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Linear objects convey substantial information about document structure, but are challenging to detect accurately because of degradation (curved, erased) or decoration (doubled, dashed). Many approaches can recover some vector representation, but only one closedsource technique introduced in 1994, based on Kalman filters (a particular case of Multiple Object Tracking algorithm), can perform a pixelaccurate instance segmentation of linear objects and enable to selectively remove them from the original image. We aim at re-popularizing this approach and propose: 1. a framework for accurate instance segmentation of linear objects in document images using Multiple Object Tracking (MOT); 2. document image datasets and metrics which enable both vector-and pixel-based evaluation of linear object detection; 3. performance measures of MOT approaches against modern segment detectors; 4. performance measures of various tracking strategies, exhibiting alternatives to the original Kalman filters approach; and 5. an open-source implementation of a detector which can discriminate instances of curved, erased, dashed, intersecting and/or overlapping linear objects.

Introduction

The detection of linear structures is often cast as a boundary detection problem in Computer Vision (CV), focusing on local gradient maxima separating homogeneous regions to reveal edges in natural images. Document images, however, often exhibit very contrasted and thin strokes which carry main information, containing printings and writings, overlaid on some homogeneous "background". It is therefore common to observe a local maximum and a local minimum in a short range along the direction normal to such stroke. As a result, methods based on region contrast tend to fail on document images, rejecting text and strokes as noise or produce double-detections around linear structures.

In this work, we are interested in enabling a fast and accurate pre-processing which can detect and eventually remove decorated, degraded or overlapping linear objects in document images. Figure 2 illustrates the two major outputs such any approach designed around some U-Net variant [START_REF] Ronneberger | U-Net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Lin | Feature pyramid networks for object detection[END_REF] like the HED [START_REF] Xie | Holistically-nested edge detection[END_REF] and BDCN [START_REF] He | Bi-directional cascade network for perceptual edge detection[END_REF] edge detectors. Such approaches can make pixel-accurate predictions but cannot discriminate object instances. To enable their use for vectorization, Xue et al. [START_REF] Xue | Learning attraction field representation for robust line segment detection[END_REF] proposed to predict an Attraction Field Map which eases the extraction of 1-pixel-thin edges after a post-processing stage. EDTER [START_REF] Pu | EDTER: Edge detection with transformer[END_REF] pushes the semantic segmentation approach as far as possible with a transformer encoder, enabling to capture a larger context. While all these techniques can produce visually convincing results, they cannot assign a pixel to more than one object label and require a post-processing to produce some vector output. Furthermore, their training requirements and computational costs forces us to remove them from our comparison, but they could be integrated as an image pre-processing in the global framework we propose.

Hough Transform-based detectors. The Hough transform [START_REF] Illingworth | A survey of the hough transform[END_REF] is a traditional technique to detect lines in images. It can be viewed as a kind of meta-template matching technique: line evidence L with (ρ, θ) polar parameters is supported by pixel observations (x i , y i ) according to the constraint that (L) : ρ = x i cos θ + y i sin θ. In practice, such technique relies on a binarization pre-processing to identify "foreground" pixels which can support a set of (ρ, θ) values in polar space. Line detection is performed by identifying maximal clusters in this space, which limits the accuracy the detection to a very coarse vectorization, while relying on a high algorithmic complexity. Several variants [START_REF] Mukhopadhyay | A survey of Hough Transform[END_REF] were proposed to overcome those limitations: the Randomized Hough Transform [START_REF] Kultanen | Randomized hough transform (rht)[END_REF] and Probabilistic Hough Transform [START_REF] Kiryati | A probabilistic Hough transform[END_REF] lowered the computational cost thanks to some random sampling of pixels, and the Progressive Probabilistic Hough Transform [START_REF] Galamhos | Progressive probabilistic Hough transform for line detection[END_REF] added the ability to predict start and end line segment coordinates, turning the approach into an effective linear object detector. This method can tolerate gaps and overlaps to some extents, and is highly popular thanks to its implementation in the OpenCV library [START_REF] Bradski | The OpenCV Library[END_REF]. However, it is very sensitive to noise, to object length, rather inaccurate with slightly curved objects, and cannot assign pixels to linear object instances.

