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Abstract—Collaborative cloud storage environment, which
share resources of multiple geographically distributed datacenters
owned by different providers enable scientific workflow from
different locations to process large scale big intermediate data
through the Internet. Distributed datacenters are federated and
each member can collaborate with each other to efficiently share
and process the intermediate data from distributed workflow
instances. This paper focuses on the storage cost minimization
of intermediate data placement in federated cloud datacenters.
Through collaborative and federation mechanisms, we propose an
exact federation data placement algorithm based on integer linear
programming model (ILP) to assist multiple datacenters hosting
intermediate data files generated from a scientific workflow.
Under the constraints of the problem, the proposed algorithm
finds an optimal intermediate data placement with a cost saving
over the federated cloud datacenters, taking into account scientific
user requirements, data dependency and size. Experimental
results show the cost-efficiency of the proposed cloud storage
federation algorithm.

Keywords—Collaborative Cloud Storage Environment, Big data
Scheduling, Storage Cost Saving, Intermediate data Dependency

I. INTRODUCTION

Big data workflows have become an important paradigm
since the introduction of scientific workflow and the need
to formalize complex data-intensive scientific processes. One
common characteristic of big data workflow applications is
the existence of intermediate data during the execution of
workflow instances. This leads to the generation of a massive
amount of intermediate results as data dependencies need to be
hosted and managed over a cloud infrastructure. Handling large
intermediate data dependencies in cloud infrastructure is im-
portant for such operations and need a long time for execution
since those dependencies need to process intermediate results
from different storage locations. As some intermediate data
are very large to be relocated efficiently, this operation must
take into account the dependencies between intermediate data
in selecting their locality. Furthermore, scientific users share
important intermediate data dependencies for cooperation and
reproduction of new intermediate results. This has enabled
researchers to collaboratively work with other professionals
or scientific users around the world and to handle and share
intermediate data workflow enormously larger in size than
before. By offering storage services in several geographically
distributed datacenters, cloud infrastructure enables big data
workflow applications to offer low latency access to scientific
user data. However, the ever increasing volumes of scientific
intermediate data address the need to interpret, move and store

them more efficiently to the most appropriate datacenter. One
fundamental issue in dealing with such scales of scientific
user intermediate data results for a workflow application is
how to efficiently place them in a distributed cloud datacenter
while ensuring the dependency and scalability of the placed
data such that the total storage cost of the cloud provider is
minimized. On another note, cloud storage providers offer ge-
ographically distributed datacenters providing several storage
classes with different prices. They can collaborate by sharing
their respective resources and dynamically adjust their hosting
capacities in response to their data applications. An important
problem faced by cloud users is how to exploit these storage
classes to serve an application with data requirements at
minimum cost. A federation of existing cloud storage services
supports the scientific users with a unified and combined
view of storage and data services across several providers
and applications. Recently, several studies take advantage of
pricing plan variety of different resources in a cloud storage
federation, where the cost can be optimized by trading through
negotiation a storage versus compute and network resources
as well as cost optimization of data distribution across cloud
providers [1], [2], [3], [4] (here, we are disregarding in profit
improvements). None of these studies investigated the trade
off between network and storage cost to optimize cost of data
workflow placement across a federated cloud storage provider.
Our study is motivated by these pioneer issues as none of them
can simultaneously answer the aforementioned questions (i.e.,
placement and cost saving of data workflow in cloud storage
federation).

Hence, addressing these questions makes the following
main contributions: by exploiting cloud storage federation
characteristics and data workflow requirements, we formalize
and model the input and output parameters of the system
cost model. We then propose a cost optimization problem in
which the optimal cost of transferring, storing and requesting
intermediate data is calculated. The exact intermediate data
file dependency is assumed to be known a priori in order
to focus on the data workflow placement problem itself. In
this approach, we proposed an exact algorithm based on the
integer linear programming model that takes into account the
dependency requirements (valuable and unnecessary correla-
tion) of these intermediate data for making decisions, and
reallocates intermediate data requests with dependencies in a
single datacenter to reduce the total storage cost.

This paper is organized as follows: Sec. II describes the
system model based on the cloud storage federation scenario
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with target assumptions. Sec. III derives an exact optimization
approach for allocating intermediate data on federated Cloud
storage. Sec. IV shows and discusses the simulation results
obtained with compared scenarios. Related work is reviewed
in Sec. V. Finally, Sec. VI concludes the paper and presents
some future work.

