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ABSTRACT

We study, using a noisy rational expectations framework, how the availability

of new data to forecast asset payoffs (“data abundance”) affect the capital allocated

to quantitative asset managers (“data miners”) relative to other active asset man-

agers, the mean and the cross-sectional dispersion of their performance, and price

informativeness. Data miners search for predictors of asset payoffs and trade when

they find one with a sufficiently high precision. Data abundance raises the precision

of the best predictors. Yet, it eventually induces data miners to lower the bar for

their signal precision. Then, their performance becomes more dispersed, and they

receive less capital. Overall, data abundance is both a catalyst and an impediment

to the rise of quant funds.
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“In the search for [...] alpha, fund managers are increasingly adopting quantitative

strategies. [...] a new source of competitive advantage is emerging with the availability

of alternative data sources as well as the application of new quantitative techniques of

Machine Learning to analyze these data.” (JPMorgan (2017), p.9)

I. Introduction

The “big data revolution” is having a major impact on the financial industry, particularly

the active asset management industry. As the opening quote suggests, the proliferation of

new datasets (“data abundance”) and lower information processing costs (due to increased

computing power) fuel the rise of quant funds.1 Researchers in these funds mine vast

amounts of data in search of new trading signals. This evolution raises many questions.

Will quants crowd out more traditional (“discretionary”) asset managers? How does it

affect the performance of active asset managers? And will it increase price efficiency?

Our paper provides a benchmark model to study these questions. This model is

unique in its ability to separate the effects of two facets of the big data revolution: (i)

data abundance and (ii) lower information processing costs. These are often co-mingled,

as if, both were contributing to reduce the cost of information production. Yet, they are

conceptually distinct. Alternative data such as sensors or social media data can be useful

to predict future cash-flows or returns.2 Thus, it improves the precision of signals that

quant funds can discover. However, it does not in itself reduce data processing costs. A

new message of our theory is that the effects of data abundance and lower data processing

costs are not necessarily the same.

Our model features risk averse investors who allocate their capital to asset managers.

There are two types of asset managers: (i) “Experts” and (ii) “Data miners.” Each can

manage only a limited amount of capital and the total amount of available capital is equal

to the maximum capacity of each category (so that allocating capital only to experts or

only to data miners is possible). Experts and data miners invest in the same risky asset

but differ in their technology to produce information about the asset. Each expert has a

1Abis (2022) finds that the number of quant funds in the U.S. grew from 6.71% to 20.65% of all
active U.S. funds from 2000 to 2017. See also Harvey et al. (2017) and Begs et al. (2019) for similar
evidence.

2Dessaint et al. (2022) identifies more than twenty academic papers showing that social media data
(e.g., from twitter), sensors data (e.g., satellite images) or business activity data (e.g., credit card data)
can be used to forecast stock returns or earnings.



pre-determined (e.g., via education), specific ability (skill) to obtain a signal of a given

precision. In contrast, data miners discover their trading signals through a search process

consisting of multiple exploration rounds. In a given round, each data miner can combine

variables from different datasets (e.g., accounting data and social media data) to build a

predictor of the asset payoff. The quality of this predictor, τ , is drawn from a distribution

whose support ranges from zero (noise) to τmaxdm (the “data frontier”). After a given round,

each data miner can decide either to launch a new round of exploration at cost c (the

search cost) or to stop searching. This process is repeated until each data miner finds a

satisficing predictor. Then the market for the risky asset opens and trading takes place

between asset managers, dealers, and noise traders (trading is formalized as in Vives

(1995)).

We interpret experts as “discretionary” funds and data miners as “quant” funds (see

Harvey et al. (2017) and Abis (2022)). The former relies on expertise (e.g., industry

knowledge) and judgemental analysis to generate investment ideas while the latter sys-

tematically explores various datasets to discover and select predictors. As explained

in Narang (2013) (Chapters 8 and 9), this process requires (i) obtaining, cleaning and

preparing new data for analysis, (ii) using statistical techniques to obtain a predictor with

this data and (iii) deciding, via backtesting, whether a predictor is good enough for live

trading. One round of exploration comprises all these steps and the exploration cost is

the total cost of executing them.

We characterize the equilibrium of the model, that is, (i) the allocation of capital to

data miners and experts, (ii) data miners’ optimal search strategy, (iii) asset managers’

optimal holdings and (iv) the risky asset price such that (a) asset managers and investors

make optimal decisions and (b) the asset market clears. In equilibrium, each data miner

optimally stops searching once she finds a predictor whose quality exceeds an endogenous

threshold, τ ∗. Thus, in equilibrium, the quality of data miners’ predictors is distributed

over τ ∗ (least informative) to τmaxdm (most informative). Hence, even though data min-

ers are ex-ante homogeneous (same preferences and exploration costs), they are ex-post

heterogeneous in the quality of their predictors (and therefore performance).

When investors allocate capital to asset managers, they observe experts’ skills and

correctly anticipate data miners’ search strategy (τ ∗). Investors prefer to allocate capital

to experts with a skill above τ ∗ than to data miners because their expected utility increases
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with experts’ quality. Thus, investors optimally allocate capital to experts up to the point

at which the marginal expert has a signal quality just equal to τ ∗. The rest of investors’

capital is then optimally allocated to data miners. This process determines the fraction

of investors’ capital, denoted µ∗, allocated to data miners.

Our analysis focuses on equilibrium effects of (i) an increase in the data frontier (τmaxdm )

and (ii) a decrease in data miners’ search costs (c). We interpret the former as stemming

from the availability of new datasets (data abundance) and the latter as reflecting greater

computing power.3 Conditional on a given capital allocation and for given distributions

of signals’ quality across data miners and experts (which are all fully determined by τ ∗),

the analysis of asset managers’ trading decisions and the equilibrium of the market for

the risky asset is standard. Thus, all the novel implications of the model derives from the

effect of the data frontier or data miners’ search costs on their search strategy (τ ∗) and

the resulting capital allocation (µ∗).

Consider a push back of the data frontier (i.e., an increase in τmaxdm ). It raises the

expected trading profit of data miners who find the best predictor (the “hidden gold

nugget” effect) since its quality becomes even larger. However, these data miners trade

more aggressively on their signal (i.e., they make larger bets for a given deviation be-

tween the asset price and their forecast of its payoff) because they face less risk (the

“aggressiveness effect”). As a result, the asset price is more informative (closer to the

asset payoff), which reduces the expected profit of all data miners, especially those who

do not find good predictors. The first effect raises the value of searching for a better

predictor after finding one while the second reduces it. When τmaxdm is small, the hidden

gold nugget effect dominates. Thus, a push back of the data frontier induces data miners

to be more demanding for their predictors (τ ∗ increases in equilibrium) and capital flows

from experts to data miners. However, when τmaxdm becomes large enough, a push back of

the data frontier induces data miners to search less intensively (τ ∗ decreases) and capital

flows back to experts because the aggressiveness effect dominates. In sum data abun-

dance is a double-edged sword for quant funds: It facilitates their entry initially but, in

3 One reason why greater computing power reduces quants’ search costs is that it reduces the time
required to perform one exploration round. For instance, Anthony Ledford, the chief scientist of MAN
AHL (a quantitative fund), writes that “Strategies based on NLP [...] are also live in client trading.
Researching such strategies requires [...] a processor called graphical processing unit (GPU) that can
complete the calculations [...] in 1/30th of the time taken by [...] a standard computer.” See AI Pioneers
in Investment Management, CFA Institute, 2019.
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the long run, it can eventually reduce capital available to these funds.

In contrast, a decrease in data miners’ search cost, c, unambiguously raises the value of

searching for another predictor after finding one because it reduces the total expected cost

of search without directly affecting data miners’ average trading aggressiveness. Thus, a

reduction in data miners’ search costs always leads them to be more demanding for the

quality of their predictors and triggers an increase in capital allocated to these funds.

As shocks to data miners’ search costs and the data frontier affect data miners’ search

intensity, they also affect the average quality of the signals used by both data miners and

experts and, through this channel, price informativeness and asset managers’ average

performance (measured by their average trading profits, in a way similar to Berk and

van Binsbergen (2015)). In equilibrium, a push back of the data frontier always triggers

an improvement in the average quality of the signals used by all asset managers (even

though, it can reduce data miners’ search intensity) as does a reduction in data miners’

search costs. Thus, a push back of the data frontier or a decrease in data miners’ search

costs raises the informativeness of the risky asset price.

For these reasons, asset managers’ (cross-sectional) average performance is in general

hump-shaped in data miners’ search costs (c) and the data frontier (τmaxdm ). Indeed, a

reduction in c or an increase in τmaxdm raise both the average quality of asset managers’

signals and asset price informativeness. The first effect has a positive impact on asset

managers’ average performance while the second has a negative effect (by reducing each

asset manager’s informational edge). When τmaxdm becomes large enough or c small enough,

this second effect dominates. Thus, in the long run, the big data revolution should erode

active asset managers’ performance (quants and discretionary funds alike).

The model also implies that shocks to the data frontier and data miners’ search

costs should affect the dispersion of performance within a given group of asset managers

(experts or data miners). The average performance of an asset manager increases with

the quality of her signal, other things equal. Thus, within a given group, the difference

between the average performance of top and bottom performers increases in the difference

between the quality of their signals. A reduction in data miners’ search costs raises the

lowest quality of the signals used by both data miners and experts, directly in the former

case (through a more intense search process) and indirectly in the latter case (through

a reallocation of capital away from the experts with the lowest skills). As a result, the
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difference in performance between top and bottom performers within each group declines.

In contrast, this difference is a U-shaped function of the data frontier. Indeed, when τmaxdm

is small, a push back of the data frontier raises data miners’ search intensity while it

reduces it when τmaxdm becomes large enough.

We also analyze how changes in data miners’ search costs and the data frontier af-

fect management fees, assuming that these fees are set through Nash bargaining (as in

Garleanu and Pedersen (2018)). In equilibrium, data miners charge a fee equal to their

reservation wage. Intuitively, they cannot extract rents from investors because the latter

always have the outside option to contact another (inactive) data miner and all data min-

ers offer the same ex-ante expected utility to each investor (since data miners are ex-ante

homogeneous). In contrast, the higher is an expert’s skill, the higher is the expected util-

ity of investors allocating capital to this expert. As experts with a given skill are in short

supply, those with a skill above the marginal expert (the expert with skill τ ∗) can charge a

fee above their reservation wage and this fee increases with their skill. A decrease in data

miners’ search costs reduces experts’ fees because it raises data miners’ search intensity

and therefore the expected utility that investors obtain by allocating their funds to them

(investors’ outside option when they negotiate fees with experts). This is also the case for

an increase in the data frontier when it induces data miners to search more intensively.

However, when it does not, a push back of the data frontier enables low quality experts

to charge larger fees because allocating capital to data miners becomes less attractive.

To our knowledge, our predictions regarding data abundance are new and cannot be

easily derived from the literature (see Section II). In contrast, the effects of a variation in

data miners’ search cost (c) are similar to those obtained by varying the cost of informa-

tion acquisition in standard noisy rational expectations model (e.g., Verrecchia (1982)).

However, we are not aware of such models in which, in equilibrium, investors with the

same information acquisition technology acquire signals of different precision, as data

miners do in our model. This feature of our model enables us to derive implications for

the effects of shocks on c (or τmaxdm ) on the dispersion in asset managers’ performance.4

In Section VIII, we summarize the predictions of the model and discuss how they could

be tested by (i) exploiting differences in industry or asset class coverage by alternative

4This is important because empirical findings suggest that asset managers have heterogeneous per-
formance due to heterogeneity in the quality of their signals. See, for instance, Barras et al. (2022) and
Kacperczyk and Seru (2007).
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data providers and (ii) one time shocks to quant funds’ search costs (e.g., due to cheaper

computing power with the introduction of Amazon Web Services in 2006 or changes in

data format facilitating the use of natural language processing techniques).

The paper is organized as follows. Section II positions our contribution in the lit-

erature. Section III presents the model and Section IV derives its equilibrium. Section

V analyzes how changes in computing power and data abundance affects data miners’

search strategy, the allocation of capital to data miners, and the informativeness of the

asset price. Section VI derives implications for the effects of the big data revolution on

asset managers’ average performance and the dispersion of this performance across man-

agers. Section VII endogenizes asset managers’ fees while Section VIII summarizes the

main testable implications of our theory. Section IX concludes.

II. Contribution to the Literature

Our paper is related to three strands of literature. First, it contributes to the theoretical

literature studying trends in the asset management industry (such as the rise of insti-

tutional investors, institutional holdings’ concentration or indexing) and its effects (e.g.,

Huang et al. (2019), Kacperczyk et al. (2022), Buss and Sundaresan (2022) or Bond

and Garćıa (2021)). Here we focus on the rise of quant funds and relates it to (a) the

availability of new data and (b) a decline in the cost of processing this data.

The theoretical literature on quantitative investors is scarce. Malikov and Pasquar-

iello (2022) introduces a quantitative informed investor in Kyle (1985). This investor is

myopic in the sense that her trading strategy is optimal provided that other informed

investors behave as if she was not present. This assumption captures the idea that quan-

titative investors follow fixed trading rules calibrated on past data (“backtesting”). In

contrast, we formalize quants as agents producing information through a search process

and we focus on the effects of data abundance and information processing costs on their

strategies (these parameters play no role in Malikov and Pasquariello (2022)). Our mod-

eling approach is closer to Garleanu and Pedersen (2018). In their model, active asset

managers can be either informed or uninformed and they study how investors allocate

capital to both types. Investors can identify informed ones at a cost. Here, we assume

that identifying informed asset managers is costless but we introduce heterogeneity in the
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technologies used by active asset managers to generate their investment ideas.

Secondly, our paper contributes to the literature on endogenous information acqui-

sition in noisy rational expectations models (see Veldkamp (2011) for a survey). These

models assume either that (i) investors can obtain a signal of fixed exogenous precision

by paying a cost (e.g., Grossman and Stiglitz (1980) or that (ii) investors choose the pre-

cision of their signal, with signals of higher precision being more costly (e.g., Verrecchia

(1982)). Neither of these approaches can be used to study how, other things equal, an

exogenous shock on the distribution of signals’ precision affects agents’ efforts to improve

the precision of their signals (the intensive margin of information production). With the

first approach, only the extensive margin of information production (the mass of investors

acquiring information) is endogenous. With the second one, the intensive margin varies

endogenously but only through shocks to the cost of information production. Yet, as

explained in the introduction, the availability of new datasets enables investors to find

signals of higher quality without changing data processing costs. Thus, to analyze the

effects of data abundance on investors’ efforts to discover signals of high quality, one needs

a new modeling approach.