Region growing tracers. The Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF] is the most famous example of this category. It is based on the following steps: a gradient computation on a smoothed image, the detection of local gradient maximums, the elimination of non-maximal edge pixels in the gradient's direction, and the filtering of edge pixels (based on gradient's magnitude) in the edge direction. All region growing approaches improve this early algorithm, probably introduced by Burns et al. [START_REF] Burns | Extracting straight lines[END_REF], which effectively consists in finding salient edge stubs and tracing from there initial position. LSD [START_REF] Grompone Von Gioi | LSD: A Fast Line Segment Detector with a False Detection Control[END_REF] was the first approach which took linear object detection to the next level in natural images. Fast and accurate, it is based on a sampling of gradient maximums which are connected only if the gradient flow between these candidates is significantly strong compared to a background noise model, according to the Helmholtz principle proposed by [START_REF] Desolneux | From gestalt theory to image analysis: a probabilistic approach[END_REF]. EDLine [START_REF] Akinlar | EDLines: A real-time line segment detector with a false detection control[END_REF] and AG3line [START_REF] Zhang | AG3line: Active grouping and geometry-gradient combined validation for fast line segment extraction[END_REF] improved the routing scheme to connect distant gradient maximums using Least Square fitting and a better sampling, accelerating and enhancing the whole process. CannyLines [START_REF] Lu | Cannylines: A parameter-free line segment detector[END_REF] proposed a parameter-free detection of local gradient maximums, and reintegrated the Helmholtz principle in the routing. Ultimately, ELSED [START_REF] Suárez | Elsed: Enhanced line segment drawing[END_REF] further improved this pipeline to propose the fastest detector to date, with a leading performance among learning-less methods. These recent approaches are very fast and accurate, require no training stage, and can handle intersections. However, they do not detect all pixels which belong to a stroke, and have limited tolerance to gaps and overlaps. Finally, these methods require a careful tuning to be used on document images as the integrated gradient computation step tends to be problematic for thin linear objects, and leads to double detections or filters objects (confusing them with noise).

Deep linear object detectors. Region Proposal Networks, and their ability to be trained end-to-end using RoI pooling, where introduced in the Faster R-CNN architecture [START_REF] Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF]. This 2-stage architecture was adapted to linear object detection by the L-CNN approach [START_REF] Zhou | End-to-end wireframe parsing[END_REF]. L-CNN uses a junction heatmap to generate line segment proposals, which are fed to classifier using a Line of Interest pooling, eventually producing vector information containing start and end coordinates. HAWP [START_REF] Xue | Learning attraction field representation for robust line segment detection[END_REF] accelerated the proposal stage by replacing the joint detection stage with the previously-introduced Attraction Field Map [START_REF] Xue | Learning attraction field representation for robust line segment detection[END_REF]. F-Clip [START_REF] Dai | Fully convolutional line parsing[END_REF] proposed a similar, faster approach using a single-stage network which directly predicts center, length and orientation for each detected line segment. These approaches produce very solid vector results, but they are still not capable to assign pixels to a particular object instance. Furthermore, their important computation and training data requirements forces us to remove them from our current study.