II. SYSTEM MODEL

A. Scenario Assumptions

The scenario introduced in Fig. 1 illustrates a cooperation
of cloud storage providers noted by P which involves federated
datacenters D that are geographically distributed providing on-
line mass storage to the scientific community collaborations to
schedule a set of intermediate data noted by IDi. i being a
single file with its respective size noted sizei, d and d’ indicate
home datacenters where intermediate data are generated by a
workflow instance and are temporarily stored.

Fig. 1. Federated cloud datacenters scenario.

The set of federated datacenters D are aggregated and
interconnected in the form of an inter-cloud. They use native
peer-to-peer communication link to shift intermediate results
from a busy disk entity to those with an available capacity, and
efficiently use storage resources of the datacenters and balance
intermediate data placement requirements. The bandwidth re-
source of each link is used to transfer the intermediate data files
between federated datacenter noted k. The intermediate data
placement decision on one or multiple locations of the cloud
storage federation involves the use of datacenters converged in
local and storage federation for data re-utilization internally or
by the other collaborative users. After the workflow instances
have generated intermediate data locally noted IDNd on each
datacenter, a memory temporary stores these intermediate data
results before their scheduling and placement decision. The set
of considered datacenters can be modeled as a matrix noted
DChomed which combines a home datacenter in order to
emphasize the origin of the generated data. For the sake of
convenience, we here only consider storage and data transfer
resources of D as computing resource provisioning is similar
to that of the storage resource. Hence, to underscore the
limited amount of available storage space on each federated
datacenter k, each member in the federation knows the storage
resource quotas that is capped at SCFk offered by the other

federation members as well as their internal capacity that is
capped at SCLk. Denoted BCFk, the data bandwidth shared
between the home datacenter and the destination datacenters to
transfer one unit of intermediate data file. Let DBmaxk be the
maximum data bandwidth quota (in GB per month) provided
among federated datacenters.

Each provider that hosts federated datacenters coopera-
tively proposes a storage cost noted OSCk, and induces a local
storage cost noted LSCd for the internally hosted intermediate
data. A storage federation price varies according to busy
storage or data bandwidth resources formulated by Sbusy .
Each federated datacenter provides a maximum cloud storage
quota noted QCmaxk to every users. Then, the busy quota is
reduced from the maximum capacity of storage and bandwidth
resources. However, cloud storage providers must rise to the
variation of the price in real-time regarding to various factors
such as data access demands, cloud storage market rates, and
datacenter localization. To unlock these constraints, a pricing
strategy [11] is adapted to determine the storage federation
cost of the providers that varies according to their busy quotas
in a way that when the busy quota is high the monetary
cost goes up and when it is low the the monetary cost goes
down. This pricing mechanism allows them to dynamically
set their insourcing/outsourcing storage or transfer prices by
establishing the monetary cost in exchange of offering data
storage space or data bandwidth or selling storage resources.
Below, the mathematical formula determines the insourcing /
outsourcing prices for the data placement demands:

S =
SCmaxk − Sdis

SCmaxk
∗ (Sprice −MEprice) +MEprice (1)

Basically, equation (1) considers the minimum effective
price (MEprice) that is a reference monetary cost of the
amount of data storage or data transfer that providers do not
fall below in order to address economic issues. The affected
cost (Sprice) for the end-users is fixed and varies according
to standard on-demand cloud storage pricing plan based on
reservation contract or prepaid scheme [12]. Moreover, the
maximum capacity of the storage federation QCmaxk is given
by the totality of the storage or transfer quota offered by
each datacenter. A very important point to consider during
the intermediate data placement on the storage federation
is a data transfer in or from other federation members. It
should be mentioned that in most cloud storage services, the
monetary cost of data transfers is more expensive than the
data storage itself, so this is an important cost factor that
must be considered in our placement problem. Therefore, the
transfer cost of data insourcing and data outsourcing are noted
ITCk and OTCk respectively. The outsourcing and insourcing
storage and transfer costs (OSCk, LSCd, ITCk and OTCk)
are updated using equation (1), and depend on their available
outsourcing versus local capacity and the minimum effective
storage price of each generated intermediate data file.

