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On Generalized Homogeneous Leader-following
Consensus Control for Multi-agent Systems

Min Li, Student Member, IEEE , Andrey Polyakov, and Gang Zheng, Senior Member, IEEE

Abstract— In this paper, the leader-following consensus
problem for multi-agent systems is considered. Each agent
is assumed to be modeled by a linear multi-input system. A
novel (generalized homogeneous) consensus control pro-
tocol is designed under the assumption that there are some
uncertainties in the dynamic of the leader. Some conditions
(LMIs) are derived to select the control parameters in order
to ensure the input-to-state stability and global finite-time
stability of the consensus errors with desired homogeneity
degrees. Some simulations are performed to illustrate the
obtained results.

Index Terms— Generalized homogeneity, consensus
control, finite-time stability, input-to-state stability, multi-
agent system.

I. INTRODUCTION

THE multi-agent system (MAS) has been a hot research
object because multiple agents perform better working

efficiency, reduced sensitivity to possible failures and in-
creased flexibility during task execution. The research on
MAS with coordinated control protocols has wide potential
applications in many industrial scenarios, such as the control
and optimization of unmanned aerial systems [1], network
security [2] and smart grids [3].

Consensus is one of the fundamental problems in MAS
applications, and it requires the state of each individual agent
to reach an agreement with the regulation of coordinated
control protocols. The research on consensus issues can be
traced back to the 1980s [4]–[7], and it becomes systematized
until the concept of the solvability of consensus problems
and consensus protocols are introduced by Olfati-Saber and
Murray [8], [9]. After that, recent two decades have witnessed
the launch of many results (e.g., [10]–[13]).

Homogeneity is a dilation symmetry. All linear and a
number of nonlinear models for mathematical dynamics are
homogeneous in a certain sense. Homogeneous systems have
some useful properties which drive their wide applications in
system analysis, regulation, and estimation (e.g., [14]–[16]).
To be specific, the local properties of homogeneous systems,
such as local stability, can always be expanded into a global
sense [14], [17], [18]. In addition, the homogeneous system is
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robust with respect to a large class of perturbations [19] and
time delays [20]. Moreover, the convergence rate of the ho-
mogeneous system is defined by its homogeneity degree, i.e.,
by adjusting the homogeneity degree, an asymptotic stable ho-
mogeneous system could achieve finite-time/asymptotic/fixed-
time convergence [15], [21], [22]. For learning more details
about the mentioned properties, we recommend a recent survey
[23] and the book [20] to the reader.

Given the merits of the homogeneous system, homogeneous
control strategies are introduced to consensus issues. The
pioneering work is carried out by Wang and Hong [24],
where a homogeneous consensus protocol, adapting the well-
known controller of Bhat and Bernstein [15], is designed for
consensus under an undirected graph. For directed topolo-
gies, homogeneous consensus protocols are studied for MAS
with and without velocity measurements [25], [26]. The case
of switching topologies is studied in [27], [28] for leader-
following consensus. The agent model of MAS in the above-
mentioned papers is double integrators, and consensus analysis
is carried out with weighted homogeneity. Homogeneous con-
sensus control protocols for MAS with high-order integrator
dynamics are proposed, for example, in [29], [30]. The main
difficulty of their applicability is the absence of an effi-
cient/simple procedure for controller tuning. The mentioned
algorithms (as well as most of the algorithms of homogeneous
stabilization, see e.g., [15], [31]) just guarantee the existence of
an appropriate control provided that the homogeneity degree is
close to zero (i.e., if a homogeneous control is close to a linear
control). In this case, it is hard to guarantee any improvement
compared with the linear control.

In this paper, we propose to develop a generalized ho-
mogeneous control protocol for MAS, where each agent is
modeled as a linear multi-input system. This agent dynamic is
rather general. The actively researched MAS with linear agent
dynamics (e.g., first-order system [32]–[36], second-order sys-
tem [11], [37]–[40] and high-order integrators [41]–[43]) are
special cases of this model. In addition, the multi-input agent
dynamic gives a considerable possibility for the experimental
implementation of the MAS, since a large number of realistic
objects can be modeled as multi-input systems, such as the
well-known unicycle robot model [44] and the car-like robot
model [45].

The generalized homogeneous consensus protocol is pro-
posed by following the idea of an “upgrade” of the classical
consensus protocol by Olfati-Saber and Murray [8], [9] to a
homogeneous one [20, Chapter 9], [46] in such a way that
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the control quality such as the convergence rates and the
robustness can be improved. We show that such an upgrade
is possible under the assumption that MAS has a supervisor,
which can observe the whole system and broadcast a small
amount of information to all followers simultaneously. The
supervisor cannot be utilized as a centralized controller be-
cause its communication ability is assumed to be very limited
and possibly sampled in time. A nonlinear consensus protocol
is designed for MAS in such a way that the consensus error
equation is generalized homogeneous of a desired degree. Un-
der the assumption that there exist some bounded uncertainties
in the dynamic of the leader, input-to-state stability (ISS) and
uniform global finite-time stability are guaranteed by a proper
selection of homogeneity degrees and control parameters. The
control parameters are specified by Linear Matrix Inequalities
(LMIs), which can be easily solved in MATLAB. Finally,
simulations are performed to compare the classical linear and
the homogeneous consensus protocol, and we can see the
convergence performance is considerably improved although
the homogeneous control protocol consumes more energy.

The rest of the paper is organized as follows. Section II gives
some basic knowledge about graph theory, as well the defini-
tion of stabilities and generalized homogeneity. The problem
to be studied is formulated in Section III. The motivation and
the basic idea for upgrading the classical linear consensus
protocol to a homogeneous one are shown in Section IV. The
supervisor-based homogeneous control protocol is proposed
and convergence results are obtained in Section V. Finally, in
Section VI, we use some simulations to illustrate the effec-
tiveness of obtained theories and compare the control energy
consumption with the classical linear consensus protocol.

