Disclosing Quantum Contextuality of Several Multi-Qubit Finite Configurations

10th Slovenian International Conference on Graph Theory, June 18-24 2023, Slovenia

Axel Muller ${ }^{1}$, Metod Saniga², Alain Giorgetti ${ }^{1}$, Henri de Boutray ${ }^{3}$ and Frédéric Holweck ${ }^{4,5}$
${ }^{1}$ Université de Franche-Comté, CNRS, institut FEMTO-ST, F-25000 Besançon, France
${ }^{2}$ Astronomical Institute of the Slovak Academy of Sciences, 05960 Tatranska Lomnica, Slovakia
${ }^{3}$ ColibrITD, Paris, France
${ }^{4}$ ICB, UMR 6303, CNRS, University of Technology of Belfort-Montbéliard, UTBM, 90010 Belfort, France
${ }^{5}$ Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

utbm
université de technolo
Belfort-Montbellard

1. Quantum computing basics
2. Properties of multi-qubit doilies
3. Contextuality of quantum configurations

Quantum computing basics

Quantum bit (qubit)
ket notation $\quad|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|9\rangle=\binom{a}{b}$
qubit $\quad|q\rangle=a|0\rangle+b|1\rangle$
$a, b \in \mathbb{C}$
$|a|^{2}+|b|^{2}=1$

Single qubit measurement

Measurement of $|q\rangle=a|0\rangle+b|1\rangle$ in the basis $(|0\rangle,|1\rangle)$

$$
|q\rangle=\binom{a}{b} \xrightarrow{|a|^{2}}|0\rangle \text { mun }+1
$$

encoded by the third Pauli matrix $Z=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

$$
\begin{array}{ccc}
\text { eigenvalues } & +1 & -1 \\
\text { eigenvectors } & |0\rangle & |1\rangle
\end{array}
$$

Pauli group

Pauli matrices

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad X=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad Z=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

$$
X \text { measures in the }\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \text { basis }
$$

$$
Y \text { measures in the }\left(\frac{|0\rangle+i|1\rangle}{\sqrt{2}}, \frac{|0\rangle-i|1\rangle}{\sqrt{2}}\right) \text { basis }
$$

matrix product

.	I	X	Y	Z
I	I	X	Y	Z
X	X	I	$i Z$	$-i Y$
Y	Y	$-i Z$	I	$i X$
Z	Z	$i Y$	$-i X$	I

Pauli group commuting pair anticommuting pair $\quad Y . Z=i X$ and $Z . Y=-i X$, so $Y . Z=-Z . Y$

Multi-qubit

tensor product $A \otimes B=\left(\begin{array}{ccc}a_{1,1} B & \ldots & a_{1, n} B \\ \vdots & \ddots & \vdots \\ a_{m, 1} B & \ldots & a_{m, n} B\end{array}\right)$
notation

2-qubit $\quad|q\rangle=q_{00}|00\rangle+q_{01}|01\rangle+q_{10}|10\rangle+q_{11}|11\rangle$
N-qubit

$$
|q\rangle=q_{0.0} \underbrace{|0 . .0\rangle}_{N}+\cdots+q_{1 . .1} \underbrace{|1 . .1\rangle}_{N} \in \mathbb{C}^{2^{N}}
$$

Generalized Pauli group

N-qubit Pauli operator $\quad G_{1} G_{2} \cdots G_{N}$, with $G_{i} \in\{I, X, Y, Z\}$ generalized Pauli group $\quad \mathcal{P}_{N}=\left(\{1,-1, i,-i\} \times\{I, X, Y, Z\}^{N},.\right)$
commuting pair

$$
\begin{aligned}
& Y X . Z Z=(Y . Z)(X . Z)=(i X)(-i Y)=X Y \\
& Z Z . Y X=(Z . Y)(Z . X)=(-i X)(i Y)=X Y
\end{aligned}
$$

anticommuting pair

$$
\begin{aligned}
& X Y . I Z=(X . I)(Y . Z)=i X X \\
& I Z . X Y=(I . X)(Z . Y)=-i X X
\end{aligned}
$$