B. Matrix Model for Intermediate data dependency

As stated earlier, each federated datacenter k receives
intermediate data placement requests from multiple home
datacenters. When new intermediate data files are generated
by an instance workflow, correlations between each file pair
are revealed. These correlations correspond to the inter-file
dependencies generated from several workflow instances.
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Fig. 2. Intermediate data dependency matrix

Then, let DEP be a binary integer matrix including a
symmetric dependency value Depi,j for each pair of files.
Equation (2) exposes the Depi,j values:

Depi,j =

{
1 dependency between files i and j
0 otherwise.

(2)

Fig. 2 illustrates an example of intermediate data depen-
dency and the corresponding matrix model. Each intermediate
data file i has a dependency with itself and with some other
file j, so if a set of intermediate data files IDi that has a
correlation with file j, this one is also correlated with the
same set IDi (symmetry). Therefore, input parameters of the
data placement model are dependency values Depi,j that are
collected in matrix DEP .

However, various skewed of dependencies can be specified
between the intermediate data during a freak execution of a
workflow instance. Scientist users may encounter these errors1

during the execution that causes unnecessary dependencies
that need to be adjusted or re-run. Hence, some intermediate
data dependencies are not valuable. In order to consider this
situation, a float parameter λj

i is defined in the data placement
model that denotes scientific users’s tolerance of dependency
files i and j:

λj
i =

{
0 no tolerance to process independently i and j
1 otherwise.

(3)

The generated intermediate data dependencies with λj
i = 1,

operate over a set of I/O requests between each other in
the selected datacenter federation. Some operations can be
involved in remote access requests: data input adjustment, re-
processing or data re-utilization. For each I/O access, there is
a cost noted IOPCi,j . The values of the dependency matrix
DEP is dynamically maintained for each set of generated files.

1It can be an information about a replacement task, integrating a new input
data that improves the reliability of the workflow instance execution.

Accordingly, between each pair of files (i, j), value λj
i param-

eter is defined. The amount and the size of intermediate data
dependencies feeds the expected storage cost when scheduling
intermediate data IDi on the federated locations. These later
collaborate by sharing their respective storage resources and
dynamically adjust their hosting capacities according to their
intermediate data placement requirements.

III. EXACT ALGORITHM

In the following we resort to an exact approach called
Exact Federation Big Data Workflow Placement algorithm
(ExactFed BDWP) which leads to a mathematical program-
ming approach based on an Integer Linear Programming
(ILP) model. The ExactFed BDWP algorithm is solved us-
ing a branch-and-bound method describing a set of valid
inequalities of the big data workflow placement problem cited
above and the objective function to optimize under linear
constraints. Some of these constraints are obtained according
to a practical system in the cloud data placement considering
service scenarios and storage capacities. Finding the opti-
mal placement requires the computation of storage cost for
each possible instance solution from each intermediate data
placement request (input parameters) on a federated and local
datacenters. The federated datacenters use a cost model and the
ExactFed BDWP algorithm according to the data dependency
to schedule their intermediate data placement requests to the
storage federation.

Fig. 3. Overview of the data storage cost federation approach: input/output
parameters.

As shown in Fig. 3, the storage selection decision has to
lead to the minimum data storage cost in compliance with the
intermediate data dependency constraints (one datacenter host-
ing several intermediate data dependency files) and a maximum
storage utilization for the federated datacenters. Hence, we
discuss the cost model and the objective function that should
be minimized considering the objective and the following
procedures for the ExactFed BDWP algorithm execution:

• From a set of input parameters Depi,j , each federated
datacenter exposes its insourcing/outsourcing storage
cost based on the Equation (1).

• For each Depi,j value, the cost of the newly cal-
culated intermediate data placement solution is com-
pared with the currently lowest cost placement in each
federated datacenter. The ExactFed BDWP algorithm
terminates after the set of all relevant intermediate
data placement solutions have been checked. The
ExactFed BDWP algorithm is performed under the
requirements of intermediate data owner and capacity
constraints from the selected home and federated
datacenters.
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TABLE I. STORAGE COST FEDERATION MODEL: PARAMETERS &
DECISION VARIABLES.