Notations:

• Numbers and Sets: R is the set of real numbers; R+ is the
set of positive real numbers; R≥0 = {0}∪R+; N+ is the
set of positive integers; exp(x) = ex, where e represents
the Euler number; a series of positive integers 1, . . . ,N is
denoted as 1,N.

• Vectors and Matrices: let n∈N+, Rn and Rn×n denote the
n×1 real vector and the n×n real matrix, respectively;
IN is the N×N identity matrix; diag{σi}N

i=1 is the N×N
diagonal matrix with the diagonal entry σi ∈ R; 1N is
the N-dimensional vector whose elements are all ones;
let P ∈ Rn×n, λmax(P) and λmin(P) denote the maximum
and minimum eigenvalue of P, respectively; P � 0 (≺
0) means that P is symmetric and positive (negative)
definite; P is anti-Hurwitz if −P is a Hurwitz matrix;
⊗ represents the Kronecker product.

• Spaces and Norms: let x = [x1, . . . ,xn]
> ∈Rn, xi ∈R, i =

1,n, ‖x‖ is a norm in Rn; ‖x‖2 =
√

x>x; ‖x‖P =
√

x>Px;
‖x‖∞ = maxi=1,n |xi|; let function α(t) : R≥0 7→ Rn, α ∈
L2 implies that it is Lebesgue integrable, corresponding
norm is defined as ‖α‖L2(ta,tb) :=

√∫ tb
ta ‖α(t)‖2

2dt; α ∈
L∞ implies that it is a Lebesgue measurable bounded
function with ‖α‖L∞(ta,tb) := esssupt∈(ta,tb) ‖α(t)‖∞; α ∈
W 1,∞ implies that its (weak) derivative up to order 1 has a
finite L∞-norm, and ‖α‖W 1,∞ := maxi=0,1 ‖α(i)‖L∞ , where
α(i) is function α(t)’s derivative of order i.

• Functions: C(X ,Y ) is the class of continuous functions:
X 7→ Y , where X , Y are the subset of normed vector
spaces; Cp(X ,Y ), p ∈ N+ denotes the class of functions
which are differentiable at least up to order p; the function
γ(t) : R≥0 7→ R≥0 is said to be of class K if it is
continuous strictly increasing with γ(0) = 0; the function
β (ρ, t) : R≥0×R≥0 7→R≥0 is said to be of class K L if
for each fixed t the function ρ 7→ β (ρ, t) is of class K
and for each fixed ρ the function t 7→ β (ρ, t) is strictly
decreasing to zero as t→+∞.

II. PRELIMINARIES

A. Graph Theory
Let G = {V ,E ,W } denote a fixed directed graph, where

V = {1, . . . ,N} is the set of nodes (agents); E = {(i, j)|i, j ∈
V } is the edge set, (i, j) ∈ E if i can receive the information
from j; ni denotes the number of incoming edges of node i; W
is the weighted adjacency matrix with elements wi j, i, j ∈ V ,
wi j > 0 if (i, j) ∈ E , and wi j = 0 otherwise. In this paper,
the self-loop situation is excluded, i.e., wii = 0. The element
li j, i, j ∈ V of the Laplacian Matrix L associated to the
graph G is defined as: li j = −wi j if i 6= j, and li j = ∑

N
k=1 wik

otherwise, which implies ∑
N
k=1 lik = 0. A directed path from

node i to node j in the graph G is a sequence of nodes i1, is,
where i1 = i, is = j and (iκ+1, iκ) ∈ E , κ = 1,s−1. The root
node (the leader) iL of G characterizes itself from the other
nodes since it has at least one directed path to each of the rest
node while (iL, j) /∈ E for all j ∈ V .

B. Stability Notation
Definition 1: The system ẋ = f (x), t ≥ 0, x ∈Rn, x(0) = x0

is said to be globally uniformly finite-time stable [47] if it
is Lyapunov stable and for all x0 ∈ Rn, there exists a locally
bounded settling-time function T (x0) : Rn 7→ R≥0, such that
‖x(t)‖= 0 for all t ≥ T (x0).

Definition 2: The system ẋ = f (x,q), t ≥ 0, x∈Rn, q∈Rω ,
x(0) = x0 is said to be input-to-state stable (ISS) [48] if there
exist β ∈K L and γ ∈K such that

‖x(t)‖ ≤ β (‖x0‖, t)+ γ
(
‖q‖L∞(0,t)

)
,

for any x0 ∈ Rn and any q ∈ L∞(R,Rω).
Definition 3: The system ẋ = f (x), t ≥ 0, x ∈ Rn, x(0) =

x0 is said to be globally uniformly nearly fixed-time stable
[23] if it is Lyapunov stable and for all ϑ > 0, there exists
T (ϑ)> 0 such that ‖x(t)‖< ϑ for all t ≥ T (ϑ), where T (ϑ)
is independent of x0.

C. Dilation in Rn

Homogeneity is an invariance (symmetry) of an object with
respect to a class of transformations called dilations. Choosing
a proper dilation group d(s), s ∈ R is an essential part of the
homogeneity-based analysis, d(s) is supposed to satisfy the
limit property: lims→±∞ ‖d(s)x‖ = exp(±∞) for x ∈ Rn \{0}.
A dilation d is monotone if the function s 7→ ‖d(s)x‖ is strictly
increasing for x∈Rn \{0} [20]. The examples of dilations are
given as follows:
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• Standard dilation (Leonhard Euler, 18th century): d(s) =
exp(s)I, s ∈ R;
• Weighted dilation [17]: Given ri > 0, i = 1,n, d(s) =

diag{exp(sri)}, s ∈ R.
• Linear dilation [20]: d(s) = exp(sGd), s ∈ R, Gd ∈ Rn×n

is an anti-Hurwitz matrix known as the generator of dilation.
• Geometric dilation [49], [50]: a flow generated by an

unstable C1 vector field.

