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We study charge transport in voltage-biased single-channel junctions involving helical superconductors with
finite Cooper pair momentum. For a Josephson junction, the equilibrium current-phase relation shows a super-
conducting diode effect: the critical current depends on the propagation direction. We formulate a scattering
theory for voltage-biased Josephson diodes and show that multiple Andreev reflection processes cause a rich
subharmonic structure in the dc current-voltage curve at low temperatures and small voltages due to Doppler
shifts of the spectral gap. In the current-biased case, the diode efficiency has maximal rectification efficiency
η0 ≈ 0.4 for this model. In the voltage-biased case, however, the rectification efficiency can reach the ideal value
η = 1. We also discuss charge transport for normal-superconducting junctions between a normal metal and a
helical superconductor and comment on related models with spin-orbit interactions and magnetic Zeeman fields.

DOI: 10.1103/PhysRevB.109.024504

I. INTRODUCTION

Following experimental observations in 2020, the super-
conducting diode effect (SDE) attracted a huge wave of
interest and has already been confirmed in several platforms
[1–16]; see Ref. [17] for a review. In simple terms, the SDE is
realized if a superconductor or a Josephson junction sustains a
direction-dependent supercurrent, where the equilibrium crit-
ical supercurrent Ic+ > 0 flowing, say, to the right is different
from the critical current |Ic−| flowing to the left (with Ic− <

0). Consider, for instance, the case |Ic−| < Ic+, where this
asymmetry implies that a dissipationless supercurrent I with
|Ic−| < |I| < Ic+ can only flow to the right but the correspond-
ing current in the opposite direction must be dissipative. This
equilibrium SDE has been studied by most previous works
and can be quantified in terms of an SDE efficiency parameter
0 � η0 � 1 defined by

η0 = Ic+ − |Ic−|
Ic+ + |Ic−| , (1)

where η0 = 1 refers to the ideal SDE. While the SDE has been
predicted many years ago [18–21], recent theoretical work
has clarified how this physics appears in different platforms
or device geometries [22–45]. However, the detailed micro-
scopic mechanisms behind the SDE in a given experiment
are often not well understood. In any case, given the rapid
progress in this field, it seems likely that superconducting
diodes will soon find technological applications [17], e.g., as
efficient sensors for magnetic textures [46].

While the SDE is possible in junction-free bulk super-
conductors [1,3,17,18], we here study nonequilibrium charge
transport for the case of a single Josephson junction exhibiting
the SDE in equilibrium. In contrast to the resulting intrinsic
SDE, the extrinsic Josephson diodes arise as a consequence
of having more complicated device geometries with several
junctions [47–52]. Such setups contain more tuning parame-
ters and useful applications may thus be easier to identify. For

the (perhaps more fundamental) intrinsic SDE, one usually
requires that time-reversal symmetry and inversion symmetry
have to be broken and, in addition, the equilibrium current-
phase relation (CPR) must be nonsinusoidal [3,4,20,21]. The
latter requirement typically implies that the junction should
not be in the deep tunneling limit. For the single-channel case
studied below, this means that the transmission probability
0 < T � 1 of the junction should be as large as possi-
ble. In practice, the SDE is accompanied by the anomalous
Josephson effect [20,21,53–61], that is, the supercurrent is
finite at vanishing phase difference.

It is well-known that magnetochiral effects [62–64] can
be responsible for the SDE in noncentrosymmetric super-
conductors [18]. An alternative mechanism arises if the
superconductor has finite Cooper pair (CP) momentum 2q �=
0 (“helical superconductivity”) [5,6,13,26,33]. Such type
of spin-singlet pairing has been reported, e.g., for the or-
bital Fulde-Ferrell-Larkin-Ovchinnikov state in the multilayer
Ising superconductor 2H-NbSe2 [65]. We here mainly con-
sider charge transport through a short single-channel weak
link connecting two helical superconductors, but we briefly
comment on a different model based on the interplay of spin-
orbit coupling and a magnetic Zeeman field, see Appendix.
Such models can yield a magnetochiral SDE. We demonstrate
that scattering theory then yields the exact I-V curve for
this model, where known results [66–68] are recovered for
q = 0. In addition, we also address charge transport in normal-
superconducting (NS) junctions between a normal metal and
a helical superconductor.