Our methodological contribution is to propose one. Our framework allows to analyze

the effect of exogenous shocks on investors’ signals precision (shocks to τmaxdm )–holding

the cost of information production (c) constant–on both (i) the intensive margin of infor-

mation production (characterized by τ ∗, which determines the endogenous cross-sectional

distribution of the precision of asset managers’ signals in our model) and (ii) the extensive

margin (the allocation of capital between two types of informed investors). In this way,

we can untangle the effects of both dimensions of the big data revolution: (i) a reduction

in the cost of processing data and (ii) an increase in the precision of the best signals that

investors can obtain due to an expansion of available data. We find that these two shocks

can affect efforts to produce information in opposite directions. To our knowledge, this

economic insight is new and cannot be delivered in the existing literature (since it does

not allow to analyze (ii) separately from (i)).

Han and Sangiorgi (2018) and Banerjee and Breon-Drish (2021) also formalize infor-

mation acquisition as a search problem but they analyze different questions. Han and

Sangiorgi (2018) provide a micro-foundation for the assumption (e.g., Verrecchia (1982))

that information acquisition costs are increasing and convex in precision with a model
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in which an agent can repeatedly draw normally distributed signals from an “urn.” Each

draw is costly, similar to the cost of exploration in our model. In Banerjee and Breon-

Drish (2021), one investor optimally alternates between periods in which she searches

for information and periods in which she does not. When she searches for information,

the investor finds a signal of a given precision according to a Poisson process and starts

trading on this signal as soon as she finds it. In this model, investors face uncertainty on

foregone trading opportunities (due to search delays) rather than signal quality as in our

model.

Lastly, our paper contributes to the growing theoretical literature on new informa-

tion technologies for the production of financial information (e.g., Dugast and Foucault

(2018), Farboodi and Veldkamp (2020), Milhet (2020) or Huang et al. (2022)). This

literature assumes that progress in information technologies reduces the cost of process-

ing information (or relaxes investors’ attention constraints) and explores ramifications of

this assumption. Our model accounts for another dimension of this progress, namely the

improvement in the highest precision of the signals that investors can obtain due to the

availability of new data (data abundance).

III. Model

Figure 1 describes the timing of actions in the model. In period 0, a continuum of investors

(of mass 1) invest their savings, denoted W0, in the stock market through active asset

managers. As in Garleanu and Pedersen (2018), asset managers can hold a risk free asset

(whose rate of return is normalized to zero) and a risky asset. The payoff of the risky

asset, ω, is realized in period 3 and is normally distributed with mean zero and variance

σ2
ω.

A Experts and Data Miners

There are two types of asset managers: (i) “Experts” (a continuum of mass 1) or (ii)

“Data Miners” (a continuum of mass 1). Each asset manager cannot serve more than a

fixed number of clients that we normalize to one. We denote by µ (1− µ) the fraction of

investors who allocate capital to data miners (experts). Henceforth, subscript “dm” refers

to “data miners” and subscript “ex” to “expert”.
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Period 0

Matching :

◮ Each investor is
matched with an
asset manager of
two possible types :
expert or data miner.

◮ An expert can
produce a signal of
fixed precision τ .

◮ A data miner must
first search for a
predictor in period 1
to produce a signal.

Period 1

Data Mining :

◮ Each data miner
searches for a
predictor of the
asset payoff through
multiple rounds.

◮ In each round, a
data miner finds a
predictor, of quality
τ ∈ [0, τmax ], and
then decide to stop,
or start another
search round.

Period 2

Trading :

◮ Each manager
observes the
realization of her
signal (sτ ) and
chooses a trading
strategy, x(sτ , p).

◮ Managers, noise
traders and dealers
trade the risky asset
at price p.

Period 3

Asset
payoff, ω, is
realized.

Figure 1: Timing

If a manager receives funding, she builds her portfolio at date 2. Just before doing

so, she receives a signal sτi about the payoff of the risky asset such that

sτi = ω + τ
−1/2
i εi. (1)

The noise in asset managers’ signals (εi) is normally distributed with mean zero and

variance σ2
ω and is independent across managers. The higher is τi, the higher is the

precision (“quality”) of asset manager i’s signal.

Experts and data miners obtain their signals in different ways. The quality of an

expert’s signal is fixed. We refer to it as her “skill” and assume it is pre-determined

(e.g., by prior education or experience).5 Experts’ skills are distributed over [0, τmaxex ]

with a cumulative probability distribution Γ(.) (density γ(.)). In contrast, the quality of

data miners’ signal is determined in period 1 through a search process. The goal of this

process is to discover predictors of the asset payoff via multiple exploration rounds. Each

round costs c and yields a predictor of quality τ drawn in [0, τmaxdm ] from the cumulative

5Chevalier and Ellison (1999) and Li et al. (2011) find that asset manager’s education is the most
robust variable explaining cross-sectional differences in the performance (alphas) of managers in their
samples.
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distribution Φ(.) (density φ(.)), defined as:

Φ(τ) = Pr(τ̃ ≤ τ) = Ψ(τ)
Ψ(τmaxdm ) , (2)

where Ψ(.) (density ψ(.)) is a cumulative probability distribution defined on [0,∞].6 After

each exploration round, a data miner can decide (i) to stop searching or (ii) to start a

new exploration. The quality of the signal she obtains in period 2 is the quality of her

latest predictor.7. We refer to the highest predictors’ quality, τmaxdm , as the data frontier.

We focus on equilibria in which each data miner follows an optimal stopping rule

τ ∗i (there is no other equilibrium with Markovian search strategies; see Section II.B in

the online appendix). That is, data miner i stops searching once she finds a satisficing

predictor whose quality τ exceeds τ ∗i . We denote by Λ(τ ∗i ; τmaxdm ) the likelihood of this

event in a given search round:

Λ(τ ∗i ; τmaxdm ) ≡ Pr(τ ∈ [τ ∗i , τmaxdm ]) = 1− Φ(τ ∗i ). (3)

An asset manager with a more demanding stopping rule (higher τ ∗i ) conducts more explo-

ration rounds on average.8 For this reason, we refer to τ ∗i as the asset manager’s “search

intensity”.

Interpretation. We interpret “data miners” as quant funds’ managers and experts as

funds’ managers (“discretionary investors”) who rely more on judgement and qualitative

analysis to generate investment ideas. A central task in quant funds consists in searching

for predictors (see Narang (2013), Chapters 8 and 9) . This task requires acquiring new

datasets, clearing and preparing them for statistical analysis, writing algorithms to pro-

cess the data, and finally backtesting trading strategies to assess the economic value of a

predictor. Data miners’ search cost c is the cost of this task. This information processing

cost has declined over time because of digitization (which enables automation of unstruc-

tured data processing) and progress in computing power (which enables a research team

to complete an exploration round faster).

6This specification is analytically convenient to parameterize the effect of τmaxdm on the distribution
of predictors’ quality when we study the effects of τmaxdm on equilibrium outcomes in Sections V and VI.

7Results are identical (but the presentation more involved) if this is the predictor of highest quality
found over all exploration rounds; see Section II.A in the online appendix.

8The number of exploration rounds, ni, performed by data miner i has a geometric distribution with
parameter Λ(τ∗

i ; τmaxdm ). Her expected number of explorations is therefore E[ni] = Λ(τ∗
i ; τmaxdm )−1, which

increases with τ∗
i .
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The data frontier, τmaxdm , captures a different dimension of the big data revolution,

namely the proliferation of new datasets (so called alternative data).9 As more datasets

become available (“data abundance”), data miners can try more diverse variables to pre-

dict asset payoffs. Combined with progress in forecasting techniques, this evolution en-

ables quant funds to find ever more powerful predictors, that is to push back the data

frontier (raise τmaxdm ).

In sum, we interpret an increase in τmaxdm as reflecting the availability of new datasets

and a reduction in c as being due to a decline in the cost of information processing due

to greater computing power and digitization. Our analysis focuses on equilibrium effects

of these shocks in our model. We explain how one could design tests of the implications

of the model in Section VIII.

A predictor can be viewed as a function (e.g., fitted with linear regressions or machine

learning techniques) of variables from different datasets (e.g., accounting data, geolocation

data and consumer transactions data) that minimizes the predictor’s average forecasting

error in-sample. The data miner then uses the realization of these variables in period 2

(out-of-sample) to obtain her signal, sτ , at this date.10 We formalize this interpretation

in Section II.C of the online appendix. Specifically, we assume that data miners obtain a

predictor in each round by running a regression of ω on a fixed number, N , of variables.11

The predictive power of one (or several) new variable used in place of one (or several)

variable used in former exploration rounds is random. For this reason, as assumed in our

model, the quality of a predictor obtained in a given round is random and can drop from

one round to the next.12

9JPMorgan (2017) lists more than 500 different alternative data providers and this number has
steadily increased over time (see Dessaint et al. (2022), Figure I)

10As usual in rational expectations models, we assume that there is no uncertainty on the quality of
a predictor, τ , once it is discovered. In reality, investors are uncertain about this quality (e.g., because
they have too few past observations to accurately estimate their predictive model) and learn it over time
as they accumulate data (see Martin and Nagel (2022)). Analyzing this case is beyond the scope of our
paper.

11It is realistic to assume that data miners restrict themselves to using a limited number of variables
for building up their predictors. Indeed, quant funds often do so to avoid the risk of overfitting. For
instance, Narang (2013) (a quant manager) writes (on p.163) that “Among quants parsimony implies
caution in arriving at a hypothesis. This concept is absolutely central to the research process in quant
trading. Models that are parsimonious utilize as few assumptions and as much simplicity as possible [...]
As such models with a large number of parameters or factors are generally to be viewed with skepticism,
especially given the risks of overfitting.”

12 In this approach, sτ is the predicted value of ω according to the regression and the R2 of the
regression ran in a given round increases with the quality of the predictor obtained in this round (see
the online appendix). Thus, searching for predictors of high quality is the same thing as searching for
predictors with high R2s.
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B Trading

The market for the risky asset opens in period 2 after all data miners find a predictor

with satisficing quality. At the beginning of period 2, after observing the realization of

her or his signal, sτ , each asset manager with capital chooses a trading strategy, i.e., a

demand schedule, xi(sτ , p), where, p, is the price of the risky asset.

As in Vives (1995), asset managers trade with noise traders and risk-neutral market

makers. The noise traders’ aggregate demand is price-inelastic and denoted by η, where

η ∼ N (0, σ2
η) (η is independent of ω and errors’ in asset managers’ signals). Market-

makers observe the aggregate demand for the asset, D(p) =
∫
xi(sτ , p)di + η and post

a price such that they obtain zero expected profits. Thus, the equilibrium price, p∗, is

equal to their expectation of the asset payoff conditional on the aggregate demand for

the asset:13

p∗ = E [ω |D(p∗) ] . (4)

C Asset managers’ objective function.

As in Garleanu and Pedersen (2018), investors have a CARA utility function (with risk

aversion ρ) and asset managers invest in their clients’ best interest. We assume that asset

managers return to investors the value of their portfolio net of their operating costs (we

relax the assumption that managers get zero surplus in Section VII). Thus, in period 3,

asset manager i with type j ∈ {dm, ex} returns to investors:

Wi,j = W0 + xi(sτi , p)(ω − p)︸ ︷︷ ︸
Portfolio Liquidation Value

−(nic)1{j=dm}, (5)

where (i) ni is the realized number of exploration rounds for asset manager i if she is a

data miner and (ii) 1{j=dm} = 1 if j = dm and zero otherwise.

Thus, the ex-ante (period 0) expected utility of an investor matched with an expert

of type τ is:

H(τi) = E [− exp(−ρ(W0 + xi(sτi , p)(ω − p))]︸ ︷︷ ︸
Expected utility from trading

, (6)

13In Section II.D of the online appendix, we show that results are unchanged when we model trading
as in Grossman and Stiglitz (1980). In this case, there are no risk neutral dealers and the asset price is
such that the net aggregate demand from asset managers and noise traders is zero (so that the market
for the risky asset clears). In this case, the expected risk premium of the asset is different from zero.
Our approach simplifies the presentation of the results.
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and the ex-ante expected utility of an investor matched with data miner i is:

V (τ ∗i ) = E [− exp(−ρ(W0 + xi(sτi , p)(ω − p))]︸ ︷︷ ︸
Expected utility from trading

× E [exp(ρ(nic))]︸ ︷︷ ︸
Expected utility cost of exploration

, (7)

The ex-ante expected utility of data miner i’s client is determined by the data miner’s

search intensity, τ ∗i , because the latter determines both the distribution of ni and the

distribution of the data miner’s optimal trading strategy (xi(sτ , p)).

We assume that investors observe the type, τ , of each expert and correctly anticipate

data miners’ stopping rules in equilibrium. Thus, they allocate capital to data miners and

experts by comparing H(τi) and V (τ ∗i ). Last, we assume that investors have no expertise

and so no ability to obtain an informative signal about the payoff of the risky asset. It is

then never optimal for investors to invest in the risky asset directly.14

D Equilibrium Definition.

In equilibrium, experts and data miners face the same portfolio problem: They must

choose an investment in the risky asset, xi, that maximizes their client’s expected utility

conditional on the price of the asset and the realization of their signal. Thus, in equilib-

rium, an expert and a data miner who obtain signals of the same quality in period 2 follow

the same trading strategy x∗(sτ , p). Moreover, as all data miners are ex-ante identical,

they will all choose the same search intensity, τ ∗ in equilibrium.15 An equilibrium of the

financial market is a set {µ∗, τ ∗, x∗(sτ , p), p∗} such that:

1. In period 0, the allocation of capital between data miners and experts, µ∗, is stable.

That is, investors’ capital is allocated in such a way that no investor can increase his

expected utility by reallocating his capital to an asset manager without capital.16

2. For each data miner i, the search intensity τ ∗ and the trading strategy x∗(sτi , p)

maximize V (τ ∗i ) (given in eq.(7)) when other data miners’ search intensity is τ ∗ and

14This is clear given that the expected risk premium on the asset, conditional on public information,
is zero. However, this is also the case when the asset provides a risk premium (e.g., when there are
no dealers). The reason is that informed asset managers deliver a larger expected utility than what
uninformed investors can obtain.