D. Canonical Homogeneous Norm

Definition 4: The functional ‖x‖d : Rn 7→ R≥0 defined as
‖0‖d=0,

‖x‖d=exp(sx),where sx ∈ R : ‖d(−sx)x‖=1,x ∈ Rn \{0}

is called the canonical homogeneous norm in Rn, where d is
a linear monotone dilation.

The canonical homogeneous norm has the following prop-
erties [20]:
• ‖d(s)x‖d = exp(s)‖x‖d, for x ∈ Rn and s ∈ R;
• ‖x‖d = ‖− x‖d, ‖x‖= 1⇔‖x‖d = 1;
• ‖x‖d is locally Lipschitz continuous on Rn\{0};
• if ‖ · ‖ ∈C1(Rn\{0},R+), then ‖ · ‖d ∈C1(Rn\{0},R+);
• if ‖x‖= ‖x‖P, where P satisfies

P� 0, PGd +G>d P� 0,

then the linear dilation d(s)=exp(sGd) is monotone and

∂‖x‖d
∂x = ‖x‖dx>d>(− ln‖x‖d)Pd(− ln‖x‖d)

x>d>(− ln‖x‖d)PGdd(− ln‖x‖d)x
, x∈Rn\{0}.

E. Homogeneous System

Definition 5: A vector field f : Rn 7→ Rn (resp. a function
h : Rn 7→ R) is said to be d-homogeneous if there exists a
µ ∈ R such that

f (d(s)x) = exp(µs)d(s) f (x), s ∈ R, x ∈ Rn

(resp. h(d(s)x) = exp(µs)h(x), s ∈ R, x ∈ Rn),

where d is a dilation and the scalar µ is known as the
homogeneous degree of f (resp. of h).

The following result is an adaption of [19], [31] to the case
of linear dilation and can be found in [20].

Lemma 1: Assume a continuous vector field f̃ : Rn+ω 7→
Rn+ω takes the form of

f̃ (x,q) =
(

f (x,q)
0

)
, x ∈ Rn, q ∈ Rω

and d-homogeneous of a degree µ with respect to a dilation
d =

(
dx 0
0 dq

)
in Rn+ω . If the system ẋ = f (x,0) is asymptoti-

cally stable at the origin, then the system ẋ = f (x,q) is ISS.
The latter lemma shows that the robustness of a homo-

geneous perturbed system is equivalent to the asymptotic
stability of the unperturbed system. This essentially simplifies
the robustness analysis of homogeneous systems.

Lemma 2: Let f be a continuous d-homogeneous vector
field of degree µ ∈ R. The system ẋ = f (x) is globally
asymptotically stable if and only if there exists a positive

definite d-homogeneous Lyapunov function V : Rn 7→ [0,+∞)
of degree 1 such that

V̇ (x)≤−ρV 1+µ(x), ρ > 0.
The latter lemma is a straightforward corollary of the Zubov-
Rosier Theorem [17], [51]. It immediately implies that any
asymptotically stable homogeneous system ẋ = f (x) is
• globally uniformly finite-time stable for µ < 0 with time

estimate T (x0)≤ −1
ρµ

V−µ(x0);
• globally uniformly asymptotically stable for µ = 0;
• globally uniformly nearly fixed-time stable for µ > 0,

T (ϑ)= 1
ρµ

ϑ−µ , ϑ > 0.

III. PROBLEM FORMULATION

Consider a MAS consisting of N + 1 agents, whose com-
munication topology is described by a fixed digraph G =
{V ,E ,W }, where the leader is represented by agent 0, and
the rest agents labeled by 1,N are followers. The dynamic of
the leader is an ordinary differential equation (ODE):

ξ̇0(t) = f0(t,ξ0), f0 ∈C(R×Rn,Rn) (1)

and the dynamics of the followers are

ξ̇i(t) = Aξi(t)+Bui(t), i = 1,N (2)

where A ∈ Rn×n, B ∈ Rn×m, ξi(t) ∈ Rn is the state vector,
ui(t) ∈ Rm is the control input.

Assumption 1: The pair (A,B) is controllable.
Assumption 2: The state of the leader as well as whose first

derivative are uniformly bounded, i.e., ξ0 ∈W 1,∞(R,Rn).
In this paper, we assume that MAS has an external super-

visor which can measure the states of all agents and it can
broadcast (send) a common scalar signal back to the group.
A concrete scenario of such a MAS is a swarm of drones
observed by the camera of a supervisor. Positions of all drones
can be detected/estimated by the supervisor which however
cannot realize a centralized control due to communication
constraints. Nevertheless, a broadcast of a common signal to
the MAS is allowable (e.g., asking all of them to boost or slow
down the motion). Mathematically such an assumption can be
formalized as follows.

Assumption 3: All followers can receive a common scalar
signal ug(t)∈R, which might depend on the state of the whole
MAS and can be utilized for the control purpose.

Notice that even for m = 1 we cannot just select ui = ug
and design a purely centralized control protocol, since the
obtained large-scale system is not controllable. To achieve
consensus, it is necessary to use as well the communication
graph and local interactions of the agents. Such a combination,
i.e., a common centralized scalar signal and the distributed
information of local agents, leads to a “quasi-decentralized”
consensus protocol.