For the Josephson diode case, for simplicity, we assume
identical pairing gap � and CP momentum 2q on both sides,
where the CPR exhibits the SDE [26]. Key parameters are the
transparency T of the weak link and the dimensionless CP
momentum parameter qξ , where the superconducting coher-
ence length is ξ = h̄vF /� with the Fermi velocity vF . Without
loss of generality, we assume q � 0. In addition, to retain a
spectral gap in the superconductor, we focus on the parameter
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regime qξ < 1. Since the resulting voltage-biased Josephson
diode model is relatively simple, the exact computation of the
dc current-voltage (I-V ) curve from scattering theory, taking
into account multiple Andreev reflection (MAR) processes
[66,67,69,70], is possible. Throughout, we focus on the most
interesting low-temperature regime where MAR can enable
efficient charge transfer across the junction, especially for
voltages in the subgap regime e|V | < 2�. We focus on junc-
tions with a single (or a few uncoupled) channels, where the
impedance is of order h/e2 and thus much larger than the
typical impedance of the external circuit. We then do not
have to account for the self-consistent dynamics of the phase
difference and voltage across the junction. We note that pre-
vious work on nonequilibrium charge transport in Josephson
diodes has studied weakly damped junctions [22,48,71,72]
and externally driven junctions [73], but MAR effects have
not been addressed to our knowledge.

Under nonequilibrium conditions corresponding to a con-
stant bias voltage V across the junction, charge-transport
rectification appears if I (−V ) �= −I (V ). In analogy to the
SDE efficiency η0 in Eq. (1), we quantify the finite-voltage
rectification efficiency by the dimensionless parameter

η(V ) = I (V ) + I (−V )

I (V ) − I (−V )
, (2)

which vanishes for q = 0. Our theory predicts a character-
istic voltage-dependent rectification pattern, where η(V ) is
especially large in the subgap regime. For the conventional
case without SDE, MAR causes a subharmonic structure, i.e.,
singular features in the nonlinear conductance for eV = 2�/n
with integer n [66,67,69]. For Josephson diodes, we pre-
dict an even richer subharmonic structure which determines
the rectification characteristics and might provide precious
information about the microscopic mechanisms generating
the SDE. Our central finding is that the efficiency η(V ) can
approach the ideal limit of full rectification with η = 1 at
low voltages, even though η0 � 0.4 for the SDE efficiency in
equilibrium for the model considered below. The importance
of MAR processes for rectification is related to the fact that
higher harmonics of the CPR are needed for the SDE. Indeed,
equilibrium Andreev states are the result of resonant MAR
processes. A finite voltage breaks up the resonant MAR loop
(see below) and effectively opens the way to high anharmonic-
ity with many harmonics. In contrast to the current-biased
case [26,27], we find that the voltage-biased junction has a
different optimal working point and allows for ideal rectifi-
cation. We note that this model has been successfully used
to explain experimental results for current-biased Josephson
diodes [5] reporting a maximum efficiency η0 ≈ 0.4.

The structure of the remainder of this paper is as follows.
In Sec. II, we describe the model and the corresponding
eigenstates for a weak link between two helical supercon-
ductors with finite CP momentum. The equilibrium CPR and
the resulting SDE efficiency η0 are discussed in Sec. III.
In Appendix, we comment on the SDE efficiency for a dif-
ferent Josephson diode model, where one has conventional
superconductors with q = 0 but the weak link corresponds
to a quantum dot with spin-orbit coupling and a magnetic
Zeeman field [21,55,74]. Effectively, the SDE is then caused
by magnetochiral anisotropy. Subsequently, charge transport

through NS junctions involving a helical superconductor is
addressed in Sec. IV. We then present the MAR scattering
theory for a voltage-biased Josephson junction in Sec. V. The
rectification properties out of equilibrium are then discussed
in Sec. VI. The paper concludes with a summary and an
outlook in Sec. VII. We often put h̄ = 1.

II. HELICAL SUPERCONDUCTOR JUNCTION

In Sec. II A, we describe the model for a short single-
channel Josephson diode involving helical superconductors
[26]. The spectrum and the eigenstates of the corresponding
Bogoliubov–de Gennes (BdG) problem are then summarized
in Sec. II B.