Mutually commuting multi-qubit Pauli operators are compatible observables

The Mermin-Peres magic square

Finite geometry with 9 points and 6 lines

- Each point is an observable
- Each line is a measurement context

$$
\begin{array}{ccc}
-1 & -1 & 1 \\
X \otimes I-I \otimes X-X \otimes X & I \otimes I \\
1 \mid & 1 \mid & 1 \mid \\
I \otimes Y-Y \otimes I-Y \otimes Y & I \otimes I \\
-1 \mid & -1 & ? \| \\
X \otimes Y-Y \otimes X-Z \otimes Z & I \otimes I \\
I \otimes I & I \otimes I & -(I \otimes I)
\end{array}
$$

This geometry is contextual: no point valuation with -1 or +1 satisfies all context values

Quantum geometries

Definition of a quantum geometry (O, C) :

- O is a finite set of observables (points): hermitian operators ($M=M^{\dagger}$) of finite dimension
- C is a finite set of subsets of O called contexts (lines) such that
- each observable $M \in O$ satisfies $M^{2}=I^{N}$ (eigenvalues in $\{-1,1\}$),
- two observables M and N in a context commute ($M . N=N . M$), and
- the product of all observables in a context is the identity matrix I^{N} or its opposite $-I^{N}$

1. Quantum computing basics

2. Properties of multi-qubit doilies

3. Contextuality of quantum configurations

The two-qubit doily, named $W(3,2)$

The doily is the contextual geometry of all the 2-qubit Pauli observables except $I \otimes I$

$$
I \leftrightarrow(0,0) \quad X \leftrightarrow(0,1) \quad Y \leftrightarrow(1,1) \quad Z \leftrightarrow(1,0)
$$

By using a bijection with the symplectic polar space $W(2 N-1,2)$, two observables O and O^{\prime} commute iff the symplectic product $\sigma\left(\tilde{O}, \tilde{O}^{\prime}\right)$ of their images is 0

N-qubit doilies

N-qubit doily: Contextual geometry on N qubits with the same point-line geometry as the doily $W(3,2)$

Example of 4-qubit doily

N-qubit doily classification

- Signature: number of I per observable (A: N-1 identities I per observable, B: $N-2$, C: $N-3, \ldots$)
- Nature ν of a doily
spans a $P G(3,2)$: linear

$Z Y X I . I Y Z I . Z I Y I=I^{4}$
spans a $P G(4,2)$: quadratic

- Configuration of the negative lines

Classification results

	Observables					Configuration of negative lines											
Type	A	B	C	D	ν	3	4	5	6	7A	7B	8A	8B	9	10	11	12
1	0	3	0	12	q	216				648				648			
2	0	4	0	11	q				3888			3888					
3	0	5	0	10	9	972		1944		4860	1944			1944			
4	1	0	5	9	q	648								648			
5	3	0	3	9	1	144											
6	0	6	0	9	q		1296		5184								
7	0	1	6	8	9	972				3888						972	
8	1	1	5	8	9				7776								
9	2	1	4	8	9	1944		1944									
10	2	1	4	8	1	972					972						
11	0	7	0	8	q			1944		972							
12	0	2	6	7	9				15552			11664	19440				
13	1	2	5	7	9	7776		13608			15552			1944			
14	1	2	5	7	1	3888					7776						
15	2	2	4	7	9		11664						3888				
									\vdots								
95	6	9	0	0	1	6											

Partial results for the number of 4-qubit doilies ${ }^{1}$

${ }^{1}$ https://quantcert.github.io/doilies/

Doily generation program

All N-qubit doilies for a given N are generated in order to classify them and check various properties about them ${ }^{2}$

- C language used for quick execution

Execution time (ntel@ Core ${ }^{\text {TM }} \mathrm{i7}-8665 \mathrm{U}$ CPU @ $1.90 \mathrm{GHz}, 8$ cores)

- 4 qubits: 1462272 doilies in 0.5 s and 1.4 Mb of RAM
- 5 qubits: 1519648768 doilies in 12 min and 1.8 Mb
${ }^{2}$ Muller, A., Saniga, M., Giorgetti, A., de Boutray, H., and Holweck, F. "Multi-Qubit Doilies: Enumeration for All Ranks and Classification for Ranks Four and Five". Journal of Computational Science. 2022.