Our first goal is to develop a generalized homogeneous con-
sensus control protocol for the considered MAS. By definition,
this means that, given µ ∈R, we need to design a supervisor’s
signal ug and agents’ control laws ui = ũi(ug,ξi,ξ j1 , . . . ,ξ jni

),
where jζ ∈ V : (i, jζ ) ∈ E , ζ = 1,ni, i = 1,N such that for
e = [(ξ1−ξ0)

>, . . . ,(ξN−ξ0)
>]> and for the error equation

ė = f (e,ξ0, ξ̇0), (3)
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with f : RNn×Rn×Rn 7→ RNn, one holds
• ∃d̃ – a linear dilation in RNn such that the vector field

e 7→ f (e,0,0) is d̃-homogeneous of degree µ;
• the error equation (3) is ISS with respect to q = (ξ0, ξ̇0).
Notice that the asymptotic stability of the homogeneous

error equation (3) with ξ0 = ξ̇0 = 0 implies its finite-time
stability for µ < 0 and nearly fixed-time stability for µ > 0.

Our second goal is to design a generalized homogeneous
consensus control protocol such that the error equation (3) is
globally uniformly finite-time stable provided that the upper
estimate of ‖ξ0‖W 1,∞ is known and the leader has the same
model as other agents, i.e., in (1),

f0(t,ξ0) = Aξ0(t)+Bu0(t). (4)

Usually, such a property can be guaranteed only using a sliding
mode control technique (see, e.g., [52]), which may lead to a
“chattering” during the transition phase (i.e., before reaching a
consensus). Using the input ug we design a consensus control
protocol in such a way that the sliding mode arises only at the
consensus point (i.e., when e = 0).

Since the supervisor is an external “agent” with respect to
our MAS then it is hard to guarantee a stable communication
channel for transmission of the signal ug in a real-life scenario.
Our third goal is to analyze the stability and robustness of the
control system in the case of a sampled (possibly aperiodic)
transmission of the control signal ug.

IV. THE MOTIVATION AND BASIC IDEA TO THE
HOMOGENEOUS CONSENSUS PROTOCOL

The conventional linear consensus protocol can only guar-
antee asymptotic consensus (see, e.g., [11], [33], [53]). This
means consensus can be achieved as time goes to infinity.
Such a long-term transient process may influence the control
performance. However, the design of the consensus proto-
col with fast convergence rates may involve challenges and
complexities. Recall (see Section I and II) that homogeneous
systems can be finite-time stable or even fixed-time stable.
This motivates us to find the approach to get some novel
consensus protocol that can ensure the closed-loop consensus
error equation (3) to be homogeneous of a desired degree.
Then, the fast convergence could be performed by the MAS.

To demonstrate our basic idea, let us consider first the design
of the well-known linear consensus control protocol [32].

Lemma 3: Let Assumption 1, 2 hold. Let (X ,Y ) ∈ Rn×n×
Rm×n be a solution of the linear matrix inequality

X�0, IN⊗ (AX+XA>)+L̃⊗BY+(L̃⊗BY )> ≺ 0, (5)

where

L̃ =

−l11 . . . −l1N
...

. . .
...

−lN1 . . . −lNN

 . (6)

Let the linear consensus protocol be

ui = K ∑
N
j=0 wi j(ξ j−ξi), i = 1,N (7)

with K =Y X−1. Then the error equation (3) is ISS with respect
to q = (ξ0, ξ̇0).

Although the proof of the above lemma is straightforward,
we still give the detailed proof in Appendix A since we will
reuse it later for the homogeneous design.

Let us recall the basic idea of upgrading a linear control to
a homogeneous one. The simplest scalar control system

ẋ = u, x ∈ R, u ∈ R

with the linear control

u =−kx, k ∈ R+

is globally asymptotically stable. If the control u is trans-
formed to the homogeneous controller

u =−k|x|1+µ sign(x),

then for µ =0 we will have the original linear controller, for
µ<0 the closed-loop system is finite-time stable, and for µ>0
is nearly fixed-time stable. Similarly, for a multi-input system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m

it can be shown [46] that the linear stabilization controller

u = Kx, K ∈ Rm×n

can be transformed (“upgraded”) to the homogeneous form

u = K0x+‖x‖µ+1
d (K−K0)d(− ln‖x‖d)x, K0 ∈ Rm×n (8)

such that the closed-loop multi-input system is finite-time
stable for µ < 0 and nearly fixed-time stable for µ > 0,
where d is a linear dilation in Rn and ‖ · ‖d is the canonical
homogeneous norm. In this paper we generalize this upgrading
approach to the consensus control of MAS.

V. SUPERVISOR-BASED HOMOGENEOUS CONSENSUS
PROTOCOL

In this section, a generalized homogeneous consensus pro-
tocol is designed by upgrading the classical linear one. The
main result shows that such an upgrade is feasible if there
is a supervisor who monitors the MAS and can broadcast
a scalar signal ug simultaneously to all followers. With this
homogeneous control scheme, the ISS and the global finite-
time stability of the consensus errors can be guaranteed by
tuning the homogeneity degree.

Let the pair (G0,Y0) ∈ Rn×n×Rm×n be a solution of the
following algebraic equations

AG0−G0A+BY0 = A, G0B = 0, (9)

such that the matrix G0 − In is invertible. Then the matrix
Gd = µG0 + In is anti-Hurwitz for any µ ≤ 1/n with

A0Gd = (µIn +Gd)A0, GdB = B, (10)

matrix A0 = A+BK0 is nilpotent, where

K0 = Y0(G0− In)
−1. (11)

Remark 1: According to [20], [54], if Assumption 1 is
fulfilled, i.e., the pair (A,B) is controllable, then (A0,B) is
controllable, and such a solution of (9) always exists. In
addition, K0 = 0 if matrix A is already nilpotent.
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Theorem 1: Let Assumption 1, 2, 3 hold. Let (X ,Y ) ∈
Rn×n×Rm×n be a solution of the linear matrix inequality