Parameters Descriptions
P Set of cloud storage providers
D Set of federated datacenters

d, d′, k, k′ Designate home datacenters d and d’ and federated datacenters k
and k’

Depi,j Dependency coefficient value of intermediate data dependency as
input to the model to designate affinity between files i and j

DEP Dependency matrix including all dependency values of Depi,j

DChomed A home datacenter matrix which brings home datacenter d to
generate intermediate data files

LSCd Local storage cost (dollar per GB) of cloud storage provider hosting
datacenter d

OSCk Outsourcing storage cost (dollar per GB) of cloud storage provider
hosting datacenter k

sizei Size of intermediate data file i
λj
i Scientific users’s tolerance of intermediate data dependencies of i

and j which is a binary value, λj
i = 0 indicates scientific users have

no tolerance to process independently i, j, and 1 otherwise.
i Single intermediate data file
IDi Set of intermediate data files
IDNd Number of intermediate data generated and stored temporary in

datacenter d
ITCk Insourcing transfer cost (dollar per GB) proposed by provider to

transfer data from home datacenter k
OTCk Outsourcing transfer cost (dollar per GB) proposed by a provider

to transfer data to another datacenter k’
IOPCi,j Cost of I/O requests (dollar per operation) of intermediate data files

i and j on federated datacenters
SCFk Storage space quotas offered and shared (GB per month) by each

datacenter k in the storage federation
SCmaxk Maximum storage space quotas (GB per month) offered and shared

by all the federated datacenters
SCLd Storage space quotas (GB per month) available by each home

datacenter d
BCFk Data bandwidth (per data unit) quota offered and shared between

home datacenter and destination datacenter to insource and out-
source intermediate data storage

DBmaxk Maximum data bandwidth (GB) quotas provided among federated
datacenters

Variables Definitions
xk
id A binary variable, xk

id = 1 if intermediate data file i is sched-
uled from datacenter storage d to outsourced datacenter k, and 0
otherwise.

ykk′
ijdd′ A binary variable, ykk′

ijdd′ = xk
id ∗ xk′

jd′

• The ExactFed BDWP algorithm keeps the interme-
diate data dependencies in a single datacenter while
saving their storage, transfer and transaction costs. The
intermediate data with dependency tolerance should
be optimized according to the cost of I/O-demands
requested among federated datacenters.

• The problem is solved on each workflow instance
when a new intermediate data file is generated from
a home datacenter. Such cost is assumed to change
according to the federation features.

In the following we introduce the use of the integer
bivalent variables 0-1 xk

id that tells which datacenter d hosts
intermediate data file i to be placed in federated datacenter k.
A glossary of all the used notations and their descriptions in
the proposed exact model is shown in Table 1. Using these
notations, the global objective function is given by equation
(4):

MinCost =
d �=k∑
idk

xk
id · sizei · (OSCk + ITCk +OTCd) +

d=k∑
idk

xk
id · sizei · LSCk +

d �=k∑
ijdd′k

ykk
′

ijdd′ ·Depij · λj
i · IOPCi,j (4)

The objective function for the optimal scheduling and
placement of intermediate data files can be expressed as
the minimization of the cost of transferring, storing data
workflow in the federated datacenters, where xk

id = 1 is
used to indicate that intermediate data file i is transferred
and placed in federated datacenter k and xk

id = 0 otherwise.
Ideally, the ExactFed BDWP algorithm should minimize the
I/O transaction cost also when intermediate data dependencies
are scheduled separately to different datacenter, i.e. ykk

′
ijdd′ = 1

and ykk
′

ijdd′ = 0 otherwise. Objective function (4) is subject to
several linear and integrity constraints expressed respectively
by equations (5) to (16):∑

ik

xk
id = IDNd ∀d ∈ D; d �= k (5)

∑
dk

xk
id = 1 ∀i ∈ IDi (6)

xk
id + xk

jd′ = 2 ∀i, j ∈ IDi; ∀k, d, d′ ∈ D (7)

xk
id + xk

jd′ ≤ 1 ∀i, j ∈ IDi; ∀k, d, d′ ∈ D (8)

xk
id + xk′

jd′ − ykk
′

ijdd′ ≤ 1 ∀i, j ∈ IDi; i �= j;

∀k, k′, d, d′ ∈ D (9)

