

Disclosing Quantum Contextuality of Several Multi-Qubit Finite Configurations

10th Slovenian International Conference on Graph Theory, June 18-24 2023, Slovenia

Axel Muller¹, Metod Saniga², Alain Giorgetti¹, Henri de Boutray³ and Frédéric Holweck^{4,5}

¹ Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
 ² Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranska Lomnica, Slovakia
 ³ ColibrITD, Paris, France
 ⁴ ICB, UMR 6303, CNRS, University of Technology of Belfort-Montbéliard, UTBM, 90010 Belfort, France
 ⁵ Department of Mathematics and Statistics. Auburn University, Auburn, AL, USA

- 1. Quantum computing basics
- 2. Properties of multi-qubit doilies
- 3. Contextuality of quantum configurations

Quantum computing basics

Quantum bit (qubit)

ket notation
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $|q\rangle = \begin{pmatrix} a \\ b \end{pmatrix}$
qubit $|q\rangle = a|0\rangle + b|1\rangle$ $a, b \in \mathbb{C}$ $|a|^2 + |b|^2 = 1$

Single qubit measurement

Measurement of $\ket{q} = a \ket{0} + b \ket{1}$ in the basis ($\ket{0}, \ket{1}$)

$$|q\rangle = \begin{pmatrix} a \\ b \end{pmatrix} \xrightarrow{|a|^2} |0\rangle \longrightarrow +1$$

 $|b|^2 \mid 1\rangle \longrightarrow -1$

encoded by the third Pauli matrix $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

$$\begin{array}{ccc} \text{eigenvalues} & +1 & -1 \\ \text{eigenvectors} & |0\rangle & |1\rangle \end{array}$$

Pauli group

Pauli matrices

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$X \text{ measures in the } \left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \text{ basis}$$

$$Y \text{ measures in the } \left(\frac{|0\rangle+i|1\rangle}{\sqrt{2}}, \frac{|0\rangle-i|1\rangle}{\sqrt{2}}\right) \text{ basis}$$

$$\frac{\cdot |I X Y Z}{I |I X Y Z}$$

$$\frac{X |X I | iZ - iY}{Y |Y - iZ |I | iX}$$

$$Z |Z | iY - iX |I$$
Pauli group
$$P = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}, .)$$

$$X.I = I.X$$

$$Y.Z = iX \text{ and } Z.Y = -iX, \text{ so } Y.Z = -Z.Y$$

Multi-qubit

tensor product
$$A \otimes B = \begin{pmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{pmatrix}$$

notation $\begin{cases} A_1A_2 \cdots A_N & \text{for } A_1 \otimes A_2 \otimes \cdots \otimes A_N \\ |01\rangle & \text{for } |0\rangle \otimes |1\rangle, \text{ etc} \\ \text{for } \underbrace{I \otimes \dots \otimes I}_N \end{cases}$
2-qubit $|q\rangle = q_{00} |00\rangle + q_{01} |01\rangle + q_{10} |10\rangle + q_{11} |11\rangle$

N-qubit
$$|q\rangle = q_{0..0} \underbrace{|0..0\rangle}_{N} + \dots + q_{1..1} \underbrace{|1..1\rangle}_{N} \in \mathbb{C}^{2^{N}}$$

Generalized Pauli group

N-qubit Pauli operator $G_1 G_2 \cdots G_N$, with $G_i \in \{I, X, Y, Z\}$ generalized Pauli group $\mathcal{P}_N = (\{1, -1, i, -i\} \times \{I, X, Y, Z\}^N, .)$ commuting pairYX.ZZ = (Y.Z)(X.Z) = (iX)(-iY) = XYZZ.YX = (Z.Y)(Z.X) = (-iX)(iY) = XYanticommuting pairXY.IZ = (X.I)(Y.Z) = iXXIZ.XY = (I.X)(Z.Y) = -iXX

Mutually commuting multi-qubit Pauli operators are compatible observables

The Mermin-Peres magic square

Finite geometry with 9 points and 6 lines

- Each point is an observable
- Each line is a measurement context

 $I \otimes I = I \otimes I = -(I \otimes I)$

This geometry is *contextual*: no point valuation with -1 or +1 satisfies all context values

Quantum geometries

Definition of a quantum geometry (O, C):

- *O* is a finite set of observables (points): hermitian operators ($M = M^{\dagger}$) of finite dimension
- C is a finite set of subsets of O called contexts (lines) such that
 - each observable $M \in O$ satisfies $M^2 = I^N$ (eigenvalues in $\{-1, 1\}$),
 - two observables M and N in a context commute (M.N = N.M), and
 - the product of all observables in a context is the identity matrix I^N or its opposite -I^N

1. Quantum computing basics

2. Properties of multi-qubit doilies

3. Contextuality of quantum configurations

The two-qubit doily, named W(3, 2)

The doily is the contextual geometry of all the 2-qubit Pauli observables except $I \otimes I$

$I \leftrightarrow (0,0)$ $X \leftrightarrow (0,1)$ $Y \leftrightarrow (1,1)$ $Z \leftrightarrow (1,0)$

By using a bijection with the symplectic polar space W(2N-1,2), two observables O and O' commute iff the symplectic product $\sigma(\tilde{O}, \tilde{O'})$ of their images is 0

N-qubit doilies

N-qubit doily: Contextual geometry on *N* qubits with the same point-line geometry as the doily W(3,2)