IN⊗ (A0X +XA>0 )+ L̃ ⊗BY +(L̃ ⊗BY )> ≺ 0,
GdX +XG>d � 0, X � 0,

(12)

where A0 = A+BK0, K0 is given in (11), L̃ is defined in (6),
Gd = µG0+In is anti-Hurwitz with G0 satisfying (9), µ ≤ 1/n.
Let ‖e‖d̃ be the canonical homogeneous norm induced by the
norm ‖e‖P =

√
e>Pe, P = IN ⊗X−1. Then the error equation

(3) with ug = ‖e‖d̃, K = Y X−1 and

ui = K0ξi+uµ+1
g Kd(− lnug)∑

N
j=0 wi j(ξ j−ξi), i = 1,N (13)

has the following properties:
• d̃-homogeneous of degree µ ∈ [−1,1/n] if ξ0 = ξ̇0 = 0,

d̃(s) = exp(sGd̃) = IN⊗d(s) and d(s) = exp(sGd);
• globally asymptotically stable for ξ0 = ξ̇0 = 0;
• ISS with respect to q = (ξ0, ξ̇0) for µ ∈ (−1,1/n];
• globally uniformly finite-time stable if µ =−1, f0 satis-

fies (4), ‖A0ξ0− ξ̇0‖L∞ ≤Umax, and

Umax <U0 := λmin(Π1)

2
√

Nnλmax(X−1)
, (14)

with

Π1=−P
1
2 (IN⊗ (A0X+XA>0 )+L̃⊗BY+(L̃⊗BY )>)P

1
2 .

The settling time is estimated as

T (e(0))≤ ‖e(0)‖d̃λmax(Π2)

2(U0−Umax)
√

Nnλmax(X−1)
, (15)

where Π2=P
1
2 (IN⊗(GdX+XG>d))P

1
2 .

The detailed proof is provided in Appendix B.
The following corollary follows from the asymptotic stabil-

ity and d̃-homogeneity of the error equation (3) for ξ0=ξ̇0=0.
Corollary 1: Let all conditions of Theorem 1 be fulfilled.

Let ξ0= ξ̇0=0. Then the error equation (3) is
• globally uniformly finite-time stable for µ < 0;
• globally uniformly asymptotically stable for µ = 0;
• globally uniformly nearly fixed-time stable for µ > 0.
It is worth stressing that for µ=−1 the control protocol (13)

is a high-order sliding mode algorithm having a discontinuity
at e = 0 (i.e., when the consensus is reached). The use of the
input ug in the consensus protocol allows us to avoid large (in-
finite) gains in the transient phase (before reaching consensus).
This reduces overshoots [20] and numerical chatterings which
are typical for sliding mode algorithms [55]. Moreover, for
µ=−1 the control inputs of all controlled agents are bounded.

Corollary 2: Let u= [u>1 , . . . ,u
>
N ]
>, if µ =−1 then we have

‖u‖2 ≤ ‖K0‖2‖ξ‖2 +
√

λmax
(
(P−1/2)>K̃>K̃P−1/2

)
, (16)

where ξ = [ξ>1 , . . . ,ξ>N ]>, K̃ = L̃ ⊗K.
Proof: Recall (13), for µ = −1, we have u = K̃0ξ +

K̃d̃(− ln‖e‖d̃)e, with K̃0 = IN⊗K0. Then,

‖u‖2 ≤ ‖K̃0ξ‖2 +‖K̃d̃(− ln‖e‖d̃)e‖2

≤ ‖K0‖2‖ξ‖2 +
√

e>d̃>(− ln‖e‖d̃)K̃>K̃d̃(− ln‖e‖d̃)e

≤ ‖K0‖2‖ξ‖2 +
√

λmax
(
(P−1/2)>K̃>K̃P−1/2

)
×√

e>d̃>(− ln‖e‖d̃)Pd̃(− ln‖e‖d̃)e.

By the definition of the canonical homogeneous norm we
have e>d̃>(− ln‖e‖d̃)Pd̃(− ln‖e‖d̃)e = 1. Hence, the inequal-
ity (16) can be obtained.

Remark 2: If K0 = 0 (i.e., matrix A is nilpotent) and µ =−1
then u is globally uniformly bounded (see the formula (16)).

In some cases, a MAS is already regulated by some linear
control protocol. The following corollary presents an algorithm
for its upgrading to a locally homogeneous one.

Corollary 3: Let all conditions of Theorem 1 be fulfilled.
Then the error equation (3) with ug = ‖e‖d̃, K = Y X−1 and

ui=K0ξi+

{
K ∑

N
j=0 wi j(ξ j−ξi) ug>1,

uµ+1
g Kd(− lnug)∑

N
j=0 wi j(ξ j−ξi) ug≤1,

(17)
i = 1,N, has the following properties:
• d̃-homogeneous of degree µ ∈ [−1,1/n] for ug≤1;
• globally asymptotically stable for ξ0 = ξ̇0 = 0;
• ISS with respect to q = (ξ0, ξ̇0) for µ ∈ (−1,1/n];
• globally uniformly finite-time stable if µ=−1, f0 satisfies

(4), ‖A0ξ0− ξ̇0‖L∞≤Umax, where Umax is given in (14).
Proof: With the control (17), the closed-loop error equa-

tion ė= f (e,ξ0, ξ̇0) coincides with a d̃-homogeneous system of
degree µ =0 (linear system) for ug≥1 and a d̃-homogeneous
system of degree µ ∈ [−1,1/n] for ug ≤ 1.

Since the mapping ug 7→ d(− lnug) is uniformly continuous,
and for ug = 1 we have ‖e‖d̃ = e>Pe = 1 and

uµ+1
g Kd(− lnug)∑

N
j=0 wi j(ξ j−ξi) = K ∑

N
j=0 wi j(ξ j−ξi),

then the locally homogeneous control (17) is continuous. Let
us consider the candidate Lyapunov function e 7→V (e) as

V (e) =
{

e>Pe e>Pe > 1,
‖e‖d̃ e>Pe≤ 1.