15We show in Section II.B of the online appendix that there are no equilibria in which data miners
choose different search intensities.

16There are always asset managers without capital in equilibrium because there is “excess supply”
of asset managers: The total mass of experts and data miners combined exceeds the mass of investors
(remember that each asset manager accommodates at most one investor).
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other asset managers’ trading strategy is x∗(sτ , p).

3. The trading strategy x∗(sτi , p) of expert i maximizes H(τi) (given in eq.(6)) when

data miners’ search intensity is τ ∗ and other asset managers’ trading strategy is

x∗(sτ , p).

4. The asset price, p∗, satisfies p∗ = E [ω |D(p∗) ] where D(p∗) =
∫
x∗(sτi , p∗)di+ η.

In the next section, we solve for the equilibrium of the market for the risky asset.

Intuitively, in equilibrium, more skilled experts deliver a higher expected utility to their

clients. That is, H(τ) increases with τ (we show that this conjecture is correct below).

Thus, if an expert with a given skill, say τ ′, receives capital then all experts with skills

τ ≥ τ ′ must receive capital as well. If not then the allocation of capital to asset managers

cannot be stable because the investor allocating capital to the expert with skill τ ′ is better

off reallocating his capital to an expert with skill τ ≥ τ ′. Thus, the proportion of capital

allocated to experts is (1−Γ(τ)), where τ is the skill of the “marginal expert” (the expert

with the lowest skill among those receiving capital). Hence, in a stable equilibrium, it

must be the case that:17

(1− µ) = (1− Γ(τ))⇐⇒ µ = Γ(τ). (8)

Using this observation, in the next section, we solve the equilibrium in the following

way. We conjecture that, in equilibrium, the quality of the marginal expert, τ , is identical

to the quality of the data miner with the worst predictor, τ ∗, so that µ∗ = Γ(τ ∗) (eq.(8)).18

In a first step (Proposition 1), we solve for the equilibrium of the trading stage in period

2 taking τ ∗ (and therefore µ∗) as given. From this step, we then derive data miners’

optimal search intensity, τ ∗, in equilibrium (Proposition 2). Finally (Proposition 3), we

show that in equilibrium it must be the case that τ = τ ∗ and therefore µ∗ = Γ(τ ∗), as

conjectured .

17Condition (8) holds even if µ = 0 or µ = 1 because the mass of investors is equal to 1. Thus, one
can always match all investors with all experts (the case µ = 0) or all investors with all data miners (the
case µ = 1). The first case never arises in equilibrium for c low enough (see Proposition 2) while the
second never happens for τmaxdm finite.

18Alternatively, we could solve for the equilibrium search intensity and trading strategy for an arbitrary
value of τ (and therefore µ) and then conclude that in a stable equilibrium it must be the case that
τ = τ∗. However, this approach lengthens the presentation without adding any insight. Hence we prefer
to directly conjecture that τ = τ∗ and then check that the conjecture is correct.
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IV. Equilibrium

A Equilibrium of the market for the risky asset

As explained in the previous section, we first solve for asset managers’ equilibrium trading

strategy and the equilibrium price of the asset in period 2 by taking τ ∗ as given, under

the conjecture that µ∗ = Γ(τ ∗). Let φ∗(τ) be the distribution of quality for data miners’

signals given that they follow the stopping rule τ ∗:

φ∗(τ) = φ(τ)
Λ(τ ∗; τmaxdm ) = ψ(τ)

Ψ(τmaxdm )−Ψ(τ ∗) , ∀τ ∈ [τ ∗, τmaxdm ]. (9)

We denote the average quality of signals across (i) all data miners by τ̄dm(τ ∗) = Eφ [τ |τ ∗ ≤ τ ≤ τmaxdm ]

and (ii) all experts by τ̄ex(τ ∗) = Eγ [τ |τ ∗ ≤ τ ≤ τmaxex ]. The average quality of signals

across all asset managers, denoted τ̄(τ ∗; τmaxdm ), is therefore:

τ̄(τ ∗; τmaxdm ) = µ∗τ̄dm(τ ∗) + (1− µ∗) τ̄ex(τ ∗). (10)

We obtain the following result.

Proposition 1. In equilibrium, an asset manager’s demand for the risky asset is

x∗(sτ , p) = E[ω|sτ , p]− p
ρVar[ω|sτ , p]

= β(τ) (sτ − p) , (11)

where β(τ) = τ
ρσ2
ω

and the equilibrium price of the asset is

p∗ = E[ω|D(p)] = λ(τ ∗)ξ. (12)

where ξ ≡ ω + ρσ2
ω τ̄(τ ∗; τmaxdm )−1η and

λ(τ ∗) ≡ τ̄(τ ∗; τmaxdm )2

τ̄(τ ∗; τmaxdm )2 + ρ2σ2
ωσ

2
η

, (13)

An asset manager’s optimal holding of the risky asset is proportional to the difference

between her signal (sτ ) and the price of the asset (p). Holding this difference constant,

asset managers with signals of higher quality (larger τ) take larger positions (β(τ) is

larger) because, conditional on their information, their residual uncertainty about the

payoff of the asset is smaller. Thus, β(τ) measures the aggressiveness with which an
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asset manager exploits her signal.

As in Grossman and Stiglitz (1980), we measure price informativeness by the inverse

of the residual uncertainty about the asset payoff conditional on its equilibrium price,

which we denote by I(τ ∗; τmaxdm ) = Var[ω | p∗]−1. Using Proposition 1, we obtain that

I(τ ∗; τmaxdm ) = 1
σ2
ω

+ τ̄(τ ∗; τmaxdm )2

ρ2σ4
ωσ

2
η

. (14)

Thus, in line with intuition, the asset price is more informative when the average quality

of asset managers’ predictors, τ̄(τ ∗; τmaxdm ), increases. The next result is useful for the rest

of the analysis.

Lemma 1. Other things equal, the average quality of asset managers’ signals, τ̄(τ ∗; τmaxdm ),

and therefore price informativeness, I(τ ∗; τmaxdm ), increase with data miners’ search inten-

sity τ ∗.

Using Proposition 1, we can derive an asset manager’s ex-ante expected utility from

trading (as defined in eq.(7) or eq.(6)), i.e., before observing the realization of her pre-

dictor and the equilibrium price, when her predictor has type τ . We denote this ex-ante

expected utility from trading by g(τ, τ ∗) and refer to it as the trading value of a signal

with type τ . Formally:

g(τ, τ ∗) ≡ E [− exp(−ρ(W0 + x∗(sτ , p∗)(ω − p∗)) | τi = τ ] . (15)

Lemma 2. In equilibrium, the trading value of a signal with type τ is

g(τ, τ ∗) = −
(

1 + Var[E[ω|sτ , p∗]− p∗]
Var[ω|sτ , p∗]

)− 1
2

= −
(

1 + τ

σ2
ωI(τ ∗; τmaxdm )

)− 1
2

. (16)

The trading value of a signal increases with its quality and decreases with the infor-

mativeness of the asset price. Thus, it is inversely related to the average quality of asset

managers’ signals. Hence, holding quality constant, the value of a signal for a data miner

(or expert) is smaller if other data miners are more demanding for the quality of their

predictors (i.e., τ ∗ is larger).
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B Equilibrium data mining.

Armed with Lemma 2, we can now derive a data miner’s optimal search intensity given

that other data miners’ search intensity is τ ∗. Let τ̂i be an arbitrary search intensity for

data miner i. The data miner’s continuation value after turning down a predictor is

J(τ̂i, τ ∗) = exp(ρc) (Λ(τ̂i; τmaxdm ) Eφ [g(τ, τ ∗) |τ̂i ≤ τ ≤ τmaxdm ] + (1− Λ(τ̂i; τmaxdm ))J(τ̂i, τ ∗)) ,

(17)

where Λ(τ̂i; τmaxdm ) is the likelihood of finding a satisficing predictor in the next exploration

round. The first term (exp(ρc)) in eq.(17) is the expected utility cost of running an

additional exploration round. The second term is the likelihood that the next exploration

round is successful (Λ(τ̂i; τmaxdm )) times the average trading value of a predictor conditional

on the quality of this predictor being satisficing (i.e., larger than τ̂i). Finally, the third

term is the likelihood that the next exploration is unsuccessful times the data miner’s

continuation value when she turns down a predictor. Solving eq.(17) for J(τ̂i, τ ∗), we

obtain

J(τ̂i, τ ∗) =
[

exp(ρc)Λ(τ̂i; τmaxdm )
1− exp(ρc)(1− Λ(τ̂i; τmaxdm ))

]
︸ ︷︷ ︸
Expected Utility Cost from Exploration

×Eφ [g(τ, τ ∗) |τ̂i ≤ τ ≤ τmaxdm ]︸ ︷︷ ︸
Expected Utility from Trading

(18)

Now suppose that data miner i just obtained a predictor with quality τ . If she stops

searching, her expected utility is g(τ, τ ∗). If instead she launches a new round of explo-

ration, her expected utility is J(τ̂i, τ ∗). Thus, the data miner optimally stops searching if

g(τ, τ ∗) ≥ J(τ̂i, τ ∗) and keeps searching otherwise. As g(τ, τ ∗) increases with τ , the data

miner’s optimal stopping rule, τ ∗i (τ ∗), is the value of τ such that she is just indifferent

between these two options:

g(τ ∗i (τ ∗), τ ∗) = J(τ ∗i (τ ∗), τ ∗). (19)

In a symmetric equilibrium, τ ∗i (τ ∗) = τ ∗. We deduce that τ ∗ solves

g(τ ∗, τ ∗) = J(τ ∗, τ ∗). (20)
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Using the expression for J(., τ ∗) in eq.(17), we can equivalently rewrite this equilibrium

condition as

F (τ ∗) = exp(−ρc), (21)

where

F (τ ∗) ≡
∫ τmaxdm

τ∗
r(τ, τ ∗)φ(τ)dτ + (1− Λ(τ ∗; τmaxdm )) , for τ ∗ ∈ [0, τmaxdm ] , (22)

with

r(τ, τ ∗) ≡ g(τ, τ ∗)
g(τ ∗, τ ∗) =

(
τ ∗ + σ2

ωI(τ ∗; τmaxdm )
τ + σ2

ωI(τ ∗; τmaxdm )

) 1
2

. (23)

We deduce the following result.

Proposition 2. In equilibrium, data miners’ search intensity (τ ∗) is the unique solution

to eq.(21). It is always strictly smaller than τmaxdm and it is strictly larger than zero if and

only if F (0) < exp(−ρc).

Intuitively, when exp(−ρc) ≤ F (0) (i.e., when c is large), the expected utility cost

of exploration is larger than expected utility of trading for a data miner. Hence, in

equilibrium, data miners do not search (τ ∗ = 0).

In equilibrium, an investor who allocates capital to an expert with skill τ obtains an

expected utility equal to H(τ) = g(τ, τ ∗). Thus, as conjectured, H(τ) increases with τ

(Lemma 2). In contrast, an investor who allocates capital to a data miner obtains an

expected utility equal to V (τ ∗) = J(τ ∗, τ ∗) = g(τ ∗, τ ∗) (eq.(20)). Thus, V (τ ∗) = H(τ ∗).

Investors are therefore indifferent between allocating capital to an expert with skill τ ∗ or

a data miner and strictly prefer to allocate capital to experts with skill τ > τ ∗. It follows

that, in equilibrium, the skill of the marginal expert (the expert with the lowest skill) is

equal to the quality of the worst predictor used by data miners in equilibrium, τ ∗ and

therefore µ∗ = Γ(τ ∗) (eq.(8)). We deduce that the equilibrium of the financial market is

as described in the next proposition.

Proposition 3. In equilibrium, τ ∗ solves: F (τ ∗) = exp(−ρc) where F (.) is given by eq.(21).

Moreover, x∗ and p∗ are given as in Proposition 1 and the allocation of capital between

data miners and experts is such that µ∗ = Γ(τ ∗), with 0 ≤ µ∗ ≤ 1. Therefore the skill

of the marginal expert is τ = τ ∗ > 0. Moreover, µ∗ > 0 (data miners receive capital)
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if and only if F (0) < exp(−ρc), and µ∗ < 1 (experts receive capital) if and only if

F (τmaxex ) > exp(−ρc) .

Proposition 3 provides a full characterization of the equilibrium of the financial market.

In the rest of the paper, we focus on thecase in which F (0) < exp(−ρc) and F (τmaxex ) >

exp(−ρc) so that both data miners and experts receive capital (i.e., c small enough and

τmaxex large enough). We analyze the effects of data miners’ search costs (c) and the data

frontier (τmaxdm ) on the capital allocation between experts and data miners (Section V) and

the distribution of performance across asset managers (Section VI). In these analyses, we

are particularly interested in the effects that arise when the cost of search (c) becomes

very small or data becomes very abundant (τmaxdm very large) as these limiting cases are

often described as the endpoint of current progress in information technologies (Nordhaus

(2021)).

V. Capital Allocation: Data miners vs Experts

In this section we study how a reduction in data miners’ search costs (c) or push back of the

data frontier (an increase in τmaxdm ) affect data miners’ search intensity (τ ∗) and therefore

the allocation of capital to data miners relative to experts (µ∗). We also analyze how these

effects determine the average quality of asset managers’ signals and price informativeness.

Proposition 4. A decrease in data miners’ search costs, c, always increases data miners’

search intensity τ ∗ in equilibrium (∂τ ∗/∂c < 0) and τ ∗ goes to τmaxdm when c goes to

zero. For this reason, a decrease in data miners’ search costs raises the allocation capital

to data miners (µ∗). Moreover, it increases (i) the average quality of data miners and

experts’ signals (τ̄dm and τ̄ex), (ii) the average quality of all asset managers’ signals (τ̄)

and therefore (iii) price informativeness (I).

Holding τ ∗ constant, a decrease in data miners’ search costs directly reduces the

expected utility cost of launching a new exploration after finding a predictor (the first

term in bracket in eq.(18)) for data miners. Hence, it raises the value of searching for

another predictor after finding one, other things equal. Data miners become therefore

more demanding for the quality of their predictor in equilibrium and τ ∗ increases. As a

result, data miners deliver a higher ex-ante expected utility to investors (V (τ ∗) = g(τ ∗, τ ∗)
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increases). Thus, investors allocate more capital to data miners (µ∗ increases) and the

quality of the marginal expert increases.