N-qubit doily classification

- Signature: number of I per observable (A: N 1 identities I per observable, B: N 2, C: N 3, …)
- Nature ν of a doily

spans a PG(3,2): linear

for any tricentric triad (3 observables commuting with 3 common observables)

Configuration of the negative lines

Classification results

	Observables					Configuration of negative lines												
Туре	Α	В	С	D	ν	3	4	5	6	7A	7B	8A	8B	9	10	11	12	
1	0	3	0	12	q	216				648				648				
2	0	4	0	11	q				3888			3888						
3	0	5	0	10	q	972		1944		4860	1944			1944				
4	1	0	5	9	q	648								648				
5	3	0	3	9	1	144												
6	0	6	0	9	q		1296		5184									
7	0	1	6	8	q	972				3888						972		
8	1	1	5	8	q				7776									
9	2	1	4	8	q	1944		1944										
10	2	1	4	8	1	972					972							
11	0	7	0	8	q			1944		972								
12	0	2	6	7	q				15552			11664	19440					
13	1	2	5	7	q	7776		13608			15552			1944				
14	1	2	5	7	1	3888					7776							
15	2	2	4	7	q		11664						3888					
					-										•			
									:									
95	6	9	0	0	1	6												

Partial results for the number of 4-qubit doilies¹

¹https://quantcert.github.io/doilies/

Doily generation program

All *N*-qubit doilies for a given *N* are generated in order to classify them and check various properties about them²

C language used for quick execution

Execution time (Intel® Core™ i7-8665U CPU @ 1.90GHz, 8 cores)

- 4 qubits: 1462272 doilies in 0.5s and 1.4 Mb of RAM
- 5 qubits: 1519648768 doilies in 12min and 1.8 Mb

²Muller, A., Saniga, M., Giorgetti, A., de Boutray, H., and Holweck, F. "Multi-Qubit Doilies: Enumeration for All Ranks and Classification for Ranks Four and Five". Journal of Computational Science. 2022.

- 1. Quantum computing basics
- 2. Properties of multi-qubit doilies
- 3. Contextuality of quantum configurations

Contextual finite quantum geometries

the product of observables on ℓ_i is $(-1)^{E_i} I$

The geometry is contextual iff $\nexists x$. Ax = E

Revealing contextuality in quantum configurations

The *contextuality degree*³ is the minimal Hamming distance (i.e. the minimal number of unsatisfied constraints) between E and a vector Ax

Computed by a C program using a SAT solver

Proposition: The contextuality degree of all multi-qubit doilies is 3

³de Boutray, H., Holweck, F., Giorgetti, A., Masson, P.-A., and Saniga, M. "Contextuality degree of quadrics in multi-qubit symplectic polar spaces". Journal of Physics A: Mathematical and Theoretical. 2022.

Perpsets

The *perpset* P_r is the set of points that commute with a given point *r*:

$$P_r = \{p \in W(2N-1,2) \mid p \text{ commutes with } r\}$$

Contextuality checked on 21 834 configurations, 17 minutes Proposition: All perpsets are non-contextual ($N \ge 2$)

Quadrics

A *quadric* Q_p is a set of points annihilating a quadratic form $Q_p(x) = Q_0(x) + \sigma(x, p)$

5 456 configurations checked in 33 minutes $(2 \le N \le 6)$ Conjecture: All elliptic $(N \ge 3)$ and hyperbolic $(N \ge 2)$ quadrics are contextual, when the contexts are their lines

3-qubit hyperbolic quadrics

The contextuality degree of all 3-qubit hyperbolic quadrics is 21, and the 21 invalid contexts form a Heawood graph

Example of set of invalid contexts in a 3-qubit hyperbolic quadric

Two-spreads

A *spread* is a set of lines such that each point of the plane is on exactly one line of the spread

N-qubit two-spread: Doily from which a spread is removed

72 configurations checked in 1 second Proposition: All 2-spreads are contextual, and their contextuality degree is 1 ($N \ge 2$)

Totally isotropic subspaces

A *totally isotropic subspace* is a set of mutually commuting elements with a base of *k* points

(for k = 1, 2 and $N \le 5, 3 \le k$ and N = 6, (k, N) = (6, 7)): 14 configurations checked in less than 24 hours per configuration

Example of a Fano plane (k = 2)

The configuration whose contexts are:

- All the lines \rightarrow contextual ($k = 1, N \ge 2$)
- Conjecture: all the planes \rightarrow non-contextual ($k = 2, N \ge 3$)
- ▶ all the subspaces of some dimension $k \ge 3 \rightarrow$ non-contextual (N > k)

Conclusion

Review

- Computed contextuality degree values leading to various conjectures and proved propositions
- Work leading to a recent publication⁴

Perspectives

- Building more efficient algorithms to compute contextuality degrees
- Finding more properties of quantum configurations
- Proving formally quantum properties

⁴Muller, A., Saniga, M., Giorgetti, A., de Boutray, H., and Holweck, F. New and improved bounds on the contextuality degree of multi-qubit configurations. arXiv. 2023.

Questions?

Fundings

- Agence Nationale de la Recherche, Plan France 2030, EPiQ project, ANR-22-PETQ-0007
- EIPHI Graduate School, contract ANR-17-EURE-0002
- Slovak VEGA Grant Agency, Project # 2/0004/20