Vertex sequence generators. Recently, the progress of decoders enabled the direct generation of vector data from an image input, using a sequence generator on top of some feature extractor. Polygon-RNN [START_REF] Castrejon | Annotating object instances with a polygon-rnn[END_REF][START_REF] Acuna | Efficient interactive annotation of segmentation datasets with polygon-rnn++[END_REF] uses a CNN as feature extractor, and an RNN decoder which generates sequences of vertex point coordinates. LETR [START_REF] Xu | Line segment detection using transformers without edges[END_REF] uses a full encoder/decoder transformer architecture and reaches the best wireframe parsing accuracy to date. However, once again, such architectures are currently limited to vector predictions, and their computation and training data requirements make them unsuitable for our current comparison. Linear object trackers. A neglected direction, with several key advantages and which opens interesting perspectives, was introduced in 1994 in a short series of papers [START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF][START_REF] Poulain D'andecy | Analyse de partitions musicales[END_REF][START_REF] Leplumey | Kalman filter contributions towards document segmentation[END_REF]. This approach leverages the power of Kalman filters [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF], which were very successful for sensors denoising, to stabilize the detection of linear objects over the course of two image scans (horizontal and vertical). By tracking individual object candidates, eventually connecting or dropping them, this approach proposed a lightweight solution, with few tunable parameters, which can segment instances of linear objects by assigning pixels to all the objects they belong to, but also deal with noise, curved objects, gaps and noise. However, no comparison against other approaches, nor public implementation, were disclosed. This called for a revival and a comparison against the fastest methods to date.

MOT Framework for Linear Object Detection

As previously mentioned, we extend the original approach of [START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF][START_REF] Poulain D'andecy | Analyse de partitions musicales[END_REF][START_REF] Leplumey | Kalman filter contributions towards document segmentation[END_REF], which performs 2 scans over an image, plus a post-processing, to detect linear objects. We will describe the horizontal scan only: the vertical one consists in the same process applied on the transposed image. During the horizontal scan, the image is read column by column in a single left-to-right pass; each column being considered as a 1-dimensional scene containing linear object spans, i.e. slices of dark pixels in the direction normal to linear object (Figure 1). Those spans are tracked scene by scene, and linked together to retrieve objects with pixel accuracy. To ensure accurate linking, and also to tolerate gaps, overlaps and intersections, each coherent sequence of spans is modeled as a Kalman filter which stores information about past spans, and can predict the attributes (position, thickness, luminance. . . ) of the next most probable one. By matching such observations with predictions, and then correcting the internal parameters of the filter, observations are aggregated in a self-correcting model instance for each linear object. Once the horizontal and vertical scans are complete, object deduplication is required to merge double detections close to 45 degrees. Finally, using pixel-accurate information about each object instance, several outputs can be generated, and in particular: a mapping which stores for each pixel the associated object(s), and a simplified vector representation containing first and last span coordinates only.

Framework overview. We propose to abstract this original approach into a more general Multiple Objects Tracking (MOT) framework. This enables us to explicit each stage of such process, and introduce variants. Linear object detection using 2-pass MOT can be detailed as follows.

Pre-processing. In Section 4, we will report results with grayscale images only, as this is the simplest possible input for this framework. However, some preprocessing may be used to enhance linear object detection. In the case of uneven background contrast, we obtained good results using a black top hat, and to be able to process very noisy images, or images with rich textures, it may be possible to train a semantic segmentation network which would produce some edge probability map. Processing. The horizontal and vertical scans, which can be performed in parallel, aim at initializing, updating and returning a set of trackers, a generalization of the "filters" specific to Kalman's model. Like in the original approach, each detected instance is tracked by a unique tracker instance.

Trackers are structures which possess an internal State S containing a variable amount of information, according to the variant considered; two key methods "predict" and "integrate" which will be described hereafter; and an internal list of spans which compose the linear object. The State and the two methods can be customized to derive alternate tracker implementations (we provide some examples later in this section). For each scene t (column or line) read during the scan, the following steps are performed. Steps 1 and 2 can be performed in parallel, as well as steps 4, 5 and 6.