These effects raise the average quality of the signals used by both data miners and

experts and therefore price informativeness increases (see 14). The latter effect reduces

the trading value of their signals for all asset managers (see eq.(16)). Hence, it dampens

the direct positive effect of a decrease in data miners’ search costs, c, on the value of

searching for a better predictor for data miners. However, in equilibrium, this indirect

effect never fully offsets the positive direct effect of a decrease in c on the value of searching

for another predictor after obtaining one.19

In the next proposition, we describe the effect of the data frontier, τmaxdm on the equilib-

rium. For the proof of this proposition, we need the following (mild) technical assumption:

A.1. The density ψ(.) (defined in eq.(2)), is such that for all τ ∗ > 0, limτmax
dm
→∞ τ̄(τ ∗; τmaxdm )

exists and is finite.

Proposition 5. Under Assumption A.1, there exists a threshold τ tr(c) such that when

τmaxdm ≥ τ tr(c) then a push back of the data frontier reduces (i) data miners’ search inten-

sity, τ ∗ (∂τ ∗/∂τmaxdm < 0) and (ii) the allocation of capital to data miners (∂µ∗/∂τmaxdm <

0). In this case, data abundance reduces the average quality of experts’ signals (τ̄ex) while

it increases the average quality of data miners’ signals (τ̄dm). Nevertheless, for all values

of τmaxdm , data abundance raises the average quality of asset managers’ signals (τ̄), and

therefore price informativeness (I).

Thus, a decrease in data miners’ search costs (e.g., due to cheaper computing power)

and a push back of the data frontier (e.g., due to the availability of new datasets) do not

have the same effects (compare Propositions 4 and 5). While the former always leads to

a rise in the allocation of capital to data miners, the latter can have the opposite effect

when τmaxdm becomes large enough. The reason is that, in contrast to a reduction in search

costs, a push back of the data frontier can induce data miners to become less demanding

for the quality of their predictors.

The reason is the following. Other things equal, a marginal increase in τmaxdm directly

increases the average quality of data miners’ predictors and therefore their average trading

19Suppose instead that it does (to be contradicted) and that, as a result, for some values of c, a
decline in c reduces τ∗. Then, for these values, asset managers’ average aggressiveness and therefore
price informativeness would fall when c declines. But then the value of searching for a new predictor
would increase. A contradiction.
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aggressiveness. As a result, price informativeness increases. This direct effect reduces the

average value of trading for data miners (E [g(τ, τ ∗)| τ ∗ ≤ τ ≤ τmaxdm ]) and therefore the

value of searching for a predictor (the “aggressiveness effect”). The improvement in the

best predictor acts as a countervailing force because it raises the value of trading on the

best predictor (the “hidden gold nugget effect”). However, for τmaxdm high enough, the

aggressiveness effect always dominates the hidden gold nugget effect. Hence, data miners

become less demanding for their predictors in equilibrium.

One can grasp this intuition more formally by differentiating asset managers’ ex-ante

expected utility from trading with respect to τmaxdm , holding τ ∗ constant:

∂ Eφ [g(τ, τ ∗)| τ ∗ ≤ τ ≤ τmaxdm ]
∂τmaxdm

=

φ∗(τmaxdm )

g(τmaxdm , τ ∗)− Eφ [g(τ, τ ∗)| τ ∗ ≤ τ ≤ τmaxdm ]︸ ︷︷ ︸
>0: Hidden Gold Nugget Effect

+ Eφ
[
∂g(τ, τ ∗)
∂τmaxdm

∣∣∣∣∣ τ ∗ ≤ τ ≤ τmaxdm

]
︸ ︷︷ ︸

<0: Aggressiveness Effect

 .
(24)

The first term in bracket in the above equation is the difference between the value of

trading on the best predictor and the ex-ante value of trading for data miners. It measures

the increase in data miners’ ex-ante expected value trading following a marginal increase

in τmaxdm , due to the increase in the value of trading on the best predictor (the “gold

nugget”). The second term in bracket is the loss in data miners’ ex-ante value of trading

due to the increase in their average trading aggressiveness following an improvement in

the quality of the best predictor (the “aggressiveness effect”).

When τmaxdm becomes large, the residual risk faced by data miners who obtain the best

predictor vanishes (they are less and less uncertain about the asset payoff). As a result,

their trading aggressiveness become very large and the asset price becomes increasingly

closer to the asset payoff (more informative). Thus, data miners’ expected trading profit

vanishes. For this reason, when τmaxdm becomes high enough, the aggressiveness effect

dominates the hidden gold nugget effect so that a push back of the data frontier (an

increase in τmaxdm ) reduces data miners’ ex-ante expected utility. Consequently, the value

of searching for a predictor falls and therefore data miners become less demanding for

their predictor (τ ∗ decreases).20

20Pushing back the data frontier, τmaxdm , has a third effect: It increases the chance of finding a satisficing
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As data miners’ become less demanding for the quality of their predictors, they deliver

a smaller expected utility to investors. Thus, a push back of the data frontier triggers a

reallocation of investors’ capital from data miners to experts (µ∗ drops) until the point

at which the skill of the marginal expert is identical to the quality of the worst signal for

data miners (τ ∗). Thus, data abundance indirectly reduces experts’ average skill (τ̄ex) via

a reallocation of capital from data miners to experts.

When τmaxdm is small enough, the effects of an increase in τmaxdm on τ ∗ and µ∗ are reversed

(the gold nugget effect dominates the aggressiveness effect). Hence, in equilibrium, data

miners’ search intensity, τ ∗, and the fraction of data miners, µ∗, are therefore a hump-

shaped function of the data frontier, τmaxdm .

Figure 2 illustrate our findings regarding the allocation of capital to data miners

and their search intensity for a particular specification of predictors’ quality, namely

Φ(τ) = 1−(1+τ)−3/2

1−(1+τmax
dm

)−3/2 .21 A push back of the data frontier (lower panel in Figure 2)

initially triggers a rise in the allocation of capital to data miners. However, at some

point, this trend reverses and capital flows back to experts. This suggests that, even

though data abundance can be a catalyst for the rise of quant funds (interestingly, the

emergence of quant funds coincide with the emergence of alternative data providers at

the end of the 90s), it can eventually become a limiting factor.

predictor holding the search strategy, τ∗ constant (Λ(τ∗; τmaxdm ) increases when τmaxdm goes up). This effect
reduces the expected number of rounds required to find a predictor and therefore the expected utility
cost of searching for a new predictor after rejecting one. Thus, like the hidden gold nugget effect, it
works to increase data miners’ value of searching for another predictor after finding one. However, the
combined forces of this effect and the hidden gold nugget effect, are not sufficient to offset the negative
impact of the aggressiveness effect on data miners’ value of searching for τmaxdm large.

21This means that Ψ(τ) = 1−(1+τ)−3/2. This distribution belongs to a more general family for which
we can compute F (.) in closed-form and therefore solve for the equilibrium of the model numerically (see
Section III in the online appendix for more details). For this family of distributions, 1 + τ has a power
distribution and Assumption A.1 is satisfied (see the online appendix).
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Figure 2: Upper Panels: Equilibrium search threshold, τ ∗ (left-hand side), and mass
of data miners, µ∗ (right hand-side), as functions of the search cost, c (other parameter
values are τmaxdm = cot2(π/10) ' 9.5, ρ = σω = ση = 1). Lower Panels: Equilibrium search
threshold, τ ∗ (left-hand side), and mass of data miners, µ∗ (right hand-side), as functions
of data abundance, log(τmaxdm ) (other parameter values are c = 0.03, ρ = σω = ση = 1).

Underlying distributions of signals’ quality are taken as Φ(τ) = 1−(1+τ)−3/2

1−(1+τmax
dm

)−3/2 and Γ(τ) =
1− (1 + τ)−3/2.

Even though a push back of the data frontier can reduce data miners’ search intensity

(τ ∗), Proposition 5 also implies that data abundance always improves the average quality

of data miners’ signals, τ̄dm (see Proposition 5). The reason is that, in equilibrium, the

drop in data miners’ search intensity is always more than offset by the improvement in the

quality of data miners’ best signals (τmaxdm ). Moreover, this improvement is always strong

enough to offset the drop in the average quality of experts’ signals so that ultimately the

net effect of data abundance on the average quality of all asset managers’ signals (τ̄) is

positive. For this reason, data abundance always improves price informativeness.

For completeness, the next proposition considers the effects of a shock on the volume

of noise trading and the volatility of the asset payoff on the allocation of capital to data

miners, their search intensity and other variables of interest.

Proposition 6. In equilibrium, an increase in the volume of noise trading, σ2
η, or the

volatility of the asset payoff, σ2
ω trigger (i) a decrease in price informativeness (I), (ii)

an increase in data miners’ search intensity, τ ∗, (iii) an increase in the allocation of

capital, µ∗, to data miners, (iv) an improvement in the average quality of data miners’
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signals (τ̄dm) and the average quality of experts’ signals (τ̄ex) and (v) an improvement in

the average quality of all asset managers’ signals (τ̄).

Other things equal (in particular τ ∗), an increase in the volume of noise trading or

the volatility of the asset reduces the informativeness of the equilibrium price. This effect

raises the expected value of trading. Thus, the value of searching for a predictor for

data miners increases and therefore they become more demanding for their predictors (τ ∗

increases). As a result, data miners attract relatively more capital (µ∗ increases). This

raises the quality of the marginal expert and therefore, ultimately, the average quality

of all asset managers. One implication is that quant funds should attract more capital

in periods of high volatility and that the dispersion in their performance should become

smaller during these periods (an increase in τ ∗ reduces the dispersion in the performance

of data miners; see Section VI.B).

VI. Progress in information technology and performance

in active management

We now study how the data frontier and data miners’ search costs affect (i) the average

performance of all asset managers, (ii) the dispersion in performance across asset man-

agers of a given type, and (iii) the performance of data miners relative to experts. This is

of broad interest given the substantial literature on active asset managers’ performance

(see, for instance, Berk and van Binsbergen (2015), Zhu (2018), Gerakos et al. (2021), or

Barras et al. (2022) for recent empirical studies).

One measure of an asset manager’s performance is her total dollar return on invest-

ment, adjusted for risk (Berk and van Binsbergen (2015) or Stambaugh (2020)). In our

model, this corresponds an asset manager’s equilibrium trading profit, denoted Π(sτ ):22

Π(sτ ) = x∗(sτ , p∗)× (ω − p∗), (25)

where x∗(sτ , p∗) and p∗ are given by eq.(11) and eq.(12), respectively. From eq.(11), we

22We do not account for data mining costs in computing the performance of a data miner. That is,
we focus on the gross performance of data miners (gross return times investment) before accounting for
management costs, as the empirical literature on funds’ performance often does.
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obtain

x∗(sτ , p∗) = 1
ρσ2

ω

(
τ(ω − p∗) + τ 1/2εi

)
. (26)

Thus, the expected trading profit of an asset manager with predictor’s quality τ is

Π̄(τ) ≡ E[Π(sτ )|τ ] = τ

ρσ2
ω

Var[ω − p∗] = τ

ρσ2
ωI(τ ∗; τmaxdm ) , (27)

where the last equality follows from the fact that p∗ = E(ω | p∗) so that Var[ω − p∗] =

Var[ω | p∗] = (I(τ ∗; τmaxdm ))−1 (by definition of I(τ ∗; τmaxdm )). Hence, the average perfor-

mance of an asset manager increases with the quality of her signal and decreases with

price informativeness (as this reduces her informational advantage).

Let Π̄dm and Π̄ex be, respectively, the (cross-sectional) average data miners’ perfor-

mance and experts’ performance in equilibrium. Using eq.(27), we obtain:

Π̄dm = Eφ[Π̄(τ)|τ ∗ ≤ τ ≤ τmaxdm ] = τ̄dm
ρσ2

ωI(τ ∗; τmaxdm ) , (28)

and

Π̄ex = Eγ[Π̄(τ)|τ ∗ ≤ τ ≤ τmaxex ] = τ̄ex
ρσ2

ωI(τ ∗; τmaxdm ) , (29)

where, τ̄dm and τ̄ex are, respectively, the average quality of data miners and experts signals

(see Section IV). Hence, the average performance of all asset managers is:

E[Π̄(τ)] = µ∗Π̄dm + (1− µ∗)Π̄ex = τ̄(τ ∗; τmaxdm )
ρσ2

ωI(τ ∗; τmaxdm ) . (30)

Berk and van Binsbergen (2015) (Table 3) estimate the (cross-sectional) mean “value

added” of active asset managers in the U.S. (a measure of asset managers’ performance

conceptually close to E[Π̄(τ)]) to $140, 000 per month over the 1977-2011 period, with a

significant dispersion across funds. As explained in the rest of this section, our model

relates (time-series) variations in this average and the cross-sectional dispersion of asset

managers’ performance to shocks to data miners costs (c) and the data frontier (τmaxdm ).23

23Of course, there are other determinants of asset managers’ average performance and its dispersion.
For instance, in the model, shocks to noise traders’ volume or the volatility of the asset payoff also affect
these variables. As explained in the introduction, our paper focuses on shocks to c and τmaxdm .
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A How does progress in information technology affect active asset man-

agers’ average performance?

We first study the effects of the data frontier (τmaxdm ) and data miners’ search costs (c)

on asset managers’ average performance, E[Π̄(τ)]. Using the expression for I(τ ∗; τmaxdm ) in

eq.(14), we can rewrite eq.(30) as:

E[Π̄(τ)] = 1
ρ

(
1

τ̄(τ ∗; τmaxdm ) + τ̄(τ ∗; τmaxdm )
ρ2σ2

ωσ
2
η

)−1

. (31)

An increase in the average quality of asset managers’ signals, τ̄(τ ∗; τmaxdm ), has two opposite

effects on their average performance. On the one hand, asset managers make better invest-

ment decisions on average (they are more likely to buy the asset when its return is positive

and sell the asset otherwise), which raises their performance on average. On the other

hand, asset managers trade more aggressively on their signals on average, which raises

price informativeness and therefore reduces their average performance. Using eq.(31), we

find that the first effect dominates if and only if τ̄(τ ∗; τmaxdm ) ≤ ρσωση. Thus, data miners’

average expected profit reaches its maximum for τ̄(τ ∗(τmaxdm , c); τmaxdm ) = ρσωση if there are

values of (τmaxdm , c) for which this equality holds (we write τ ∗ as a function of (τmaxdm , c) to

emphasize that it depends on the value of these parameters). We deduce the following

result.

