of error equations are guaranteed by non-zero homogeneity degrees. By comparing with the linear consensus protocol, convergence performance is considerably improved although more energy is consumed. This novel control protocol has potential application prospects in various distributed control systems, such as multi-robot systems and distributed power generations. The utilization of this protocol is efficient in increasing the convergence rates and robustness of these systems.

Select e d as the Lyapunov candidate, whose derivative along equation ( 21) is where Π 0 = I N ⊗ (A 0 X +XA 0 )+ L ⊗BY +( L ⊗BY ) . Since the matrix G d and the pair (X,Y ) satisfy [START_REF] Ni | Leader-following consensus of multi-agent systems under fixed and switching topologies[END_REF], then the error equation ( 21) is globally asymptotically stable. Moreover, according to Lemma 1, for µ ∈ (-1, 1/n], the error equation ( 20) is ISS with respect to q = (ξ 0 , ξ0 ). If ξ0 = f 0 = Aξ 0 + Bu 0 , then A 0 ξ 0 -ξ0 = B(K 0 ξ 0u 0 ) and d(s)(A 0 ξ 0 -ξ0 ) = exp(s)(A 0 ξ 0 -ξ0 ), s ∈ R.

In this case, the vector field f (e, ξ 0 , ξ0 ) is d-homogeneous with respect to e → d(s)e, ξ 0 → exp(s(µ + 1))ξ 0 , ξ0 → exp(s(µ + .

V 2 V 2 = (1 N ⊗ (A 0 ξ 0 -ξ0 )) P(1 N ⊗ (A 0 ξ 0 -ξ0 )), V 1 V 2 ≤ V 2 V 2 ≤ U max
Then, the error equation ( 20) is globally uniformly finite-time stable with the settling-time function estimated by [START_REF] Bhat | Geometric homogeneity with applications to finite-time stability[END_REF].

  ξ = [ξ 1 , . . . , ξ N ] , K = L ⊗ K. Proof: Recall (13), for µ = -1, we have u = K0 ξ + K d(ln e d)e, with K0 = I N ⊗ K 0 . Then, u 2 ≤ K0 ξ 2 + K d(ln e d)e 2 ≤ K 0 2 ξ 2 + e d (ln e d) K K d(ln e d)e ≤ K 0 2 ξ 2 + λ max (P -1/2 ) K KP -1/2 × e d (ln e d)P d(ln e d)e.

  then the locally homogeneous control (17) is continuous. Let us consider the candidate Lyapunov function e → V (e) as V (e) = e Pe e Pe > 1, e d e Pe ≤ 1.

Fig. 1 .

 1 Fig. 1. The topology of the MAS.

Fig. 2 .

 2 Fig. 2. Evolution of A 0 ξ 0 -ξ0 .

Fig. 3 .

 3 Fig. 3. Evolution of e

Fig. 4 .

 4 Fig. 4. Evolution of e (2) i for i = 1, 3 with (a) the linear control protocol (7); (b) the locally homogeneous control protocol (17).

Fig. 5 .

 5 Fig. 5. Evolution of e (3) i for i = 1, 3 with (a) the linear control protocol (7); (b) the locally homogeneous control protocol (17).

  Fig.6. Evolution of u g .

e

  de d (ln e d)P d(ln e d) ė e d (-ln e d)PG d d(-ln e d)e . (22) According to (10), we have A 0 d(s) = exp(µs)d(s)A 0 and d(s)B = exp(s)B, equation (22) becomes d e d dt = e µ+1 d e d (ln e d)PΠ 0 P d(ln e d)e e d (-ln e d)P(I N ⊗(G d X+XG d ))P d(-ln e d)e ,

1 2 Π 1 P 1 2 1 2 1 2 , V 1 = P 1 2 1 2 ( 1 N

 11111111 )) ξ0 for s ∈ R. By letting µ = -1 we derived e d dt = -e d (ln e d)P d(ln e d)e+2V 1 V 2 e d (ln e d)(I N ⊗(G d X +XG d ))P d(ln e d)e and V 2 = P ⊗ (A 0 ξ 0 -ξ0 )). Since V 1 V 1 = e d (-ln e d)P d(ln e d)e = 1,

1 2 Π 2 P 1 2 2 √

 1212 Nnλ max (X -1 ), then d e d dt ≤ -λ min (Π 1 )-2U max √ Nnλ max (X -1 ) e d (ln e d)P d(ln e d)e < 0.Hence, for any A 0 ξ 0 -ξ0 L ∞ ≤ U max with (14) satisfied, the canonical homogeneous norm e d is a Lyapunov function for the error equation[START_REF] Polyakov | Generalized homogeneity in systems and control[END_REF] andd e d dt ≤ -(U 0 -U max ) Nnλ max (X -1 ) λ max (Π 2 )

TABLE I THE

 I L 2 -NORM AND L ∞ -NORM OF e 1 AND u 1 .

		e 1 L 2 (0,4)	e 1 L 2 (1,4)	e 1 L ∞ (1,4)	u 1 L 2 (0,4)	u 1 L ∞ (1,4)
	lin	0.6313	0.0987	0.1373	1.5694	0.2753
	homo	0.5085	0.0015	0.0019	2.0031	0.4097

TABLE II THE

 II L 2 -NORM AND L ∞ -NORM OF e 2 AND u 2 .

		e 2 L 2 (0,4)	e 2 L 2 (1,4)	e 2 L ∞ (1,4)	u 2 L 2 (0,4)	u 2 L ∞ (1,4)
	lin	0.7469	0.1108	0.1639	2.3822	0.3070
	homo	0.6059	0.0015	0.0019	2.8165	0.4101

TABLE III THE

 III L 2 -NORM AND L ∞ -NORM OF e 3 AND u 3 .e 3 L 2 (0,4) e 3 L 2 (1,4) e 3 L ∞ (1,4) u 3 L 2 (0,4) u 3 L ∞ (1,4)

	lin	1.0013	0.1670	0.2684	2.1373	0.4495
	homo	0.7845	0.0022	0.0029	2.6060	0.4857
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APPENDIX

A. Proof of Lemma 3 Proof: Since e i = ξ iξ 0 , i = 1, N, then we have ėi = Ae i + Bu i + Aξ 0 -ξ0 .

Combining [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF], the error equation becomes ėi = Ae i -BK ∑ N j=1 l i j e j + Aξ 0 -ξ0 , which can be compactly written as

where L is defined in [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. At the same time we have

Let us consider the Lyapunov function

The time derivative of V (e) along the trajectory of the error equation ( 19) is

V (e) = e PΠPe,

Since the pair (X,Y ) satisfies ( 5), then error equation ( 19) is asymptotically stable, and we conclude that the error equation ( 18) is ISS with respect to q = (ξ 0 , ξ0 ).

B. Proof of Theorem 1

Proof:

N j=1 l i j e j + A 0 ξ 0 -ξ0 , The latter can be compactly written as