1. Extract the set of observations O j t , j ∈ [0, nobs t [. Observations represent linear object spans, and contain information about their position in the scene, luminance and thickness. At this step, some observations may be rejected because there size is over a certain threshold. This threshold is a parameter of the method. The algorithm and the associated illustration in fig. 3 t . This enables each tracker to adapt its internal model to the particular object being detected. 5. Initialize new trackers from unmatched observations Ōt . New trackers are added to the active pool of trackers to consider at each scene t. 6. Stop trackers of lost objects. When a tracker does not match any observation for too many t, it is removed from the pool of active trackers. The exact threshold depends on the current size of the object plus an absolute thresholds for acceptable gap size. Those two thresholds are parameters of our method. Post-processing. Deduplication is required because 45°-oriented segments may be detected twice. Duplications are removed by comparing and discarding object instances with high overlap. An optional attribute filtering may then be performed, that consists in filtering objects according to their length, thickness or angle. This filtering must be performed after the main processing stage to avoid missing intersection and overlaps with other objects, would these be linear or not: this makes possible to handle interactions between handwritten strokes and line segments, for instance. Finally, outputs can be generated by decoding the values stored in each tracker object.

Tracker variants. Each tracker variant features a different internal State structures (which needs to be initialized), and specific prediction and integration functions. However, in the context of Linear Object Detection, we keep the original model of the IRISA team [START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF][START_REF] Poulain D'andecy | Analyse de partitions musicales[END_REF][START_REF] Leplumey | Kalman filter contributions towards document segmentation[END_REF] 

l stab ← lmin + r * contrast 8: ni ← n; while (Imaget[ni] > l stab ) { ni ← ni + 1 } 9: n f ← n; while (Imaget[n f ] < l stab ) { n f ← n f -1 } 10: obspos ← (ni + n f ) / 2
11: 3) and computes its contrast (L.4-6). Then, this range is refined to extract the largest sub-range whose contrast does not exceed r (a parameter of the method set to 1 in all our application but kept from the original method) times contrast (L.8-9) and gives the observation with features computed on lines 10-12.

obs thick ← n f -ni + 1 12: obs lum ← mean of Imaget[ni . . . n f ] 0 255 grayscale n l mm = l max l stab l min n n + s obs thick obs pos n i n f | contrast r × contrast
ing variants. To simplify the following equations, we refer to t = 0 as the time of the first observation of a tracker, and consider only one tracker at a time.

Last Observation. A naive baseline approach which uses as prediction the last matched observation (X t = Ôt-1 ). Updating its States simply consists in storing the last matched observation in place of the previous one. Simple Moving Average (SMA). Another baseline approach which stores the k last matched observations and extrapolates the prediction based on them. This tracker uses a slope attribute. Prediction for the attribute a is the average of the previous observations X t (a) = ( t-1 j=t-k Ôj )/k, except for the position, which is computed using the last observed position and the Exponential Moving Average (EMA) of the slope. Integration of new observations consists in adding them to the buffer. We used a buffer of size k = min(t, 30) in our experiments.

Exponential Moving Average (EMA).

A last baseline approach very similar to the previous one, which requires only to store the last matched observation Ôt-1 and the last prediction X t-1 . The prediction of some attribute a is computed by: X t (a) = α * Ôt-1 (a) + (1 -α) * X t-1 (a) where α tunes importance of the new observation. The prediction of the position is computed using the last observed position and the EMA of the slope. We used a value of α = 2/(min(t, 16) + 1) in our experiments.

Double Exponential [START_REF] Laviola | Double exponential smoothing: an alternative to kalman filter-based predictive tracking[END_REF]. This tracker uses a double exponential smoothing algorithm which is faster than Kalman filters and simpler to implement.

X t = (2+ α 1-α )•S Xt-1 -(1+ α 1-α )•S X[2]t-1 where S Xt = α•O t +(1-α)•S Xt-1 , S X[2]t = α•S Xt +(1-α)•S X[2]
t-1 and α ∈ [0, 1] (set to 0.6 in our experiments) a smoothing parameter.