Corollary 1. Denote by τ̄0 the average predictor’s quality in the absence of data miners

(i.e µ∗ = 0).

1. If τ̄(τ ∗(τmaxdm , 0), τmaxdm ) > ρσωση > τ̄0 then asset managers’ average performance is a

hump-shaped function of c, which reaches its maximum for c = ĉ (characterized in

the proof of the proposition). If τ̄(τ ∗(τmaxdm , 0), τmaxdm ) ≤ ρσωση then asset managers’

average performance decreases with c. And, if ρσωση ≤ τ̄0 then asset managers’

average performance increases with c.24

2. If τ̄(τ ∗(∞, c),∞) > ρσωση > τ̄0 then asset managers’ average performance is a

hump shaped function of τmaxdm , which reaches its maximum for τmaxdm = τ̂max (char-

acterized in the proof of the proposition). If τ̄(τ ∗(∞, c),∞) ≤ ρσωση then asset

24The two last cases correspond to cases in which there is no value of c in (0,∞) such that
τ̄(τ∗(τmaxdm , c); τmaxdm ) = ρσωση. Thus, E[Π̄(τ)] reaches its maximum either for c = 0 (first case) or
c =∞ (2nd case).
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managers’ average performance increases with τmaxdm . And, if ρσωση ≤ τ̄0 then asset

managers’ average performance decreases with τmaxdm .

As explained previously, the big data revolution has reduced quant funds’ search costs

(c) and pushed back the data frontier, τmaxdm . According to Corollary 1, this evolution

should first raise the average performance of asset managers but eventually reduce it (see

Figure 3). Intuitively, in the long run, the positive effect of a decrease in c or an increase

in τmaxdm on price informativeness dominates, so that the average performance of asset

managers drop. We are not aware of empirical papers analyzing the long run evolution of

the average performance of active asset managers and relating it to trends in computing

power and the availability of new data.

This implication is related to Stambaugh (2020) (his Proposition 5 and Figure 5) who

shows that improvements in the skills of active asset managers can have a negative effect

on their average performance if the fraction of asset managers who experience an increase

in their skills is large enough. One important difference between his model and ours is

that we explicitly relate the shifts in asset managers’ skills to shocks to the cost of search

for data miners or the data frontier (the rise of new datasets to forecast asset payoffs).
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Figure 3: Left: Asset managers’ average performance, E(Π̄), as a function of the search
cost, c (other parameter values are τmaxdm = cot2(π/10) ' 9.5, ρ = 1, σω = ση = 2). Right:
Asset managers’ average performance, E(Π̄), as a function of the data frontier, log(τmaxdm )
(other parameter values are c = 0.03, ρ = 1, σω = ση = 2). Underlying distributions of

signals’ quality are taken as Φ(τ) = 1−(1+τ)−3/2

1−(1+τmax
dm

)−3/2 and Γ(τ) = 1− (1 + τ)−3/2.

B How does progress in information technology affect the dispersion in

asset managers’ performance?

Barras et al. (2022) find substantial variations in the profitability (measured by their

alphas on the first dollar invested) of investment ideas for active U.S. equity funds.25

25Barras et al. (2022) (Table II, Panel A) find that the average (gross) alpha of active mutual fund
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This is consistent with our model in which asset managers differ in their skill (τ) and

therefore their average performance (Π̄(τ)). In our theory the dispersion in managers’

skills, and therefore performance, is determined by data miners’ search intensity (τ ∗).

Thus, shocks to the data frontier and data miners’ search costs also affect the dispersion

in asset managers’ performance within fund groups (data miners and experts).

We measure the dispersion of performance across data miners by ∆πdm, the log dif-

ference between the average performance of the data miner with the best signal and that

with the worst signal:

∆πdm ≡ log
(
Π̄(τmaxdm )

)
− log

(
Π̄(τ ∗)

)
= log (τmaxdm )− log (τ ∗) , (32)

where the second equality follows from eq.(28). Similarly, we measure the dispersion in

performance across experts by (remember that τmaxex denotes the upper bound of experts’

skills distribution):

∆πex ≡ log
(
Π̄(τmaxex )

)
− log

(
Π̄(τ ∗)

)
= log (τmaxex )− log (τ ∗) . (33)

Corollary 2.

1. Other things equal, a reduction in data miners’ search costs, c, reduces the dispersion

in performance for both data-miners and experts (∆πdm and ∆πex decrease when c

decreases).

2. Other things equal, for τmaxdm ≥ τtr(c), a push back of the data frontier (an increase

in τmaxdm ) increases the dispersion in performance for both data-miners and experts

(∆πex and ∆πdm increase with τmaxdm ).

These implications follow directly from the fact that shocks to computing power and

data abundance affect data miners’ search intensity, τ ∗, in opposite directions when τmaxdm

is large enough (see Propositions 4 and 5).

A more general approach is to measure the dispersion in asset managers’ performance

by the interquartile range of Π̄(τ) (rather than the difference between top and bottom

(their sample is the entire population of open-end actively managed US equity funds) is 3% with a
cross-sectional standard deviation of 4.1%. Moreover, this heterogeneity in funds’ skills is a source of
dispersion in “value added”, that is, a fund’s gross alpha times its size (similar to Π̄(τ) in our model).
For instance, Barras et al. (2022) find that the mean value added of a fund in their sample is $1.9 million
with a (cross-sectional) standard deviation of $13.6 million.
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performers). Corollary 2 also holds with this approach. To see this, let Π̄j
α be such that

α-percent of all asset managers with type j ∈ {dm, exp} have an average profit smaller

than Π̄j
α and let ∆Qj

α denote the log difference between the α and (1− α) (for α > 0.5)

quantiles of the distribution of average asset managers’ performance. That is:

∆Qj
α = log(Π̄j

α)− log(Π̄j
1−α) for j ∈ {dm, exp}. (34)

The next corollary shows that the conclusions of Corollary 2 holds when one measures

dispersion in performance with ∆Qj
α, provided that α is large enough.26

Corollary 3. When τmaxex <∞ and α large enough then

1. Other things equal, a reduction in data miners’ search costs (c) reduces ∆Qdm
α and

∆Qex
α .

2. Other things equal, for τmaxdm ≥ τtr(c), a push back of the data frontier (an increase

in τmaxdm ) increases ∆Qdm
α and ∆Qex

α .

Figure 4 provides a numerical illustration of Corollary 3 when α = 90%.
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Figure 4: Upper Panels: Performance dispersion of data-miners, ∆Qdm
α (left-hand side),

and experts, ∆Qex
α (right hand-side), as functions of the search cost, c (other param-

eter values are α = 0.9, τmaxdm = cot2(π/10) ' 9.5, ρ = σ2
ω = σ2

η = 1). Lower Pan-
els: Performance dispersion of data-miners, ∆Qdm

α (left-hand side), and experts, ∆Qex
α

(right hand-side), as functions of data abundance, log(τmaxdm ) (other parameter values are
a = 0.9, c = 0.03, ρ = σ2

ω = σ2
η = 1). Underlying distributions of signals’ quality are taken

as Φ(τ) = 1−(1+τ)−3/2

1−(1+τmax
dm

)−3/2 , and Γ(τ) = 1− (1 + τ)−3/2 with τmaxex =∞.

26For the corollary, we assume that τmaxex is finite. We show in the proof of the corollary that Corollary
3 still holds when τmaxex is infinite under a technical condition on Γ(.), the distribution of experts’ skills.
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C Progress in Information Technology: Data Miners vs Experts

When c decreases or τmaxdm increases, the average performance of all asset managers first rise

and then decline (see Corollary 1). This pattern also holds within a given group of asset

managers (expert or data miner). However, the sensitivity of the average performance of

each group to a shock on c or τmaxdm is not the same. Thus, such a shock can reduce or

increase data miners’ average performance relative to experts. We measure this relative

performance by RP :

RP
def= log

(
Π̄dm

)
− log

(
Π̄ex

)
= log(τ̄dm)− log(τ̄ex), (35)

where the second equality follows from eq.(28) and eq.(29). In the model, data miners’

relative performance can be positive or negative depending on parameter values.27

Corollary 4. When τmaxdm ≥ τ tr(c), the average performance of data miners relative to

experts improves when τmaxdm increases.

This result is a direct consequence of Proposition 5. When τmaxdm ≥ τ tr(c), a push back

of the data frontier, τmaxdm , improves the average quality of data miners’ signals (τ̄dm) but

it reduces the average quality of experts’ signals (τ̄ex) because investors allocate more

capital to experts (and therefore the quality of the marginal expert drops). It follows

that data miners’ relative performance improves (as for Proposition 5, the condition that

τmaxdm ≥ τ tr(c) is sufficient but not necessary for this implication; see Figure 5).

In contrast, a decrease in data miners’ search cost, c, improves the average quality of

the signals used by both groups of asset managers (Proposition 4). Thus, its effect on

data miners’ relative performance is less clear and one cannot sign it without additional

assumptions on the distribution of experts’ signals quality (Γ(.)). When this distribution

is similar to the distribution of data miners’ signals quality (in the sense that Γ(τ) =

Ψ(τ)/Ψ(τmaxex )), we obtain the following result.

Corollary 5. Suppose that Γ(τ) = Ψ(τ)/Ψ(τmaxex ). When τmaxdm and τmaxex are high enough,

the average performance of data miners relative to experts decreases when data miners’

search cost, c, decreases if and only if and τmaxex > τmaxdm .

27For instance, if τmaxex is high enough, the average precision of experts’ signals τ̄ex tends to exceed
the average precision of data miners’ signals and therefore RP is negative. Abis (2022) finds that quant
funds have a lower average performance than discretionary funds, especially in recessions.
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Figure 5 illustrate the results in this section. For the parameter values considered in

Figure 5, experts perform better on average than data miners (RP < 0). Their relative

performance improves when the data frontier (τmaxdm ) increases and decreases when data

miners’ search cost is reduced.
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Figure 5: Left: Data miners’ relative performance, RP , as a function of the search cost,
c (other parameter values are τmaxdm = cot2(π/10) ' 9.5, ρ = σ2

ω = σ2
η = 1). Right: Data

miners’ relative performance, RP , as a function of the data frontier, log(τmaxdm ) (other
parameter values are c = 0.03, ρ = σ2

ω = σ2
η = 1). Underlying distributions of signals’

quality are taken as Φ(τ) = 1−(1+τ)−3/2

1−(1+τmax
dm

)−3/2 , and Γ(τ) = 1− (1 + τ)−3/2 with τmaxex =∞.

VII. Management Fees

To simplify the exposition, we have assumed so far that experts and data miners do not

obtain no rents from their services to investors. This assumption can be relaxed without

affecting the implications of the model. To do so, consider the equilibrium described

in Proposition 3. In this equilibrium, the certainty equivalent of investors who allocate

their capital to an expert with skill τ is w(τ) ≡ −ρ−1 log(−g(τ, τ ∗)) (see Lemma 2).

Similarly, the certainty equivalent of investors who allocate their capital to a data miner

is w(τ ∗) ≡ −ρ−1 log(−g(τ ∗, τ ∗)). Now, following Garleanu and Pedersen (2018), assume

that the surplus created by asset managers for investors is shared between these parties

through Nash bargaining, at date 0. Thus, the fee charged by an expert with skill τ ,

denoted fex(τ), solves:

max
fex(τ)

fex(τ)κ(w(τ)− fex(τ)− w∗o)1−κ, (36)
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where κ is an asset manager’s bargaining power (in the baseline model, κ = 0) and

w∗o ≤ w(τ ∗) is the investor’s outside option.28 Similarly, the fee charged by a data miner,

denoted fdm, solves:

max
fdm

fκdm(w(τ ∗)− fdm − w∗o)1−κ, (37)

Thus, the fees charged by experts and data miners are:

f ∗ex(τ) = κ(w(τ)− w∗o), and f ∗dm = κ(w(τ ∗)− w∗o) (38)

Hence, net of fees, an investor who allocates her capital to an expert with skill τ obtains

(1 − κ)w(τ) + κw∗o while an investor who allocates her capital to a data miner obtains

(1− κ)w(τ ∗) + κw∗o.

As w(τ) increases with τ , investors’ rankings of asset managers after accounting for

fees is the same for all values of κ < 1. Thus, as in the baseline model (κ = 0), investors

should optimally allocate a fraction (1− Γ(τ ∗)) of their capital to all experts with a skill

larger than τ ∗ and the rest to data miners. This means that the equilibrium described

in Proposition 3 (and therefore all the implications of the model) remains valid when

κ < 1.29

Observe that when µ∗ = Γ(τ ∗) < 1, some data miners do not receive capital and an

investor’s best outside option is to allocate capital to such a data miner. If he exerts this

option, the investor obtains (1 − κ)w(τ ∗) + κw∗o. Thus, it is natural to set w∗0 so that

w∗o = (1− κ)w(τ ∗) + κw∗o, that is,

w∗o = w(τ ∗). (39)

In this case, we deduce from eq.(38) that

f ∗ex(τ) = κ(w(τ)− w(τ ∗)), and f ∗dm = 0, (40)

so that data miners capture no rents in equilibrium. This is intuitive. Indeed, ex-ante

all data miners are identical (they have the same ability to find predictors) and their

28As in Garleanu and Pedersen (2018), we normalize asset managers’ outside option (reservation wage)
to zero. This does not affect the conclusions in this section.

29When κ = 1, investors are indifferent between all asset managers because managers extract all
surplus. To break this tie, one can assume that they allocate their capital to asset managers that deliver
the largest certainty equivalent gross of fees. The equilibrium is then as described in Proposition 3.
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demand for capital exceeds available supply by investors. Thus, competition between

data miners should lead them to charge fees equal to their reservation wage, as obtained

in eq.(40). In contrast, each expert is “scarce” in the sense that the “mass” of experts with

a skill larger than τ (1−Γ(τ)) is smaller than the total mass of investors (1). This scarcity

enables experts to extract larger fees than data miners. In line with this implication, Abis

(2022) finds that quant funds charge smaller fees than discretionary investors. Another

implication of the model is that, other things equal, fees should increase with skills, which

is in line with empirical findings in Gerakos et al. (2021) (see their Table V).