1. Quantum computing basics

2. Properties of multi-qubit doilies

3. Contextuality of quantum configurations

Contextual finite quantum geometries

$$
\begin{aligned}
& \begin{array}{llll}
O_{1} & O_{2} & O_{3}
\end{array} \\
& X \otimes I-I \otimes X-X \otimes X \quad \ell_{1} \\
& o_{4}\left|\quad O_{5}\right| \quad o_{6}| | \\
& I \otimes Y-Y \otimes I-Y \otimes Y \quad \ell_{2} \\
& \begin{array}{ccc}
o_{7} & o_{8} & o_{9}| | \\
X \otimes Y-Y \otimes X-Z \otimes Z & \ell_{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left(\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \begin{array}{l}
\ell_{1} \\
\ell_{2} \\
\ell_{3} \\
\ell_{4} \\
\ell_{5} \\
\ell_{6}
\end{array} \quad E=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right) \begin{array}{c}
I \otimes I \\
-(I \otimes I)
\end{array}
\end{aligned}
$$

the product of observables on ℓ_{i} is $(-1)^{E_{i}}$ l
The geometry is contextual iff $\exists x$. $A x=E$

Revealing contextuality in quantum configurations

The contextuality degree ${ }^{3}$ is the minimal Hamming distance (i.e. the minimal number of unsatisfied constraints) between E and a vector $A x$
Computed by a C program using a SAT solver

Proposition: The contextuality degree of all multi-qubit doilies is 3
${ }^{3}$ de Boutray, H., Holweck, F., Giorgetti, A., Masson, P.-A., and Saniga, M. "Contextuality degree of quadrics in multi-qubit symplectic polar spaces". Journal of Physics A: Mathematical and Theoretical. 2022.

Perpsets

The perpset P_{r} is the set of points that commute with a given point r :

$$
P_{r}=\{p \in W(2 N-1,2) \mid p \text { commutes with } r\}
$$

Contextuality checked on 21834 configurations, 17 minutes Proposition: All perpsets are non-contextual ($N \geq 2$)

Quadrics

A quadric Q_{p} is a set of points annihilating a quadratic form $\mathcal{Q}_{p}(x)=\mathcal{Q}_{0}(x)+\sigma(x, p)$

Hyperbolic: $\mathcal{Q}_{0}(p)=0$

Elliptic: $\mathcal{Q}_{0}(p) \neq 0$

5456 configurations checked in 33 minutes $(2 \leq N \leq 6)$
Conjecture: All elliptic ($N \geq 3$) and hyperbolic ($N \geq 2$) quadrics are contextual, when the contexts are their lines

3-qubit hyperbolic quadrics

The contextuality degree of all 3-qubit hyperbolic quadrics is 21, and the 21 invalid contexts form a Heawood graph

Example of set of invalid contexts in a 3-qubit hyperbolic quadric

Two-spreads

A spread is a set of lines such that each point of the plane is on exactly one line of the spread
N-qubit two-spread: Doily from which a spread is removed

72 configurations checked in 1 second
Proposition: All 2-spreads are contextual, and their contextuality degree is $1(N \geq 2)$

Totally isotropic subspaces

A totally isotropic subspace is a set of mutually commuting elements with a base of k points

$$
\text { (for } k=1,2 \text { and } N \leq 5,3 \leq k \text { and } N=6,(k, N)=(6,7)) \text { : }
$$

14 configurations checked in less than 24 hours per configuration

Example of a Fano plane ($k=2$)
The configuration whose contexts are:

- all the lines \rightarrow contextual ($k=1, N \geq 2$)
- Conjecture: all the planes \rightarrow non-contextual $(k=2, N \geq 3)$
- all the subspaces of some dimension $k \geq 3 \rightarrow$ non-contextual $(N>k)$

Conclusion

Review

- Computed contextuality degree values leading to various conjectures and proved propositions
- Work leading to a recent publication ${ }^{4}$

Perspectives

- Building more efficient algorithms to compute contextuality degrees
- Finding more properties of quantum configurations
- Proving formally quantum properties
${ }^{4}$ Muller, A., Saniga, M., Giorgetti, A., de Boutray, H., and Holweck, F. New and improved bounds on the contextuality degree of multi-qubit configurations. arXiv. 2023.

Questions?

FRANCE

Fundings

- Agence Nationale de la Recherche, Plan France 2030, EPiQ project, ANR-22-PETQ-0007
- EIPHI Graduate School, contract ANR-17-EURE-0002
- Slovak VEGA Grant Agency, Project \# 2/0004/20