∑
kk′dd′

ykk
′

ijdd′ ≤
∑
k

xk
id ∀d ∈ D; ∀i, j ∈ IDi (10)

k �=d∑
id

xk
id · sizei ≤ SCFk ∀k ∈ D (11)

k=d∑
id

xk
id · sizei ≤ SCLd ∀k ∈ D (12)

k �=d∑
id

xk
id · sizei ·BCFk ≤ DBmaxk ∀k ∈ D (13)

∑
id

xk
id · sizei ≤ SCmaxk ∀k ∈ D (14)

∑
d

IDNd = 1 ∀i ∈ IDi (15)

Depij = Depji ∀i, j ∈ IDi; ∀Depij ∈ DEP (16)
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Equation (5) expresses the placement constraint in feder-
ated datacenters which store the set of IDi files. Equation
(6) indicates that there is only one datacenter hosting file i.
Equations (7) and (8) express dependency constraints that are
derived from the values of dependency tolerance λj

i which

indicates the splitting (λj
i = 1) or the merging (λj

i = 0) of the
intermediate data files during their placement in the federation.
Equations (9) and (10) define the relations between bivalent
variables xk

id, xk′
jd′ and ykk

′
ijdd′ . Equations (11) and (12) define

the storage capacity constraints in each home and federated
datacenter whith a limited quota. The data bandwidth quota
offered to transfer intermediate data files from or out of the
federated datacenter is expressed by equation (13) and the
aggregation of these quotas cannot exceed the provided maxi-
mum bandwidth (DBmaxk). The storage resources limitation
of the federation is expressed by equation (14). Equation (15)
indicates the uniqueness constraint of each generated file i
from a single workflow instance. The relation of dependency
between files i and j is symmetric and is expressed by equation
(16).

IV. PERFORMANCE EVALUATION

A. Setting Parameters

In order to evaluate the proposed model and to show the in-
fluence of using federated cloud storage characteristics, a set of
simulations have been performed with different input parame-
ters. The evaluation model is performed under AMPL tools and
the CPLEX solver2 as an ILP optimization program to solve
objective function (4). The assessment concerns the cost opti-
mization of intermediate data dependency placement. To create
a dynamic environment and unpredictable situations, between
3 and 18 geographically distributed datacenters have been
randomly selected from three cloud providers. Among these
datacenters, 8 are owned by Amazon S3 (AM)3, 4 by Google
Cloud Storage (GO)4 and 6 by Microsoft Azure (MZ)5. Each
datacenter is restricted by storage and bandwidth capacities
ranging in [10GB, 1000GB] and in [1GB,10GB] respectively.
Each outsourcing and insourcing demand is composed of a
random inter-file dependency ranging in [50*50,1000*1000]
organized in a matrix with 1 to 2 GB size per file. Intermediate
data files are affected to their home datacenter in a binary
matrix (DChomed). The insourcing/outsourcing storage and
transfer monetary costs are given by equation (1). The I/O
request cost and the affected monetary cost (Sprice) for the
end-users including OSCk, ITCk and OTCk are set according
to the pricing plan for each provider. Table 2 summarizes
these different price ranges. For an economic market purpose,
the minimum effective price (MEprice) is set randomly and
is higher or close to the affected cost for the scientific
community (MEprice=Sprice*0,45). The binary value of λj

i
is set randomly for each new generated intermediate data file.

B. Compared scenarios & performance metric descriptions

Since previous studies on data placement and cost saving
of intermediate data dependencies in cloud storage federation
differ and are not sufficiently close to the placement problem
(see Sec. V) that our approach deals with (the involvement

2http://ampl.com/products/solvers/solvers-we-sell/cplex/
3https://aws.amazon.com/fr/s3/pricing/
4https://cloud.google.com/storage/pricing
5https://azure.microsoft.com/fr-fr/pricing/details/storage/

TABLE II. STORAGE PRICES OF THE THREE CLOUD STORAGE

PROVIDERS.