Interestingly, experts’ fees depends on data miners’ search intensity. Other things

equal, an increase in data miners’ search intensity triggers a drop in the allocation of

capital to experts and should reduce their fees. Variations in data miners’ search intensity

are endogenous and driven by shocks to parameters, in particular data miners’ search

costs and the data frontier. Such shocks affect both w(τ) (because they affect price

informativeness) and w(τ ∗). We obtain the following corollary.

Corollary 6. Experts’ fees decline when data miners’ search cost (c) decline. They also

decline following an increase in the data frontier if this increase raises data miners’ search

intensity. When it does not, the fees charged by experts with low skills (τ close enough to

τ ∗) increases.

When data miners’ search costs decline, price informativeness increases. This effect

reduces investors’ certainty equivalents (w(τ) and w(τ ∗)), both with data miners and

experts. However, this reduction is smaller for data miners because the drop in search

costs induces them to search more intensively (τ ∗ increases). Thus, allocating capital

to data miner becomes relatively more attractive (w∗0 = w(τ ∗) rises) and experts must

therefore decrease their fees.

The same effects play out when an increase in the data frontier, τmaxdm , raises data

miners’ search intensity. However, when it does not (τmaxdm ≥ τ tr(c)), effects are reversed:

A push back of the data frontier reduces data miners’ search intensity and therefore

the certainty equivalent of investors’ expected utility with data miners (their outside

option). Thus, the net effect of raising τmaxdm on experts’ fees is ambiguous: It lowers

investors’ outside option (w∗0) (a positive effect on experts’ fees) but it also increases

price informativeness (a negative effect). For experts with relatively low skills (those with

a τ close to the marginal expert), the first effect dominates so that their fees increase
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(Corollary 6). For highly skilled experts, numerical simulations suggest that enhanced

price informativeness is the dominating force so that their fees always drop when τmaxdm

increases (but we have not been able to prove this result analytically). Figure 6 illustrates

these findings for a specific parametrization of the model.
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Figure 6: Upper Panels: Experts’ fees, f ∗ex(τ) as function of the search cost, c, for two
different levels of quality: Low (left-hand side, τ ' 0.8), and high quality (right-hand
side, τ ' 13.9) (other parameter values are κ = 0.5, τmaxdm = cot2(π/10) ' 9.5, ρ = σ2

ω =
σ2
η = 1). On the left-hand side, the dashed line corresponds to search cost values for which

the low quality expert does not receive capital. Lower Panels: Experts’ fees, f ∗ex(τ), as a
function of the data frontier, log(τmaxdm ), for two different levels of quality: Low (left-hand
side, τ ' 0.8), and high quality (right-hand side, τ ' 13.9) (other parameter values are
κ = 0.5, c = 0.025, ρ = σ2

ω = σ2
η = 1). Underlying distributions of signals’ quality are

taken as Φ(τ) = 1−(1+τ)−3/2

1−(1+τmax
dm

)−3/2 , and Γ(τ) = 1− (1 + τ)−3/2 with τmaxex =∞.

VIII. Empirical Implications

Table I summarizes the main implications of the model regarding the effects of a decrease

in information processing costs for data miners (c) and a push back of the data frontier

(τmaxdm ). The direction of these effects are identical for (i) price informativeness (I), (ii)

the average quality of active asset managers’ signals (τ), and (iii) their average perfor-

mance (E(Π)). Indeed, as explained previously, a push back of the data frontier or lower

information processing costs raise the cross-sectional average quality of asset managers’
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signals and therefore price informativeness30 As a result, asset managers’ average perfor-

mance is a hump-shaped function (see Corollary 1) of information processing costs (c)

and data abundance (τmaxdm ).

However, for other variables of interest (e.g., the allocation of capital to data miners)

a push back of the data frontier or a reduction in information processing costs for data

miners have different effects. A reduction in information processing costs always leads

data miners to raise the bar for the quality of their signals (τ ∗ increases when c declines).

As a result, more capital gets allocated to data miners, the average quality of the signals

used by each group of asset managers increases and the dispersion in asset managers’

performance within each group declines. In contrast, when τmaxdm is large enough, a further

push back of the data frontier leads data miners to search less intensively for their signals.

As a result, more capital gets allocated to experts and the dispersion of performance across

both groups of asset managers increases.

To our knowledge, this second set of implications is unique to our model. Indeed, they

stem from differences in data miners’ choices for the precision of their signals following

shocks to (i) information processing costs or (b) the set of feasible precisions, holding

information processing costs constant. As explained in Section II, existing models do not

allow to study the second type of shocks. To test these predictions, empiricists must (a)

identify quant funds in the universe of active funds and (b) use sources of variations in

data abundance (τmaxdm ) that are independent from variations in quant funds’ information

processing costs (c). To address the first issue (funds’ classification), researchers can use

methodologies and data similar to those used by Harvey et al. (2017) or Abis (2022). To

address the second one, empiricists could use the approaches that we outlined below.31

Over the last 20 years, data vendors have introduced new datasets, using data gen-

erated by (i) individuals (e.g., when they interact on social media such as Twitter or

StockTwits), (ii) business processes (e.g., credit card data) or (iii) sensors (e.g., satel-

lite imagery of land or parking lots utilization). This evolution has generated a steady

increase in variables that quant funds can use to increase the predictive power of their

trading signals.32. Importantly, the availability of such datasets varies across industries

30Consistent with this implication, Zhu (2019) and Katona et al. (2019) find that the introduction of
new alternative data (satellite imagery and consumer-browsing data)–a positive shock on τmaxdm –improves
price informativeness for the stocks covered by this data.

31We just sketch possible methods. There are certainly others. Our goal is just to show that separating
shocks to data abundance from shocks to information processing costs is not impossible.

32JP Morgan 2019 handbook of alternative data lists more than 500 hundred alternative datasets
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and asset classes (see Figures 23 and 26 in JP Morgan 2019 and Section IV.C in Dessaint

et al. (2022). For instance, there are far more alternative datasets covering firms in the

consumer industry than in health care or energy. Similarly, there are far more avail-

able alternative datasets covering equity than covering commodities or relevant for macro

strategies. Thus, as quant funds cover different industries or asset classes, they are not

exposed to the same extent to the rise of alternative datasets (data abundance).33 Em-

piricists can use this feature to build a measure of exposure to alternative data of quant

funds and use panel data on funds’ performance to test whether variations in exposure of

a given group of quant funds trigger (i) variations in the dispersion of funds’ performance

within this group consistent with our predictions and (ii) allocation of capital between

quant funds and discretionary funds operating in the same industry or covering the same

asset class.

With this approach, identification of the effects of data abundance on some of the

variables of interest would come from cross-sectional variations in funds’ exposure to al-

ternative data (shocks to τmaxdm ). Such variation should not be correlated with a downward

trend in the cost of processing data (c in our model) since this trend should affect all

funds at the same time and can therefore be controlled by time-fixed effects.

To test our predictions regarding the effects of c, empiricists could use technological

changes that reduce the cost of data processing for quant funds. One such shock is the

introduction of cloud computing by Amazon with its release of Amazon Web Services

(AWS) in 2006. This shock significantly reduced the cost of computing power (see Ewens

et al. (2018)) and, for this reason, it has been used to study empirically the effect of AI

adoption by venture capitalists (see Ewens et al. (2018) and Bonnelli (2022)). Another

shock on data processing costs is the SEC’s eXtensible Business Reporting Language

(XBLR) mandate. This mandate requires firms to provide their regulatory filings in

machine-readable form (through the EDGAR website) since 2009. Importantly, this

shock did not change the information content of regulatory filings (firms had to provide

the same data before and after the mandate). However, it reduced the cost of automated

data processing (e.g., using Natural Language Processing techniques; see, for instance,

Bhattacharya et al. (2018)) and therefore c for funds using quantitative techniques to

and used cases for asset managers. See “J.P.-Morgan-Alternative-Data-Handbook-2019”, retrieved at:
https://ea-pdf-items.s3-eu-west-1.amazonaws.com/J.P.-Morgan-Alternative-Data-Handbook-2019.pdf

33Empiricists could use CRSP mutual funds holdings dataset to build a measure of funds’ exposure
to alternative data based on its holdings.
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generate trading signals. Interestingly, the XBLR mandate was introduced in a staggered

way over a three year periods from 2009 to 2011. Thus, depending on the nature of their

holdings, funds were differentially exposed to the XBLR mandate. This offers another

way to study the effect of a reduction in information processing costs for quant funds,

holding available data constant.

Many of our implications are about the effects of variations in data miners’ information

processing cost (c) or data abundance (τmaxdm ) on the average quality of data miners and

experts’ signals (τ̄dm and τ̄ex) or the quality of the worst signal used by asset managers

(τ ∗). One way to test them is to directly estimate the quality of funds’ signals (τ) by

regressing (in the time series) a fund’s holding in an asset on the direction of subsequent

returns. In our model, the theoretical coefficient, βτ , of this regression is

β(τ) ≡ Cov(x∗(sτ , p∗), ω − p∗)
Var[ω − p∗] = τ

ρσ2
ω

, (41)

where the last equality follows from Proposition 1. Thus, β(τ) is strictly positive if the

manager is informed (τ > 0) and increases with the quality of the manager’s information

(τ). Intuitively, β(τ) is a measure of an asset manager’s timing ability (see Kacperczyk

et al. (2014) and Gerakos et al. (2021) for evidence that active asset managers have timing

ability using a measure similar to β(τ)). All our predictions regarding the effects of the

parameters of the model on the quality of asset managers’ signals (e.g. the average quality

of asset managers’ signals or the quality of the signal of the marginal asset manager) also

hold for β(τ).34

IX. Conclusion

Our paper studies the effects of the big data revolution on active asset managers using a

noisy rational expectations model. Our model contrasts two types of asset managers who

invest in a risky asset: (a) experts (which we interpret as discretionary funds) who have

a fixed ability to generate trading signals of a given precision about the asset and (b)

data miners (which we interpret as quant funds). The latter obtain their trading signals

through a search process whose goal is to identify trading signals with high precision. We

34For instance, one could test whether an increase in computing power leads to an increase in the
quality of the funds with the lowest timing ability (say, in the 10th percentile) as Kacperczyk et al. (2014)
do for the effects of recessions (see their Table III).
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assume that the highest available precision (the data frontier) increases as data miners

have access to more data (data abundance).

Data miners’ optimally stop searching for a signal once they discover a signal with a

precision exceeding an endogenous threshold (data miners’ search intensity), determined

by (a) data miners’ search costs and (b) the data frontier. We focus on the equilibrium

effects of a reduction in data miners’ search costs or a push back of the data frontier on

(i) their search intensity, (ii) the allocation of capital between data miners and experts,

(iii) asset price informativeness, (iv) asset managers’ average performance, (v) the cross-

sectional dispersion in asset managers’ performance and (vi) asset managers’ fees.

An important new feature of our model is that it allows to separately analyze the

effects of reducing data miners’ costs (e.g., due to greater computing power) and the

effects of a push back the data frontier (due to new data availability). Our model shows

that these two distinct dimensions of the big data revolution do not necessarily have the

same implications. For instance, the capital allocated to data miners always rises with a

decline in their search costs while it is a hump-shaped function of the data frontier. More

generally, we develop a rich set of testable predictions about the effects of the big data

revolution on active asset managers.
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A. Proofs

Proof of Proposition 1. We show that x∗(sτ , p) and p∗ as given by eq.(11) and eq.(12)

form an equilibrium. First, suppose that x∗(sτ , p) is given by x∗(sτ , p) = β(τ)(sτ − p) .

In this case, the aggregate demand for the asset is given by:

D(p) =
∫
x∗(sτ , p)di+ η = β̄(ω − p) + η, (42)

where β̄ is the average value of β(τ) across all asset managers (β̄ = µ∗Eφ∗ [β(τ) | τ ∈

[τ ∗, τmaxdm ]] + (1−µ∗)Eγ[β(τ) | τ ≥ τ ∗]). Hence, observing D(p) (and p) is informationally

equivalent to observing ξ = ω + β̄−1η. Thus:

p∗ = E [ω | D(p)] = E[ω | ξ] =
(

σ2
ω

σ2
ω + β̄−2σ2

η

)
ξ =

(
θξ

θω + θξ

)
ξ, (43)

where θω ≡ 1/σ2
ω is the precision of asset managers’ prior about the asset pay-off ω, and

θξ ≡ β̄2/σ2
η is the precision of ξ as a signal about ω.

Now consider asset managers. Using standard calculations in the CARA gaussian

framework, we obtain that the optimal demand for the risky asset of an asset manager

with signal sτ is:

x∗(sτ , p) = E[ω|sτ , p]− p
ρVar[ω|sτ , p]

, (44)

As asset managers have rational expectations on the price, they correctly anticipate that

it is linear in ξ, as in eq.(43). Note that the precision of sτ is τθω. Thus, as all variables

are normally distributed and εi and η (the noises in sτ and ξ) are independent, standard

calculations yield:

E[ω|sτ , ξ] = τθωsτ + θξξ

θω + τθω + θξ
. (45)

and

Var[ω|sτ , p] = 1
θω + τθω + θξ

. (46)

Thus, we can rewrite eq.(44) as:

x∗(sτ , p) = τθωsτ + θξξ − (θω + τθω + θξ)p
ρ

, (47)
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Using the fact that p = θξ
θω+θξ

ξ we deduce that:

x∗(sτ , p) = τθω
ρ

(sτ − p) = τ

ρσ2
ω

(sτ − p). (48)

Thus, x∗(sτ , p) is as conjectured (and as in eq.(11)) if and only if β(τ) = τ
ρσ2
ω

. If follows

that β̄ = τ̄
ρσ2
ω

. Eq.(12) and eq.(13) in the text immediately follow from substituting this

expression for β̄ in eq.(43).

In sum we have shown that (i) if dealers expect asset managers to follow the trading

strategy x∗(sτ , p) given by eq.(11) then they set a price given by eq.(12) and (ii) if deal-

ers set a price given by eq.(12) then asset managers follow the trading strategy x∗(sτ , p)

given by eq.(11). Thus, the trading strategies and the equilibrium given in eq.(11) and

eq.(12) form an equilibrium. It is possible to show that this is the unique equilibrium

in which asset managers’ trading strategy is a linear function of their signal and the price.