1 e Filter [START_REF] Casiez | 1€ filter: a simple speed-based low-pass filter for noisy input in interactive systems[END_REF]. This tracker features a more sophisticated approach, also based on an exponential filter, which can deal with uneven signal sampling. It adjusts its low-pass filtering stage according to signal's derivative, and has only two parameters to configure: a minimum cut-off frequency that we set to 1 in our experiments, and a β parameter that we set to 0.007. We refer the reader to the original publication for the details of this approach.

Kalman Filter [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF][START_REF] Welch | An Introduction to the Kalman Filter[END_REF], IRISA variant [START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF][START_REF] Poulain D'andecy | Analyse de partitions musicales[END_REF][START_REF] Leplumey | Kalman filter contributions towards document segmentation[END_REF]. This tracker is based on our implementation of the approach proposed by the IRISA team. The hidden State is composed of n = 4 attributes S ∈ R n : pos. slope tick. lum. 

P - t = AP t-1 A T + Q
where Q is the process noise covariance matrix. The integration step consists in (1) computing the Kalman gain:

K t = P - t H T (HP - t H T +R) -1
where R is the measurement noise covariance matrix; (2) updating estimate with measurement Ôt : S t = AS - t + K t ( Ôt -HS - t ) where H relates the State to the measurement; and (3) updating the error covariance: P t = (I -K t H)P - t . The following initialization choices are made, according to our experiments and the original publications [START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF][START_REF] Poulain D'andecy | Analyse de partitions musicales[END_REF][START_REF] Leplumey | Kalman filter contributions towards document segmentation[END_REF]. We initialize each State with the values of the first observation, with a slope of 0. We use P 0 = I 4 as initial value for the error covariance matrix, I n being the identity matrix in R n . Q, R, H and A assumed to be constant with the following values:

A =     1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1     , H =     1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1     , Q = I 4 • 10 -5 , and R = 1 1 4 T .

Experiments

We report here the results obtained by comparing the performance of trainingless approaches on two tasks: a pure vectorization task, where only two endpoint coordinates are required for each line segment, and an instance segmentation task, where pixel-accurate labeling of each line segment instance is required. This separation is due to the limitations of some approaches which can only generate vector output, as well as the limitations of existing datasets. While the methods studied are training-less, they are not parameter-free, and such parameters require to be tuned to achieve the best performance. In order to ensure an unbiased evaluation, we manually tuned (because grid-search and other optimization techniques were not usable here) each approach on the train set of each dataset, then evaluate their performance on the test set.

Vectorization Task

Dataset. To our knowledge, no dataset for line segment detection in vector format exists for document images. We introduce here a small new, public dataset which contains endpoints annotations for line segments in 195 images of 19 th trade directories. In these documents, line segment detection can be used for image deskewing. The train (resp. test) set is composed of 5 (resp. 190) images, containing on average 4.3 line segments to detect each. Images samples are available in the extra material.

Metric. Our evaluation protocol is a slightly modified version of the one proposed by Cho et al. [9], and is defined as follows. Let P = {P 1 , • • • , P n } and T = {T 1 , • • • , T m } be respectively the set of predicted and targets line segment (LS). Let L ij be the projection of P i over T j . We note |X|, the length of the LS X. A predicted LS P i matches the target T j if: 1. the prediction overlaps the target over more than 80% (|L ij |/|P i | ≥ 0.8), 2. the perpendicular distance d ij between T j ' center and P i is less than 20 pixels, and 3. the orientations of P i and P j differ at most by 5°. For each P i , we associate the closest LS (in terms of d ij ) among the set of matching LSs from the targets. We note A = {A ij } ∈ (P × T ) the mapping that contains A ij = (P i , T j ) whenever P i matches T j . Our protocol allows a prediction to match a single target, but a target may be matched by many predictions. This allows for target fragmentation (1-to-many relation). We then compute the precision and recall scores as follows:

precision = (i,j)∈A |L i,j | i |P i | recall = | (i,j)∈A L i,j | j |T j | T 1 P 1 P 2 d11 d21 L 11 L 12
Fig. 4: Matching and scoring process. P 1 and P 2 are associated to T 1 because angles are compatible and overlaps L 11 and L 22 are large enough. In this example, precision is |L11|+|L21| |P1|+|P2| and is < 1 because P 1 does not fully match the ground-truth. Recall is |L11∪L21| |T1| and also is < 1 because T 1 is not fully matched.