Since the function V is locally Lipschitz continuous on Rn\{0}
then combining the constructions of Lemma 3 and Theorem
1 we can complete the proof.

The possible fragility of the proposed scheme is related
to the use of a supervisor, which is considered as an exter-
nal object with respect to MAS. The existence of a robust
communication channel for broadcasting of the supervisor’s
signal ug seems to be a rather restrictive assumption in some
cases. That is why it is important to investigate the robustness
of the proposed control scheme with respect to losses and/or
aperiodic sampling of the supervisor’s control signal ug.

Corollary 4: Let t0 = 0< t1 < t2 . . . be an arbitrary sequence
of time instances such that tk→+∞ as k→+∞. Let the control
protocol be defined by Theorem 1 and

ug(t) = ‖e(tk)‖d̃, t ∈ [tk, tk+1).

Then the error equation (3) is
• globally asymptotically stable for ξ0 = ξ̇0 = 0;
• ISS with respect to q = (ξ0, ξ̇0) for µ ∈ [−1,1/n].

Proof: For t ∈ [tk, tk+1), let us consider the function
e(t) 7→Vk(e(t)) defined as follows

Vk(e(t)) = e>(t)d̃>(− ln‖e(tk)‖d̃)Pd̃(− ln‖e(tk)‖d̃)e(t).
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Notice that Vk(e(t)) = 1 for t : ‖e(t)‖d̃ = ‖e(tk)‖d̃. The time
derivative of Vk along error equation (3) with ξ0 = ξ̇0 = 0
satisfies the inequality

V̇k(e(t))≤−λmin(Π1)‖e(tk)‖µ

d̃Vk,

for t ∈ [tk, tk+1). The latter means Vk(e(tk+1)) < 1 and
‖e(tk+1)‖d̃ < ‖e(tk)‖d̃. Let us show that the monotone se-
quence ‖e(tk)‖d̃ converges to zero as k→ +∞. Suppose the
contrary, i.e., there exists q∗ > 0 such that ‖e(tk)‖d̃ → q∗ as
k→+∞. Let us consider the function e 7→V∗(e) defined as

V∗(e) = e>d̃>(− lnq∗)Pd̃(− lnq∗)e.

Notice that V∗(e(tk))→ 1 as ‖e(tk)‖d̃→ q∗. Denoting δi = ui−
K0ξi−qµ+1

∗ Kd(− lnq∗)∑
N
j=0 wi j(ξ j−ξi), i = 1,N we derive

V̇∗≤−λmin(Π1)q
µ
∗V∗+

2
√

NV∗λmax(B>X−1B)
q∗

maxi=1,N‖δi(t)‖2.

Since supt∈[tk,tk+1)
‖δi(t)‖2 converges to zero as k→ +∞ and

V∗(e(tk))→ 1 as k→+∞ then there exists k∗ ≥ 1 and c∗ > 0
such that V̇∗(e(t))≤−c∗ for all t ≥ tk∗ . The latter means that
V∗(e(t))→ 0 as t→+∞. Based on the obtained estimates, the
ISS with respect to q = (ξ0, ξ̇0) can be proven using the ISS
Lyapunov function technique [56].

Remark 3: Corollary 4 has no restriction (like a dwell time)
to the sampling period tk+1− tk. So, the consensus error with
the presented consensus protocol would remain asymptotically
stable and robust in the case of sampled broadcasting of
the supervisor’s signal. Even in the worst case, when the
signal ug is lost (i.e., ug = const for all t ≥ t∗, t∗ is the
moment ug is lost), the system will be simply governed by
a linear consensus protocol. In other words, the system will
not crash if the supervisor’s signal will be damaged, sampled,
or completely lost. Therefore, the presence of the supervisor
does not increase the fragility of the MAS in comparison with
the case of the classical linear consensus protocol.

VI. SIMULATION RESULTS

We consider the MAS (2) with 4 agents regulated by the
locally homogeneous consensus protocol (17). The commu-
nication topology, as depicted in Fig.1, is fixed. The agents

0

21

3

Fig. 1. The topology of the MAS.

are labeled by i = 0,3, where the agent 0 is the leader and
the agent 1,3 are followers. Here we let the dynamic of the
leader be (4) and the followers be (2). The dynamic system
matrix A and B are randomly chosen provided the pair (A,B)
is controllable:

A =

11 −11 5
11 −11 4
1 2 0

 , B =

1 1
0 1
0 2

 .

Let u0 = ϒξ0 +0.2 · [sin(25t) cos(25t)]> with

ϒ =

(
0 16 −1
−16 1 −4

)
.

According to equation (9) and (11), we obtain

K0 =

(
3.3134 −3.7867 0.2622
−3.4293 2.3477 −1.1159

)
.

Let µ =−1, we have

Gd =

1.0000 1.0366 −0.5183
0.0000 1.7210 −0.3605
0.0000 −0.5580 1.2790

 .

Let the agent state vector and the consensus error vector be
ξ = [ξ>0 ,ξ>1 ,ξ>2 ,ξ>3 ]> and e = [e>1 ,e

>
2 ,e
>
3 ]
>, respectively. Let

e(ς)i denote the ςth, ς = 1,3 component of ei.
Let wi j = 1, (i, j) ∈ E , then we have

L̃ =

−1 0 0
0 −1 0
1 1 −2

 .