Proof of Lemma 1. Using eq(10) and the fact µ∗ = Γ(τ ∗), we obtain:

τ̄(τ ∗; τmaxdm ) = Γ(τ ∗)
∫ τmaxdm

τ∗
τφ∗(τ)dτ +

∫ τmaxex

τ∗
τγ(τ)dτ. (49)

Thus:

∂τ̄

∂τ ∗
= Γ(τ ∗)

ψ(τ ∗)
∫ τmaxdm
τ∗ τψ(τ)dτ

(Ψ(τmaxdm )−Ψ(τ ∗))2 −
τ ∗ψ(τ ∗)

Ψ(τmaxdm )−Ψ(τ ∗)

+ γ(τ ∗)
∫ τmaxdm
τ∗ τψ(τ)dτ

Ψ(τmaxdm )−Ψ(τ ∗) − τ
∗γ(τ ∗)

= Γ(τ ∗)ψ(τ ∗)
∫ τmaxdm
τ∗ (τ − τ ∗)ψ(τ)dτ
(Ψ(τmaxdm )−Ψ(τ ∗))2 + γ(τ ∗)

∫ τmaxdm
τ∗ (τ − τ ∗)ψ(τ)dτ
Ψ(τmaxdm )−Ψ(τ ∗) > 0.

(50)

Proof of Lemma 2. As in the proof of Proposition 1, we define θω ≡ 1/σ2
ω, the precision

of asset managers’ prior about the asset pay-off ω, and θξ ≡ β̄2/σ2
η, the precision of ξ as

a signal about ω. Conditional on the realization of the price at date 1 and her signal, sτ ,

the expected utility of trading for an investor given her optimal trading strategy is:

E[− exp(−ρx∗(sτ , p)(ω − p)) | sτ , p]

=− E
[
exp

(
−ρ

(
x∗(sτ , p)(E[ω | sτ , p]− p)−

ρ(x∗(sτ , p))2

2 Var[ω | sτ , p]
))]

.
(51)
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Substituting x∗(sτ , p) by its expression in eq.(44), we deduce that:

E [− exp(−ρx∗(sτ , p)(ω − p)) | sτ , p] = − exp
(
−(E[ω|sτ , p]− p)2

2 Var[ω|sτ , p]

)
(52)

Thus:

g(τ, τ ∗) = −E
[
exp

(
−(E[ω|sτ , p∗]− p∗)2

2 Var[ω|sτ , p∗]

)]
. (53)

For a normally distributed variable Z with mean 0 and variance σ2
Z , E[exp(−Z2)] =

(1 + 2σ2
Z)−1/2. As E[ω|sτ , p] − p, is normally distributed with mean zero, defining Z =

E[ω|sτ , p]− p, we deduce that:

g(τ, τ ∗) = −
(

1 + Var [E[ω|sτ , p∗]− p]
Var[ω|sτ , p∗]

)−1/2

(54)

Observe that:

Var[E[ω|sτ , p∗]− p∗]
Var[ω|sτ , p∗]

= ρ2 Var[ω|sτ , p∗] Var[x∗(sτ , p∗)]. (55)

Now using the expression for x∗(sτ , p∗) in eq.(48), we obtain that:

Var[x∗(sτ , p∗)] = τ 2θ2
ω

ρ2 [Var(sτ ) + Var(p∗)− 2 Cov(sτ , p∗)]. (56)

Using the expression for p∗ in eq(43) and the fact that sτ = ω + τ−
1
2 εi, we obtain after

some algebra that:

Var[x∗(sτ , p∗)] = τθω(θω + θωτ + θξ)
ρ2(θω + θξ)

. (57)

Thus, using the expression for Var[ω|sτ , p∗] in eq.(46), we deduce that:

Var[x∗(sτ , p∗)] = τθω
ρ2(θω + θξ) Var[ω|sτ , p∗]

. (58)

Hence, using eq.(55) and the fact that θξ = τ̄(τ∗;τmaxdm )2θ2
ω

ρ2σ2
η

, we deduce that:

Var[E[ω|sτ , p]− p]
Var[ω|sτ , p]

= θωτ

θω + (θω τ̄(τ∗;τmax
dm

))2

ρ2σ2
η

= τ

1 + τ̄(τ∗;τmax
dm

)2

ρ2σ2
ωσ

2
η

(59)

This yields the expression for g(τ, τ ∗).

45



Proof of Proposition 2. Using eq.(22), we obtain:

∂F

∂τ ∗
=
∫ τmaxdm

τ∗

∂r(τ, τ ∗)
∂τ ∗

φ(τ)dτ, (60)

where r(τ, τ ∗) is defined in eq.(23). As I(τ ∗; τmaxdm ) increases with τ ∗ (see lemma 1, we

deduce from eq.(23) that r(τ, τ ∗) increases in τ ∗ as well. Thus, ∂F
∂τ∗ > 0. Moreover, we

have (i) F (τmaxdm ) = 1, (ii) 0 < F (0) < 1 and (iii) exp(−ρc) < 1 (since c > 0). Thus, there

is a unique solution to the condition F (τ ∗) = exp(−ρc) and this solution is always strictly

smaller than τmaxdm . Moreover, it is strictly larger than zero if and only if F (0) ≤ exp(−ρc).

Proof of Proposition 3. The proposition directly follows from Propositions 1 and 2 and

the paragraph in the text before Proposition 3. If F (τmaxex ) ≤ exp(−ρc) then τ ∗ > τmaxex

(since F (.) increases with τ ∗). In this case, τ ∗ ≥ τmaxex and therefore µ∗ = 1 since

mu∗ = Γ(τ ∗).

Proof of Proposition 4. In equilibrium, F (τ ∗) = exp(−ρc). The R.H.S of this equilibrium

condition decreases with c and F (.) increases in τ ∗ (see the proof of Proposition 2). We

deduce that τ ∗ and therefore µ∗ (since µ∗ = Γ(τ ∗)) decrease in c. Moreover when c goes to

zero, the R.H.S of the equilibrium condition goes to 1. This implies that F (τ ∗) goes to 1

as well, which (by continuity of F (.)) is possible only if τ ∗ goes to τmaxdm (as F (τmaxdm ) = 1).

As τ ∗ decreases in c, it follows from Lemma 1 that the average quality of asset managers’

signals τ̄ 2(τ ∗; τmaxdm ) and price informativeness also decreases with c (since c affects price

informativeness only via its effect on τ ∗). The average quality of data miners’ signals is

τ̄dm(τ ∗) = Eφ [τ |τ ∗ ≤ τ ≤ τmaxdm ] =
∫ τmaxdm
τ∗ τψ(τ)dτ

Ψ(τmaxdm )−Ψ(τ ∗) , (61)

and the average quality of experts’ signals is

τ̄ex = Eγ [τ |τ ∗ ≤ τ ] =
∫∞
τ∗ τγ(τ)dτ
1− Γ(τ ∗) . (62)

Clearly both are increasing in τ ∗. Thus, a decrease in c raises τ̄dm(τ ∗) and τ̄ex(τ ∗) since

it raises τ ∗.
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Proof of Proposition 5.

Step 1. Remember that I(τ ∗; τmaxdm ) = 1
σ2
ω

+ τ̄(τ∗;τmaxdm )2

ρ2σ4
ωσ

2
η

. Denote χ = ρσωση. Thus, we can

rewrite r(τ, τ ∗) given in eq.(23) as:

r(τ, τ ∗) = g(τ, τ ∗)
g(τ ∗, τ ∗) =

(
χ2τ ∗ + χ2 + τ̄ 2(τ ∗; τmaxdm )
χ2τ + χ2 + τ̄ 2(τ ∗; τmaxdm )

) 1
2

. (63)

The ratio (a+ x)/(b+ x) increases with x iff a < b. Thus, as τ > τ ∗, the sign of ∂r
∂τmax
dm

is

the same as the sign of ∂τ̄
∂τmax
dm

. We obtain:

∂τ̄(τ ∗; τmaxdm )
∂τmaxdm

= µ∗φ∗(τmaxdm ) (τmaxdm − Eφ∗ [τ |τ ∗ ≤ τ ≤ τmaxdm ]) > 0. (64)

Thus, ∂r
∂τmax
dm

> 0. Using the expression for F (.) in eq.(22), we deduce that:

∂F

∂τmaxdm

= −φ(τmaxdm )(1− r(τmaxdm , τ ∗))︸ ︷︷ ︸
<0

+
∫ τmaxdm

τ∗

∂r

∂τmaxdm︸ ︷︷ ︸
>0

φ(τ)dτ+
∫ τmaxdm

τ∗
(r(τ, τ ∗)− 1)︸ ︷︷ ︸

<0

∂φ

∂τmaxdm︸ ︷︷ ︸
<0

dτ.

(65)

Thus, the effect of τmaxdm on F (.) and therefore the equilibrium search intensity τ ∗ is

ambiguous. We now show that this effect becomes positive when τmaxdm is large enough.

To see this, observe that eq.(65) implies that:

∂F

∂τmaxdm

> φ(τmaxdm )


∫ τmaxdm
τ∗

∂r
∂τmax
dm

φ(τ)dτ
φ(τmaxdm ) − 1

 = φ(τmaxdm )


∫ τmaxdm
τ∗

∂r
∂τmax
dm

ψ(τ)dτ
ψ(τmaxdm ) − 1

 (66)

We show in Section I.A of the internet appendix that

∫ τmax
dm

τ∗
∂r

∂τmax
dm

ψ(τ)dτ

ψ(τmax
dm

) goes to ∞ when

τmaxdm goes to ∞. Thus, ∂F
∂τmax
dm

> 0 for τmaxdm large enough. Let τ tr be the smallest value of

τmaxdm such that ∂F
∂τmax
dm

> 0. As in equilibrium, F (τ ∗) = exp(−ρc) and F (.) increases in τ ∗,

it follows that τ ∗ decreases in τmaxdm when τmaxdm > τ tr.

Step 2. When an increase in τmaxdm improves τ ∗, it raises the average quality of predictors

(see Lemma 1) and therefore price informativeness. Now consider the other possible case,

i.e., the case in which an increase in τmaxdm reduces τ ∗. We know from Step 1 that this

possibility arises when τmaxdm is high enough. We prove below, by contradiction, that price

informativeness, I(τ ∗; τmaxdm ), is also increasing with τmaxdm in this case.

47



Suppose (to be contradicted) that there is a value of τmaxdm such that when ∂τ∗

∂τmax
dm

< 0

then
∂I(τ∗;τmaxdm )

∂τmax
dm

< 0. Let L(τ ∗i , τ ∗) be:

L(τ ∗i , τ ∗) ≡
∫ τmaxdm

τ∗
i

g(τ, τ ∗)
g(τ ∗i , τ ∗)

φ(τ)dτ + 1−
∫ τmaxdm

τ∗
i

φ(τ)dτ. (67)

Function L is increasing with τ ∗i because

∂L

∂τ ∗i
=
∫ τmaxdm

τ∗
i

∂

∂τ ∗i

(
g(τ, τ ∗)
g(τ ∗i , τ ∗)

)
φ(τ)dτ > 0. (68)

Now, using the expression for J(.) given in eq.(18), we can rewrite the indifference con-

dition (19) as:

L(τ ∗i , τ ∗) = exp(−ρc). (69)

Moreover: L(τmaxdm , τ ∗) = 1 and 0 < L(0, τ ∗) < 1. Thus, as L(τ ∗i , τ ∗) increases in τ ∗i ,

eq.(67) has a unique solution τ ∗i (τ ∗) when c is small enough. This solution defines the

best response of a data miner when other data miners choose the stopping rule τ ∗.

Next, for τ ∗i ≤ τ ≤ τmaxdm , define

l(τ, τ ∗i , τ ∗) = g(τ, τ ∗)
g(τ ∗i , τ ∗)

=
(
χ2τ ∗i + χ2 + τ̄(τ ∗; τmaxdm )2

χ2τ + χ2 + τ̄(τ ∗; τmaxdm )2

) 1
2

=
(
τ ∗i + σ2

ωI(τ ∗; τmaxdm )
τ + σ2

ωI(τ ∗; τmaxdm )

) 1
2

. (70)

Clearly, l(τ, τ ∗i , τ ∗) increases with I(τ ∗; τmaxdm ). Thus, if
∂I(τ∗;τmaxdm )

∂τmax
dm

< 0, then
∂l(τ,τ∗

i ,τ
∗)

∂τmax
dm

< 0

since τmaxdm affects l(τ, τ ∗i , τ ∗) only through its effect on price informativeness. This implies

that:
∂l

∂τmaxdm

+ ∂l

∂τ ∗
∂τ ∗

∂τmaxdm

< 0. (71)

As:

L(τ ∗i , τ ∗) ≡
∫ τmaxdm

τ∗
i

l(τ, τ ∗i , τ ∗)φ(τ)dτ + 1−
∫ τmaxdm

τ∗
i

φ(τ)dτ, (72)

we deduce that:

dL

dτmaxdm

= ∂L

∂τmaxdm

+ ∂L

∂τ ∗
∂τ ∗

∂τmaxdm

= −φ(τmaxdm )(1− l(τ, τ ∗i , τ ∗))︸ ︷︷ ︸
<0

+
∫ τmaxdm

τ∗
i

(
∂l

∂τmaxdm

+ ∂l

∂τ ∗
∂τ ∗

∂τmaxdm

)
φ(τ)dτ.

(73)

Eq.(71) implies that the second term is also negative. Thus, dL
dτmax
dm

< 0. Thus, an
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increase in τmaxdm results in a lower value of L, holding τ ∗i constant. As ∂L/∂τ ∗i > 0

and L(τ ∗i , τ ∗) = exp(−ρc), it follows that in this case τ ∗i increases with τmaxdm . As, in

equilibrium, τ ∗i = τ ∗, this also implies that ∂τ∗

∂τmax
dm

> 0. A contradiction with our starting

hypothesis. We deduce that when ∂τ∗

∂τmax
dm

< 0 then
∂I(τ∗;τmaxdm )

∂τmax
dm

> 0. Thus, for all values of

τmaxdm , an increase in τmaxdm improves price informativeness. This implies that for all values

of τmaxdm , an increase in τmaxdm raises the average quality of all asset managers’ signals,

τ̄(τ ∗, τmaxdm ).