Roughly said, precision stands for the quality of the predictions to match and cover the ground-truth, while recall assess the coverage of the targets that were matched, as illustrated in fig. 4. Our protocol differs from the original one [9] which allows prediction to match many targets (many-to-many relation). This case can happen when segments are close to each other, and results in a precision score that can exceed 1.0. Our variant ensure precision remains in the [0, 1] range. Even with this modification, these metrics still have limitations: duplication of detections and fragmentation of targets are not penalized. We thus propose an updated precision as:

precision 2 = 1 i |P i | × (i,j)∈A |L i,j | |A ( * ,j) |
with |A ( * ,j) | = |{A kj ∈ A}| being the number of matches with target T j (number of fragments). From precision (resp. precision 2 ) and recall, the F-score (resp. Fscore 2 ) is then computed and used as the final evaluation metric.

Results. We chose to only compare Hough based and Region growing algorithms featuring a rapid, public implementation and requiring no training. In table 1, we show that the original Kalman strategy performs the best on this dataset. Nevertheless, the other tracking strategies reach almost the same level of performance (the first five are within a 2% range). The differences between the F-score and F-score 2 columns are explained by many very short detections that match a ground truth line and are more penalized with F-score 2 . In table 2, state-ofthe-art detectors are compared: MOT-based (using Kalman tracker), Edlines [START_REF] Akinlar | EDLines: A real-time line segment detector with a false detection control[END_REF], Hough (from OpenCV) [START_REF] Kiryati | A probabilistic Hough transform[END_REF], CannyLines [START_REF] Lu | Cannylines: A parameter-free line segment detector[END_REF], LSD [START_REF] Grompone Von Gioi | LSD: A Fast Line Segment Detector with a False Detection Control[END_REF], LSD II with a filtering on segment lengths, ELSED [START_REF] Suárez | Elsed: Enhanced line segment drawing[END_REF], and AG3Line [START_REF] Zhang | AG3line: Active grouping and geometry-gradient combined validation for fast line segment extraction[END_REF]. All these techniques performs much lower than the MOT-based approach because of thick lines being detected twice (especially with the F-score 2 metric where splits are penalized). The two previous tables exhibit a large standard deviation of the performance because of some bad quality pages (noise, page distortions. . . ) where most methods fail to detect lines. This behavior is shown on fig. 5 where the F-score 2 distributions of the dataset samples are compared. It shows some outliers at the beginning where detectors get a null score for some documents.

Instance Segmentation Task

Dataset. To demonstrate the feasibility of line segment instance segmentation, we adapted the dataset of the ICDAR 2013 music score competition for staff removal [START_REF] Visani | Icdar 2013 music scores competition: Staff removal[END_REF] to add information about staff line instances. This was, to our knowledge, the only dataset for document images which features some form of line segmentation annotation we could leverage easily. As the original competition Fig. 6: Excerpt of the original image of staff lines (700 x 400) and its instance segmentation performed by the Kalman Filter predictor in 60ms.

Table 3: Instance segmentation performance and compute time of MOT-based approaches on the music sheets dataset adapted from ICDAR 2013 music score competition [START_REF] Visani | Icdar 2013 music scores competition: Staff removal[END_REF]. For completeness, we also report the winner of the binary segmentation contest, though such method only performs a semantic segmentation. [START_REF] Casiez | 1€ filter: a simple speed-based low-pass filter for noisy input in interactive systems[END_REF] 327 87.2 (± 5.9) 85.1 (± 9.6) 95.9 (± 2.1) 95.7 (± 2.2) Kalman [START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF] 328 85.0 (± 7.1) 80.7 (± 15.6) 95.3 (± 2.5) 94.1 (± 5.6) LRDE-bin [START_REF] Visani | Icdar 2013 music scores competition: Staff removal[END_REF] 97.1