We obtain

X =

2.0588 2.1825 0.2371
2.1825 4.5417 1.8298
0.2371 1.8298 8.0728

 ,

Y =

(
18.1713 −20.8153 0.6775
0.1474 5.2376 7.4799

)
,

by solving (12) with YALMIP. By employing bisection
method, ug = ‖e‖d̃ is obtained from

‖d̃(− ln(‖e‖d̃))e‖P = 1,

with P = I3⊗X−1, and d̃(·) is generated by Gd̃ = I3⊗Gd.
The trajectory of A0ξ0− ξ̇0 is as Fig.2, which is bounded by
U0 = 0.7, where U0 is obtained according to (14).

0 0.5 1 1.5 2 2.5 3 3.5 4

t

-0.7

-0.4

0

0.4

0.7

Fig. 2. Evolution of A0ξ0− ξ̇0.

Let the initial states of the considered MAS be ξ (0) =
[0,0,0,0.95,1.00,0.75,1.25,0.65,1.20,0.70,0.73,1.15]>. The
implicit Euler method is employed with step h = 0.001s to
solve the closed-loop error equation (3), (17) on MATLAB.
Meanwhile, we employ the classical linear consensus proto-
col (7) as the reference. Comparison simulation results on
e(ς)i , ς = 1,3 are presented in Fig.3-5. In the case of the
linear consensus protocol, the consensus error asymptotically
converges to a zone located in the neighborhood of the
origin, while with the homogeneous control protocol, the error
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converges to zero in a finite time. The evolution trajectory
of ug is as Fig. 6, which implies the locally homogeneous
control protocol (17) switches from the linear case to the
homogeneous case at t ≈ 0.535s. The evolution trajectories
of the norm of the control signals are depicted in Fig.7.
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(b)

Fig. 3. Evolution of e(1)i for i = 1,3 with (a) the linear control protocol (7);
(b) the locally homogeneous control protocol (17).

Based on the obtained simulation results, we propose to
further evaluate the energy consumption and the control
performance improvement using the L2-norm and the L∞-
norm of the linear/homogeneous consensus errors and the
linear/homogeneous control inputs. They are computed nu-
merically for x(t) = [x1(t), . . . ,xΓ(t)]> ∈ RΓ, Γ ∈ N+ where
t ∈ (ta, tb), let h = ti− ti−1, i = 1,M, t0 = ta, tM = tb, by the
following formulas

‖x(t)‖L2(ta,tb) ≈
√

h∑
M
i=1x>(ti)x(ti),

‖x(t)‖L∞(ta,tb) ≈max{|xγ(ti)|, γ = 1,Γ, i = 1,M}.

Calculated results are presented in Tables I-III. Firstly, from 0s
to 4s, the L2-norm of the errors for MAS with homogeneous
consensus protocol is about 20.20% lower than for MAS with
linear consensus protocol, and this proportion becomes even
more pronounced in the time interval of 1s to 4s, reaching
98.62%. Furthermore, the L∞-norm of homogeneous errors is
about 85 times less than the linear from 1s to 4s, this is mainly
attributed to the robustness property of the homogeneous
control respect to the bounded perturbation. However, it is
clear that to guarantee such an improvement the homogeneous
consensus protocol consumes about 20% more energy, and
needs about 25% higher magnitude in the steady state.

Therefore, we conclude that even in the presence of bounded
uncertainties in leader dynamics, the MAS regulated by the
locally homogeneous control protocol (17) with µ = −1
achieves finite-time leader-following consensus. This level of
consensus cannot be attained through linear control methods
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Fig. 4. Evolution of e(2)i for i = 1,3 with (a) the linear control protocol (7);
(b) the locally homogeneous control protocol (17).
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Fig. 5. Evolution of e(3)i for i = 1,3 with (a) the linear control protocol (7);
(b) the locally homogeneous control protocol (17).
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Fig. 6. Evolution of ug.
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Fig. 7. Evolution of ‖ui(t)‖2 for i = 1,3 with the locally homogeneous
control protocol (17) and the classical linear control protocol (7).

TABLE I
THE L2-NORM AND L∞-NORM OF e1 AND u1 .

‖e1‖L2(0,4) ‖e1‖L2(1,4) ‖e1‖L∞(1,4) ‖u1‖L2(0,4) ‖u1‖L∞(1,4)

lin 0.6313 0.0987 0.1373 1.5694 0.2753

homo 0.5085 0.0015 0.0019 2.0031 0.4097

TABLE II
THE L2-NORM AND L∞-NORM OF e2 AND u2 .

‖e2‖L2(0,4) ‖e2‖L2(1,4) ‖e2‖L∞(1,4) ‖u2‖L2(0,4) ‖u2‖L∞(1,4)

lin 0.7469 0.1108 0.1639 2.3822 0.3070

homo 0.6059 0.0015 0.0019 2.8165 0.4101

TABLE III
THE L2-NORM AND L∞-NORM OF e3 AND u3 .

‖e3‖L2(0,4) ‖e3‖L2(1,4) ‖e3‖L∞(1,4) ‖u3‖L2(0,4) ‖u3‖L∞(1,4)

lin 1.0013 0.1670 0.2684 2.1373 0.4495

homo 0.7845 0.0022 0.0029 2.6060 0.4857

alone. However, the implementation of the proposed homoge-
neous control protocol comes at the cost of increased energy
consumption.

VII. CONCLUSION

A leader-following consensus issue for MAS with agents
being general linear plants is addressed in this paper. A
novel nonlinear control protocol is proposed by upgrading the
classical linear consensus control protocol with the concept of
generalized homogeneity. With uncertainties in the dynamic of
the leader, ISS and finite-time stability of error equations are
guaranteed by non-zero homogeneity degrees. By comparing

with the linear consensus protocol, convergence performance
is considerably improved although more energy is consumed.
This novel control protocol has potential application prospects
in various distributed control systems, such as multi-robot
systems and distributed power generations. The utilization of
this protocol is efficient in increasing the convergence rates
and robustness of these systems.