Step 3. Finally, we analyze the effect of an increase in τmaxdm on the average quality of

experts’ signals on the one hand and data miners’ signals on the other hand. Clearly,

when data abundance raises τ ∗, it increases both τ̄dm(τ ∗) and τ̄ex(τ ∗). Now consider the

case in which data abundance reduces τ ∗. In this case, it clearly reduces τ̄ex(τ ∗) because

τ̄ex = Eγ [τ |τ ∗ ≤ τ ]. However, it still raises the average quality of data miners’ signals.

To see this, we use differentiate the expression for τ̄(τ ∗, τmaxdm ) given in eq.(49) to obtain:

dτ̄(τ ∗, τmaxdm )
dτmaxdm

= Γ(τ ∗)dEφ [τ |τ ∗ ≤ τ ≤ τmaxdm ]
dτmaxdm

+ ∂τ ∗

∂τmaxdm

γ(τ ∗)

Eφ [τ |τ ∗ ≤ τ ≤ τmaxdm ]− τ ∗︸ ︷︷ ︸
>0

 .
(74)

We know from Step 2 that
dτ̄(τ∗,τmaxdm )

dτmax
dm

> 0 for all values of τmaxdm . Thus, when ∂τ∗

∂τmax
dm

< 0,

it must be that dτ̄dm
dτmax
dm

= dEφ [τ |τ ∗ ≤ τ ≤ τmaxdm ] /dτmaxdm > 0.

Proof of Proposition 6. It follows from the expression for r(τ, τ ∗) given in eq.(63) that

r(τ, τ ∗) decreases with σ2
ω, and σ2

η because τ > τ ∗. Thus, from eq.(22), we deduce that

F (τ ∗) decreases with σ2
ω, and σ2

η. It follows from (i) this observation, (ii) the fact that

F (τ ∗) increases with τ ∗ and (iii) the equilibrium condition F (τ ∗) = exp(−ρc) that τ ∗

and therefore µ∗ (since µ∗ = Γ(τ ∗) increase with σ2
ω and σ2

η. Moreover, we deduce from

Lemma 1 that the average quality of asset managers’ signals (τ̄) increases with σ2
ω and σ2

η.

This is also the case for the average quality of data miners’ and experts’ signals (τ̄dm and

τ̄ex) since they both increase in τ ∗ and depend on σ2
ω, and σ2

η only via τ ∗ (see eq.(61) and

eq.(62)). Last, consider price informativeness. Using eq.(14), one can see that the direct

effect of an increase in σ2
ω and σ2

η on price informativeness is negative. However, there is

an indirect effect: it raises asset managers’ average signals (τ̄), which affects positively

price informativeness. The net effect of an increase in σ2
ω and σ2

η on price informativeness

is therefore ambiguous. However, one can prove by contradiction that it must be positive.
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To see why, suppose that there is a value of σω or ση for which a marginal increase in

either one of these two variables increases price informativeness I. Then, one can see

from the expression of r(τ, τ ∗) in eq.(23) that for this value, a marginal increase in either

one of these two variables reduces r(τ, τ ∗). However, this is impossible since, using the

expression of r(τ, τ ∗) in (63), we have shown that r(τ, τ ∗) necessarily increases with σω

or ση. We deduce that for all values of σω or ση, an increase in either one of these two

variables reduces price informativeness.

Proof of Corollary 1. Consider the effect of τmaxdm on asset managers’ expected profits.

We know from Proposition 5 that τ̄(τ ∗(τmaxdm , c), τmaxdm ) increases with τmaxdm . Moreover,

lim
τmax
dm
→0
τ̄(τ ∗(τmaxdm , c), τmaxdm ) = τ̄0. Thus, if τ̄(τ ∗(∞, c),∞) > ρσωση > τ̄0, there is a unique

value of τ , denoted τ̂ , such that τ̄(τ ∗(τ̂ , c), τ̂) = ρσωση. Consequently, when τmaxdm varies,

holding other parameters constant, asset managers’ expected profit reaches its maximum

for τ̄(τ ∗(τ̂ , c), τ̂) = ρσωση. If τ̄(τ ∗(∞, c),∞) ≤ ρσωση, then asset managers’ expected

profit always increases as τmaxdm increases. Finally, if τ̄0 ≥ ρσωση, then asset managers’

expected profit always increases as τmaxdm decreases. This proves Part 2 of Corollary 1.

The proofs of Part 1 is similar and therefore omitted for brevity. In this case, one obtains

that ĉ is the unique solution of τ̄(τ ∗(τmaxdm , ĉ), τmaxdm ) = ρσωση.

Proof of Corollary 5. Notice that under the assumption Γ(τ) = Ψ(τ)/Ψ(τmaxex ), which

the distribution Ψ conditional on τ ≤ τmaxex , then the equilibrium distribution of experts

is distribution Ψ conditional on τ ∗ ≤ τ ≤ τmaxex , and therefore

τ̄ex =
∫ τmaxex
τ∗ τψ(τ)dτ

Ψ(τmaxex )−Ψ(τ ∗) . (75)

Similarly, we still have

τ̄dm =
∫ τmaxdm
τ∗ τψ(τ)dτ

Ψ(τmaxdm )−Ψ(τ ∗) . (76)

To assess the effect of a reduction of c on RP , one can equivalently compute the derivative
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of log(RP ) with respect to τ ∗ which yields

∂ log(RP )
∂τ ∗

= 1
τ̄dm

∂τ̄dm
∂τ ∗

− 1
τ̄ex

∂τ̄ex
∂τ ∗

= ψ(τ ∗)
Ψ(τmaxdm )−Ψ(τ ∗)

τ̄dm − τ ∗

τ̄dm
− ψ(τ ∗)

Ψ(τmaxex )−Ψ(τ ∗)
τ̄ex − τ ∗

τ̄ex
.

(77)

Next, compute the following derivative,

∂

∂τmaxex

[
ψ(τ ∗)

Ψ(τmaxex )−Ψ(τ ∗)

(
1− τ ∗

τ̄ex

)]

=− ψ(τ ∗)ψ(τmaxex )
(Ψ(τmaxex )−Ψ(τ ∗))2

(
1− τ ∗

τ̄ex

)
+ ψ(τ ∗)ψ(τmaxex )

(Ψ(τmaxex )−Ψ(τ ∗))2 (τmaxex − τ̄ex)
τ ∗

τ̄ 2
ex

= ψ(τ ∗)ψ(τmaxex )
(Ψ(τmaxex )−Ψ(τ ∗))2

(
τmaxex τ ∗

τ̄ 2
ex

− 1
) (78)

When τmaxex = ∞, then τ̄ex is finite and τ ∗ is strictly larger than 0, then for τmaxex large

enough τmaxex τ ∗ > τ̄ 2
ex. For the same reason, for τmaxdm large enough τmaxdm τ ∗ > τ̄ 2

dm. Then,

both ψ(τ∗)
Ψ(τmax

dm
)−Ψ(τ∗)

τ̄dm−τ∗

τ̄dm
and ψ(τ∗)

Ψ(τmaxex )−Ψ(τ∗)
τ̄ex−τ∗

τ̄ex
are increasing respectively in τmaxdm and

τmaxex , for τmaxdm and τmaxex large enough. As τmaxdm < τmaxex , then

ψ(τ ∗)
Ψ(τmaxdm )−Ψ(τ ∗)

τ̄dm − τ ∗

τ̄dm
<

ψ(τ ∗)
Ψ(τmaxex )−Ψ(τ ∗)

τ̄ex − τ ∗

τ̄ex
⇒ ∂ log(RP )

∂τ ∗
< 0. (79)

Proof of Corollary 2.Direct from the arguments in the text.

Proof of Corollary 3. For α ∈ [0, 1], the a-quantile of type j ∈ {dm, ex} asset managers

expected profit distribution is the profit level Π̄j
α such that a mass α of type j asset

managers has a profit lower than Π̄j
α. One can immediately observe that equivalently a

mass α of type j asset managers has a quality lower than τ jα with τ jα such that Π̄j
α = Π̄(τ jα).

Thus, we have

Hj(τ jα)−Hj(τ ∗)
1−Hj(τ ∗)

= α ⇐⇒ τ jα = H−1
j [α + (1− α)Hj(τ ∗)] . (80)

with Hdm(.) = Φ(.) and Hex(.) = Γ(.). For α > 0.5 high enough, one introduce the

log-difference between α- and 1− α-quantiles of type j asset managers expected profits,
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∆Qj
α, as a performance dispersion measure, that is

∆Qj
α = log(Π̄j

α)− log(Π̄j
1−α) = log(τ jα)− log(τ j1−α). (81)

Compute the derivative of τ dmα with respect to τ ∗ as

∂τ dmα
∂τ ∗

= (1− α)φ(τ ∗)
φ(τ dmα ) (82)

The effect of c on ∆Qdm
α is measured by

d∆Qdm
α

dc
=
[

(1− α)φ(τ ∗)
τ dmα φ(τ dmα ) −

αφ(τ ∗)
τ dm1−αφ(τ dm1−α)

]
∂τ ∗

∂c
(83)

We want to show that for a large enough we have d∆Qdm
α /dc > 0, or equivalently that

(1− α)
τ dmα φ(τ dmα ) −

α

τ dm1−αφ(τ dm1−α) < 0. (84)

As τmaxdm is finite, one can see that when α goes to 1, and as τ dmα goes to τmaxdm and τ dm1−α

goes to τ ∗, then the above expression goes towards −1/(τ ∗φ(τ ∗)) < 0. So for α high

enough, the above condition is verified.

Similarly for ∆Qex
α , we have that d∆Qex

α /dc > 0, and also d∆Qex
α /dτ

max
dm > 0 when τ ∗

decreases with τmaxdm (because the effect of τmaxdm is through τ ∗), if

(1− α)
τ exα γ(τ exα ) −

α

τ ex1−αγ(τ ex1−α) < 0. (85)

When τmaxex < ∞, and as for ∆Qex
α , one can see that for α high enough, the above

condition is verified. When τmaxex = ∞, as α = (Γ(τ exα ) − Γ(τ ∗))/(1 − Γ(τ ∗)), the above

condition holds for some large α if and only if

lim
τ→∞

1− Γ(τ)
τγ(τ) <

1− Γ(τ ∗)
τ ∗γ(τ ∗) (86)

Notice that this condition is verified in the case where the hazard rate γ(τ)/(1 − Γ(τ))

multiplied by τ is increasing. This is the case for instance when Γ(τ) = 1 − 1/(1 + τ)k,

or Γ(τ) = 1− exp(−kτ), with k > 0.
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To assess the effect of τmaxdm on ∆Qdm
α , one must notice that

Φ(τ dmα )− Φ(τ ∗)
1− Φ(τ ∗) = Ψ(τ dmα )−Ψ(τ ∗)

Ψ(τmaxdm )− Φ(τ ∗) = α ⇐⇒ τ dmα = Ψ−1 [αΨ(τmaxdm ) + (1− α)Ψ(τ ∗)] .

(87)

Thus we have

d∆Qdata
a

dτmaxdm

= αψ(τmaxdm )
τ dmα ψ(τ dmα ) −

(1− α)ψ(τmaxdm )
τ dm1−αψ(τ dm1−α) +

[
(1− α)ψ(τ ∗)
τ dmα ψ(τ dmα ) −

αψ(τ ∗)
τ dm1−αψ(τ dm1−α)

]
∂τ ∗

∂τmaxdm

(88)

We want to show that for α large enough an increase in d∆Qdm
α /dτmaxdm > 0, when

∂τ ∗/∂τmaxdm < 0. Notice that when the previous condition is verified we have

(1− α)ψ(τ ∗)
τ dmα ψ(τ dmα ) −

αψ(τ ∗)
τ dm1−αψ(τ dm1−α) = (1− α)φ(τ ∗)

τ dmα φ(τ dmα ) −
αφ(τ ∗)

τ dm1−αφ(τ dm1−α) < 0. (89)

In addition we want to show that the direct impact of τmaxdm on ∆Qdm
α is positive, that is

α

τ dmα ψ(τ dmα ) −
(1− α)

τ dm1−αψ(τ dm1−α) > 0. (90)

By assumption, the unconditional distribution ψ (over [0,∞)) has a finite first-order mo-

ment. It implies first that τψ(τ) goes to zero when τ goes to∞. So for τmaxdm large enough

τmaxdm ψ(τmaxdm ) < τ ∗ψ(τ ∗). And then, for α large enough, the above expression is indeed

positive.

Proof of Corollary 6 Using the expressions for w(τ) and g(τ, τ ∗) in eq.(16), we obtain

from eq.(40) that:

f ∗ex(τ) = κ

ρ

[
log

(
1

r(τ, τ ∗)

)]
. (91)

where r(τ, τ ∗) is defined in eq.(23). Using the expression for r(τ, τ ∗) given in eq.(63), it

is immediate to obtain that a decrease in c reduces f ∗ex(τ) because such an increase (i)

raises τ ∗ and (ii) raises τ̄ (Proposition 4). The same argument implies that an increase

in τmaxdm reduces f ∗ex(τ) when τmaxdm raises τ ∗. To see why the effect is unclear when τmaxdm
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lowers τ ∗, one must take the first-order derivative of f ∗ex(τ) with respect to τmaxdm ,

∂f ∗ex
∂τmaxdm

= κ

2ρ

[
2τ̄(τ ∗; τmaxdm ) dτ̄

dτmaxdm

(
1

ρ2σ2
ωσ

2
η(1 + τ) + τ̄(τ ∗; τmaxdm )2 −

1
ρ2σ2

ωσ
2
η(1 + τ ∗) + τ̄(τ ∗; τmaxdm )2

)

− ∂τ ∗

∂τmaxdm

ρ2σ2
ωσ

2
η

ρ2σ2
ωσ

2
η(1 + τ ∗) + τ̄(τ ∗; τmaxdm )2

]
,

(92)

for which the sign is the same as

−2τ̄(τ ∗; τmaxdm ) dτ̄

dτmaxdm

(τ − τ ∗)− ∂τ ∗

∂τmaxdm

(ρ2σ2
ωσ

2
η(1 + τ) + τ̄(τ ∗; τmaxdm )2). (93)

When τ = τ ∗, the above expression is positive, as − ∂τ∗

∂τmax
dm

> 0. It remains positive for

any τ if and only if −2τ̄(τ ∗; τmaxdm ) dτ̄
dτmax
dm
− ρ2σ2

ωσ
2
η

∂τ∗

∂τmax
dm

> 0. Hence, in the reverse case, it

becomes negative for τ large enough.
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