Prices
—-
Cloud
storage
providers

I/O cost
($/10000
operations)

Storage
($/GB)

Data
transfer
IN
($/GB)

Data transfer
OUT ($/GB)

Amazon
S3

[0.005-0.01] [0.004-0.04] [0] [0-0.25]

Google
Cloud
Storage

[0-0.005] [0.007-0.023] [0] [0.08-0.23]

Microsoft
Azure

[0.015-0.0345] [0.08-0.125] [0] [0-0.181]

of intermediate data dependencies at the lowest cost in the
federated placement), we resort to a comparison with two
following strategies: no-federation aspect on the one hand and
a capacity-based placement strategy used in default Hadoop
implementation on the other hand. Datacenters in the non-
federation scenario turn in an autonomous way and depend on
their own storage space resources to place intermediate data
files. To elaborate this scenario, a relaxation of the ILP was
built and consists in eliminating constraints (5), (7), (8), (11),
(12) and (14). The intermediate data placement is scheduled
entirely in each home datacenter thanks to the unlimited
storage capacity (no loss). The outsourcing/ insourcing storage
costs are obviously not integrated to solve the non-federation
scenario considering just local dependencies. In a capacity-
based scenario, the federated datacenters (nodes in the cluster
Hadoop) randomly select the outsourcing storage to schedule
the intermediate data files to the federation members only when
their own resources are not available (nodes capabilities). Here,
the selection is done arbitrarily to outsource intermediate data
files without considering the dependencies (constraints 7 and
8).

We applied the following metrics to analyze the perfor-
mance of the ExactFed BDWP algorithm with the compared
scenarios: (i) Total storage cost: this metric is defined by the
objective function computed by equation 4 that measures the
cost of transferring, storing and requesting intermediate data
files to fulfill the evolving big data workflow requirements.
This corresponds to the sum of all defined costs. (ii) Federation
utilization: this metric shows the fairness of the intermediate
data distribution on a selected datacenter in the federation.
It is defined as the ratio between the amount of storage space
used by intermediate data placement (both local and federation
members) and the maximum amount of storage space for all
intermediate data files placement. (iii) Convergence time: this
metric measures the execution time of the ExactFed BDWP
algorithm in order to assess how fast the algorithm finds a
solution to fulfill the intermediate data dependency placement.

C. Simulation results

The total storage cost evaluation of all algorithms through
simulations is presented in Fig. 4 and 5. The results that show
the fair use of the federation are summarized in Fig. 6, 7
and 8 Finally, Fig. 9 and 10 depict the execution time of the
ExactFed BDWP algorithm.

Fig. 4 depicts the results of minimizing the total storage
cost of the ExactFed BDWP algorithm with no-federation and
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Fig. 4. The results of the optimal total storage cost regarding to dependency
matrix size variation (DEP ).

capacity-based scenarios while the number of datacenter is set
to 9. The simulation results (100$, 137$ and 150$ respec-
tively for the extreme case) correspond to the aggregation of
those obtained for each federated datacenter that participate
and receive outsourcing and insourcing storage demands of
intermediate data placement with varying amounts of files
(DEP matrix size variation). The general observation is that
ExactFed BDWP algorithm testifies significant cost savings
as compared to the benchmark scenarios. As expected, results
show that the ExactFed BDWP algorithm outperforms the
compared strategies with 27.00 % in average total storage
cost saving as regarding to the non-federation scenario and
33.33 % as compared to the capacity-based scenario while
matrix size reached 1000*1000 which corresponds to 1000
files of 1 GB. Fig. 5 extends the cost saving evaluation for
the ExactFed BDWP algorithm by reporting performance as
a function of dependency file pairs size (Depi,j) while the
number of datacenters is set to 9.

Fig. 5. Results of the optimal total storage cost regarding to the number of
dependency file pairs (Depi,j ).

With the increase of the size of the matrix and depen-
dency files, the amount of stored intermediate data obviously
increases in ExactFed BDWP, non-federation and capacity-
based algorithms (100$, 137$ and 150$ respectively), and
this influences much more the two scenario comparisons.
Admittedly, the cost of insourcing/outsourcing file transfers
are not included in the non-federation scenario, whereas the
margin between its prices and those offered dynamically in the
federation approach impacts on the total cost since the affected
monetary costs are not negotiated and consider only local de-
pendencies and take a fixed cost of home datacenter regardless
to the price ranges. Similarly, for the capacity-based scenario
that exhibits the highest average cost in the both Fig. 4 and
5, their costs corresponding to insourcing/outsourcing transfer,

storage and I/O cost substantially contrast with the total cost
saving. It does not optimize the movement of intermediate
data since it places them randomly to the different datacenters
until the capacity is full without taking its dependencies
in to consideration. Although the number of dependencies
increases, the insourcing/outsourcing cost of intermediate data
dependencies is minimized in the federation and this influences
the total storage cost saving. In addition, the I/O request cost
is minimized when there is a dependency tolerance.