APPENDIX

A. Proof of Lemma 3

Proof: Since ei = ξi−ξ0, i = 1,N, then we have

ėi = Aei +Bui +Aξ0− ξ̇0.

Combining (7), the error equation becomes

ėi = Aei−BK ∑
N
j=1 li je j +Aξ0− ξ̇0,

which can be compactly written as

ė= f (e,ξ0, ξ̇0)=(IN⊗A+L̃⊗BK)e+1N⊗(Aξ0−ξ̇0), (18)

where L̃ is defined in (6). At the same time we have

ė = f (e,0,0) = (IN⊗A+ L̃ ⊗BK)e. (19)

Let us consider the Lyapunov function

V (e) = e>Pe, P = IN⊗X−1 � 0.

The time derivative of V (e) along the trajectory of the error
equation (19) is

V̇ (e)=e>PΠPe,

Π = IN⊗ (AX+XA>)+L̃⊗BY+(L̃⊗BY )>.

Since the pair (X ,Y ) satisfies (5), then error equation (19) is
asymptotically stable, and we conclude that the error equation
(18) is ISS with respect to q = (ξ0, ξ̇0).

B. Proof of Theorem 1

Proof: Since

ėi = Aξi +Bui− ξ̇0, i = 1,N

combining (13), we have

ėi = A0ei−‖e‖µ+1
d̃ BKd(− ln‖e‖d̃)∑

N
j=1 li je j +A0ξ0− ξ̇0,

The latter can be compactly written as

ė = f (e,ξ0, ξ̇0)

= IN⊗A0e+‖e‖µ+1
d̃ L̃ ⊗BKd(− ln‖e‖d̃)e+1N⊗ (A0ξ0− ξ̇0),

(20)
in this case we can obtain the error equation with ξ0 = ξ̇0 = 0,

ė= f (e,0,0)= IN⊗A0e+‖e‖µ+1
d̃ L̃⊗BKd(− ln‖e‖d̃)e. (21)

The vector field f (e,ξ0, ξ̇0) is d̃-homogeneous of degree
µ ∈ [−1,1/n] with respect to e→ d̃(s)e, ξ0 → d(s)ξ0, ξ̇0 →
exp(µs)d(s)ξ̇0 for s ∈ R. The latter implies that f (e,0,0) is
d̃-homogeneous of degree µ with respect to e→ d̃(s)e.
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Select ‖e‖d̃ as the Lyapunov candidate, whose derivative
along equation (21) is

d‖e‖d̃
dt =

‖e‖d̃e>d̃>(− ln‖e‖d̃)Pd̃(− ln‖e‖d̃)ė
e>d̃>(− ln‖e‖d̃)PGd̃d̃(− ln‖e‖d̃)e

. (22)

According to (10), we have A0d(s) = exp(µs)d(s)A0 and
d(s)B = exp(s)B, equation (22) becomes

d‖e‖d̃
dt =

‖e‖µ+1
d̃ e>d̃>(− ln‖e‖d̃)PΠ0Pd̃(− ln‖e‖d̃)e

e>d̃>(− ln‖e‖d̃)P(IN⊗(GdX+XG>d ))Pd̃(− ln‖e‖d̃)e
,

where Π0 = IN ⊗ (A0X+XA>0 )+L̃ ⊗BY +(L̃ ⊗BY )>. Since
the matrix Gd and the pair (X ,Y ) satisfy (12), then the error
equation (21) is globally asymptotically stable. Moreover,
according to Lemma 1, for µ ∈ (−1,1/n], the error equation
(20) is ISS with respect to q = (ξ0, ξ̇0).

If ξ̇0 = f0 = Aξ0 +Bu0, then A0ξ0− ξ̇0 = B(K0ξ0−u0) and

d(s)(A0ξ0− ξ̇0) = exp(s)(A0ξ0− ξ̇0), s ∈ R.

In this case, the vector field f (e,ξ0, ξ̇0) is d̃-homogeneous with
respect to e→ d̃(s)e, ξ0→ exp(s(µ +1))ξ0, ξ̇0→ exp(s(µ +
1))ξ̇0 for s ∈ R. By letting µ =−1 we derive

d‖e‖d̃
dt =

−e>d̃>(− ln‖e‖d̃)P
1
2 Π1P

1
2 d̃(− ln‖e‖d̃)e+2V>1 V2

e>d̃>(− ln‖e‖d̃)P
1
2 Π2P

1
2 d̃(− ln‖e‖d̃)e

,

where Π1 =−P
1
2 Π0P

1
2 , Π2 =P

1
2 (IN⊗(GdX+XG>d ))P

1
2 , V1 =

P
1
2 d̃(− ln‖e‖d̃)e and V2 = P

1
2 (1N⊗ (A0ξ0− ξ̇0)). Since

V>1 V1 = e>d̃>(− ln‖e‖d̃)Pd̃(− ln‖e‖d̃)e = 1,

V>2 V2 = (1N⊗ (A0ξ0− ξ̇0))
>P(1N⊗ (A0ξ0− ξ̇0)),

V>1 V2 ≤
√

V>2 V2 ≤Umax

√
Nnλmax(X−1),

then
d‖e‖d̃

dt ≤−
λmin(Π1)−2Umax

√
Nnλmax(X−1)

e>d̃>(− ln‖e‖d̃)P
1
2 Π2P

1
2 d̃(− ln‖e‖d̃)e

< 0.

Hence, for any ‖A0ξ0− ξ̇0‖L∞ ≤Umax with (14) satisfied, the
canonical homogeneous norm ‖e‖d̃ is a Lyapunov function for
the error equation (20) and

d‖e‖d̃
dt ≤−(U0−Umax)

2
√

Nnλmax(X−1)
λmax(Π2)

.

Then, the error equation (20) is globally uniformly finite-time
stable with the settling-time function estimated by (15).
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