images from the dataset of the ICDAR 2021 competition on historical map segmentation [START_REF] Chazalon | Icdar 2021 competition on historical map segmentation[END_REF]. The challenges of this competition relied on an accurate detection of boundaries of building blocks, of map content on the sheet, and of georeferencing lines; all of them being mostly linear objects in the map images. We retained 15 images of average size 5454x3878 (21 Mpix) for our experiment: 3 for the training set, and 12 for the test set. Because no pixel-level ground truth exists for these images, we report qualitative results. The computation times of the trackers are similar: about 5-6s per 21 Mpix maps image. Time variations are due to the number of trackers to update during the process that depends on the observations integrated with the tracking strategy. From a quality standpoint (outputs available in extra material), the Kalman strategy outperforms all the other tracking strategies as shown in fig. 7. Indeed, these documents contain many overlaps and noise that create discontinuities when extracting observations. Kalman filters enable recovering the lines even if there are hidden behind some object. On the other hand, the other trackers with simpler prediction models (such as the one-euro or the last observation trackers) integrate wrong observations and lead to line segment fragmentation. 

Conclusion

Our goal was to implement a line segment detection method that was first proposed in the 1990s [START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF][START_REF] Poulain D'andecy | Analyse de partitions musicales[END_REF][START_REF] Leplumey | Kalman filter contributions towards document segmentation[END_REF]. However, we generalized it within the Multiple Object Tracking framework that we proposed. We demonstrated the efficiency of the original proposal, which was based on Kalman filters, and also suggested some competitive alternatives. These approaches are highly robust to noise, overlapping contents, and gaps. They can produce an accurate instance segmentation of linear objects in document images at the pixel level. Results can be reproduced using open code and data available at https://doi.org/10.5281/ zenodo.7871318.

Fig. 3 :

 3 Fig.3: Algorithm and illustration of the observation extraction process. The red curve represents the luminosity profile of a line (or a column) of pixels. The algorithm looks for a range of pixels [n . . . n + s] whose value do not exceed lmm (L.3) and computes its contrast (L.[START_REF] Burns | Extracting straight lines[END_REF][START_REF] Canny | A computational approach to edge detection[END_REF][START_REF] Casiez | 1€ filter: a simple speed-based low-pass filter for noisy input in interactive systems[END_REF]. Then, this range is refined to extract the largest sub-range whose contrast does not exceed r (a parameter of the method set to 1 in all our application but kept from the original method) times contrast (L.8-9) and gives the observation with features computed on lines 10-12.

Fig. 7 :

 7 Fig. 7: Instance segmentation on map images. Left: original image, center: Kalman tracker, right: EMA tracker. With the same filtering parameters, the EMA tracker is more sensitive to gaps and overlaps and fragments objects.

  detail our implementation this step based on our interpretation of the original approach[START_REF] Poulain D'andecy | Kalman filtering for segment detection: application to music scores analysis[END_REF][START_REF] Poulain D'andecy | Analyse de partitions musicales[END_REF][START_REF] Leplumey | Kalman filter contributions towards document segmentation[END_REF]. 2. Predict the most probable next observation X i t for each tracker i, using its current internal State S t-1 . Predictions have the same structure and attributes as observations. 3. Match extracted observations O j t with predicted ones X i t . Matching is a two-step process performed for each tracker i. First, candidate observations O i,j t are selected based on a distance threshold, and slope, thickness and luminance compatibility (they must be inferior to 3 times the standard deviation of each parameter, computed over a window of past observations). Second, the closest observation is matched: Ôi t = arg min |O i,j t (position) -X i t (position)|. The same observation can be matched by multiple trackers when lines are crossing. Unmatched observations Ōt are kept until step 5.4. Integrate new observations Ôi

t into trackers' States S i t , considering (in the more general case) current State S i t-1 , scene t, matched observation Ôi t and prediction X i