Fig. 6. Intermediate data distribution results for 6 federated datacenters.

Fig. 7. Intermediate data distribution results for 10 federated datacenters.

The very important point in the federation is the placement
balancing and fairness between federation members D for the
intermediate data distribution. To achieve this, the amount of
dependency files is set to 2000 GB (1000*1000 matrix size
of 2GB per file) and are placed in federated datacenters and
by both comparison scenarios by randomly setting the home
datacenters from the providers P . The results are summarized
in Fig. 6, 7 and 8 for a number of datacenters set to 6, 10
and 18 respectively those being selected for file placement
decisions.

Figures show that the intermediate data placement by
the federated datacenters are the most balanced overall from
heterogeneous capacities and prices (with the exception of
the unlimited capacities for no-federation scenario). The Ex-
actFed BDWP algorithm involves 6/6, 9/10 and 15/18 of the
selected federated datacenters to schedule dependency files as
compared to 4/6, 5/10 and 5/18 for the capacity-based scenario
and 3/6, 3/10, 5/18 only for the scenario without federation
in Fig. 6, 7 and 8 respectively. In fact, the storage feder-
ation contributes greatly and maintains the data distribution
balancing among the members whatever the cloud storage
provider participating (AM, GO and MZ). Moreover, the
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Fig. 8. Intermediate data distribution results for 18 federated datacenters.

negotiated attractive prices influence on the placement decision
as each provider tries to offer dynamic pricing that balances the
placement decision based on their capacity (equation (1)), thus
maintaining a collaboration among federated datacenters by
fairly placing the intermediate data dependency distribution in
the cloud federation, thus reducing the charge for the scientific
community. By contrast, as long as the no-federation scenario
participates individually, the placement and storage cost is not
optimal due to the unlimited capacities (the entire amount of
data stored is linear with expected cost) and fixed prices, and
consequently the amount of intermediate data dependencies are
distributed only in the home datacenters.

Fig. 9. Execution time of the ExactFed BDWP algorithm by varying the
number of federated datacenters.

Fig. 10. Execution time of the ExactFed BDWP algorithm with the different

dependency parameters values λj
i while the number of datacenters is fixed to

9.

Fig. 9 and 10 pursue the analysis for the ExactFed BDWP
algorithm time execution by reporting performance respec-
tively as a function of the matrix size (1000 GB of intermediate

data files) vs. the federation size that ranges in 3 to 18 data-
centers, and dependency sizes (obtained from the aggregation
of dependency file pairs Depi,j) with values 2000, 20000 and
200000 vs. the dependency values (the number of datacenters
is fixed to 9 for the results in Fig. 10). As the problem is
NP-hard (limitations of the branch-and-bound method), the
execution time of the ExactFed BDWP algorithm grows like
the matrix size, especially when the number of datacenters is
beyond 9 as reported in Fig. 9 (from 2 seconds to 4 minutes
for all simulated instances). Fig. 10 illustrates the evaluation
results of the influence of dependency constraints (expressed
in equation (7) and equation (8)) on the performance of the
ExactFed BDWP algorithm. This corresponds to the cases:
random default constraints (one could not force different the
dependency constraints), splitting constraint (dependency files
must be scheduled to different destination datacenters), and
strong constraints (dependency files must to be scheduled
to the same destination datacenters) while the number of
datacenters in the federation is set to 9.

For small number of dependencies (2000) the Ex-
actFed BDWP algorithm exhibits close performance irrespec-
tive of the constraints. However, for the larger number of
dependencies (20000 and 200000), more important differ-
ences appear with splitting, default and strong dependency
constraints standing out as an intermediate data dependency
placement problem whose resolutions are one minute to fifteen
minutes. With the splitting constraint, the dependency file
placement problem is solved faster as the space of feasible
solutions is small (no inter-file dependencies to be considered
in the resolution space). By contrast, in the case of strong
dependency constraint the placement problem becomes harder
to solve as there is a huge inter-file dependency to be con-
sidered in the resolution space while satisfying all storage
requirements.