  : all observations have luminance, position and thickness attributes, and States have a similar structure, generally adding a slope attribute to capture position change. In this work, we consider the follow-

	Observation extraction algorithm
	1: for n = 0 to max n do
	2:	if Imaget[n] < lmm then
	3:		
	4:	lmin	← min of Imaget[n . . . n + s]
	5:	lmax	← max of Imaget[n . . . n + s]
	6:	contrast ← lmax -lmin
	7:		

s ← 0; do { s ← s + 1 } while (Imaget[n + s] < lmm);

Table 1 :

 1 Vectorization performance and compute time of various MOT strategies on the trade directories dataset. F-score and F-score 2 are computed per-page and averaged on the dataset (standard deviation is shown between brackets).

		Time	F-Score		F-score2
		(ms)	Train	Test	Train	Test
	Last observation 616 95.2 (±7.5) 90.0 (±24.1) 92.7 (±13.0) 87.2 (±24.7)
	SMA	652 95.2 (±7.5) 90.0 (±24.0) 92.7 (±13.0) 87.4 (±24.7)
	EMA	617 92.6 (±8.6) 89.7 (±24.3) 88.3 (±16.9) 86.5 (±24.8)
	Double exp. [22]	623 94.6 (±7.2) 87.3 (±25.6) 85.6 (±15.9) 81.7 (±26.4)
	One euro [6]	627 95.2 (±7.5) 90.1 (±24.0) 90.8 (±17.2) 87.2 (±24.7)
	Kalman [27]	633 95.2 (±7.5) 90.1 (±24.0) 92.7 (±13.0) 87.6 (±24.6)

Table 2 :

 2 Vectorization performance and compute time of various line segment detection approaches on the trade directories dataset. Even on this rather simple dataset, these results show the superiority of MOT-based approaches for line segment detection in document images.

		Time	F-Score	F-score2
		(ms)	Train	Test	Train	Test
	MOT (Kalman)	633 95.2 (±7.5) 90.1 (±24.0) 92.7 (±13.0) 87.6 (±24.6)
	AG3Line [39]	434 66.2 (±23.8) 72.5 (±35.4)	25.9 (±9.9) 24.2 (±13.7)
	CannyLines [25] 551 81.2 (±22.7) 84.4 (±24.2) 39.0 (±13.5) 34.2 (±14.0)
	EDLines [2]	314 83.2 (±23.6) 87.4 (±24.0)	35.5 (±8.3) 30.5 (±12.3)
	ELSED [33]	264 91.1 (±11.3) 87.0 (±26.6)	45.3 (±9.6) 35.2 (±13.7)
	Hough [13]	419 80.5 (±14.5) 64.8 (±30.0)	23.5 (±9.2) 18.2 (±10.1)
	LSD [14]	2338 18.7 (±10.3)	12.5 (±8.5)	1.6 (±1.5)	0.5 (±0.6)
	LSD II	2206 76.7 (±28.6) 53.3 (±43.7) 47.6 (±24.7) 20.7 (±17.9)

  (± 14.9) 65.5 (± 18.4) 92.5 (± 4.7) 89.6 (± 7.7) Double exp.[START_REF] Laviola | Double exponential smoothing: an alternative to kalman filter-based predictive tracking[END_REF] 320 55.4 (± 16.2) 51.7 (± 15.8) 87.3 (± 5.0) 83.8 (± 8.6) One euro

		Time	Panoptic Quality		F-Score (ICDAR'13)
		(ms)	Train	Test	Train	Test
	Last observation 323 86.3 (± 5.2) 83.7 (± 11.1) 95.9 (± 2.1) 95.4 (± 2.7)
	SMA	323 67.6 (± 17.0) 66.0 (± 17.6) 90.7 (± 6.5) 89.9 (± 7.4)
	EMA	322 74.0			
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