V. RELATED WORK

Data storage optimization has received a lot of attention in
data workflow systems, and some previous works used the cost
model to provide certain features from cloud storage scenario.
Works presented in [5], [6], [7] are closer to our focusing
problem. Authors in [5] elaborated a cost-effective strategy for
storing intermediate data workflow in a single cloud storage
provider using the Amazon-based fixed pricing. The proposed
model focuses on running a scientific workflow system in a
cloud and automatically deciding whether intermediate dataset
should be stored or deleted in the cloud storage provider
considering user’s tolerance of computation delays. Since our
allocation strategy does not remove intermediate data sets
before the end of the workflow system processing, as shown
in the introduction, all intermediate data sets are stored in
multi-datacenters involving a cloud storage federation with
a cost storage optimization. This differs considerably from
[5] which cannot be compared to our model. Authors in [6]
present a matrix-based k-means clustering strategy for data
placement in scientific cloud workflow. The authors stress the
movement of large volumes of data that can automatically be
allocated among datacenters based on the data dependencies.
The optimization is done only at the data movement level
and the authors did not defined a storage cost optimization
during the intermediate data placement which differs from
our approach. In addition, our approach takes into account
the type of dependency in order to further optimize the data
movement and storage cost. Authors in [7] are closer to the
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work in [6]. The authors present a data placement strategy
based on data dependency clustering for scientific workflow
in a heterogeneous cloud. The storage cost in this work is
not considered and authors focus on the cost of the data re-
distribution only.

A cloud storage cost-based selection decision is presented
in [8], [9], [10]. Authors in [8] propose an optimization prob-
lem for selecting the best storage services and they take into
consideration application requirements and user priorities. A
total storage cost is solved and workload requirements are not
addressed in this work. In [9], the authors identify an adaptive-
cost optimization system for multi-cloud storage to decrease
the storage cost, a compression and placement algorithm are
used to reduce data cost in cloud storage. However, the data
correlation is not considered on the optimization cost model.
Moreover, our approach highlights the trade-off between cost
and data dependencies that is not the goal in [9]. The authors
in [9] reduce the storage cost by compressing data and choose
the lowest provider price. Intuitively, their cost model is a
little more economical compared to our (by reducing the data
size), but the fact of compressing data does not allow to deal
with the dependencies in each storage providers which is a
disadvantage for our optimization case. But the use of the
federation storage price can balance considerably the costs of
our optimization model in our favor in some input parameters.
Authors in [10] propose a storage-cost optimization based on
linear programming model using multiple public cloud storage
providers. This work differs from our model since the type of
data and collaboration-aspect-based cloud providers are not
envisaged. Moreover, objectives of their optimization model
are not exactly similar to ours, one of which is latency and the
exclusion of communication cost between providers.

Since our optimization goal differs considerably from that
of [5], [6], [7], [8], [9], [10], [10] it is not advisable to compare
performance to these approaches.

VI. CONCLUSION

The present work introduced intermediate data placement
cost saving solution through a collaborative cloud storage en-
vironment. An exact federation algorithm (ExactFed BDWP)
based on an integer linear programming (ILP) model and
the branch-and-bound method has been proposed to solve the
problem of the inter-file placement (symmetric dependencies)
that takes into account the storage federation characteristics.
The ExactFed BDWP schedules and places fairly intermediate
data files taking into account their dependency requirements,
size and cost saving over distributed datacenter. A binary
symmetric matrix is defined to represent the dependency for
each pair of generated file in the same matrix, and home
datacenter hosting matrix are used to outsource intermediate
data storage to the federation. The ExactFed BDWP algorithm
was tested and evaluated by the way of simulations on a set
of data files generated randomly with two different scenarios.
An effective and optimal solution in terms of total storage cost
saving was shown by the ExactFed BDW algorithm against the
other scenarios. The execution time of the ExactFed BDWP
algorithm increases with the size of the dependency matrix,
and the number of datacenters involved in the federation.
However, for a realistic numbers of federated datacenters, the
ExactFed BDWP algorithm remains fast and achieves optimal
scheduling and placement of intermediate data dependency.

The convergence time of ExactFed BDWP algorithm also

matters in terms of swift response to additional data placement
since some workflow applications require the placement of
large data sets corresponding to a very complex dependency
between a set of data files (asymmetric). This can thus put
very stringent requirements on extended data placement, thus
we plan in future work to consider a dependency types between
a set of intermediate data.
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