A. Model

Let us consider a short Josephson junction with a weak
link connecting two s-wave BCS superconducting banks with
identical pairing gap � and coherence length ξ . The su-
perconductors are described in the quasiclassical Andreev
approximation valid for kF ξ � 1 with Fermi momentum
kF . By linearizing the band dispersion around ±kF , the full
Nambu spinor ψ (x, t ) is written in terms of Nambu spinor
envelopes ψα=±(x, t ) for states with momenta near ±kF ,

ψ (x, t ) =
∑
±

e±ikF xψ±(x, t ),

ψα=±(x, t ) =
∑

k

eikx

(
ψαkF +k,↑(t )

ψ
†
−(αkF +k),↓(t )

)
, |k| � kF . (3)

For instance, ψ+ refers to right-moving electronlike and left-
moving holelike quasiparticles. With indices sL = 1 and sR =
−1, and using Pauli matrices τx,y,z (and the identity τ0) in
Nambu space, the Hamiltonian HL/R for the left (x < 0) and
right (x > 0) superconductor, respectively, has the effectively
one-dimensional form

Hj=L/R(t ) =
∑
±

∫
s j x<0

dx ψ
†
±(x, t )(∓ivF τz∂x

+ eVj (t )τz + �τxeiτz[−2qx+φ j (t )] )ψ±(x, t ), (4)

where the voltages Vj (t ) and superconducting phases φ j (t )
are linked by the Josephson relation, eVj = φ̇ j/2. The gauge-
invariant phase difference across the contact is ϕ(t ) = φL(t ) −
φR(t ). A finite CP momentum 2q �= 0 breaks time-reversal
and inversion symmetries and can generate the SDE. Mi-
croscopic mechanisms generating q �= 0 have recently been
discussed in Refs. [26,33,75]. For the corresponding heli-
cal superconductor, the pairing order parameter oscillates in
space, � j (x) = �e−iφ j+2iqx, where we assume 0 � qξ < 1.

Modeling the weak link at x = 0 as a single-channel
normal-conducting constriction of short length � ξ and arbi-
trary transmission probability T , the quasiclassical envelopes
on both sides of the contact (x = 0±) are matched by a transfer
matrix [76–79],

�(0−, t ) = 1√
T

(σ0 + rσx )τ0�(0+, t ), (5)
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with the reflection amplitude r = √
1 − T . The Pauli matrices

σx,y,z (identity σ0) and the bispinor �(x, t ) = (ψ+, ψ−)T act in
right-left mover space, with the Nambu spinors ψ± in Eqs. (3).

In this section, we consider the equilibrium case (Vj = 0)
and choose φ j (t ) = s jϕ/2. (However, our formalism directly
carries over to the finite-V case.) We then perform a unitary
transformation to the comoving frame,

�(x) → U (x)�(x), U = eiσ0τz[−qx+φ j/2], (6)

where the transformed Hamiltonian is H = ∑
j Hj =∫

dx�†HBdG� with the BdG Hamiltonian (for x �= 0)

HBdG = −ivF σzτz∂x + vF qσzτ0 + �σ0τx. (7)

The phase dependence now only appears in the transformed
matching condition:

�(0−) = 1√
T

(σ0 + rσx )eiτzϕ/2�(0+). (8)

BdG eigenstates �ν (x) for the respective eigenenergy Eν then
follow by solving the BdG problem

HBdG�ν (x) = Eν�ν (x), (9)

with the matching condition Eq. (8) at x = 0. In what follows,
it is useful to define the Doppler shifted energy Eα for α

movers with energy E ,

Eα=± = E − αvF q, (10)

which should not be confused with the BdG eigenenergies Eν .

B. Spectrum and eigenstates

We now show that solutions of the BdG problem Eq. (9)
include Andreev bound states localized near the junction
(x = 0), propagating scattering states corresponding to con-
tinuum quasiparticles, and solutions of mixed character which
propagate along one direction but are evanescent in the oppo-
site one.

Let us start with the effectively junction-free case of
a ballistic junction (T = 1) at vanishing phase difference
(ϕ = 0). In this bulk case, Eq. (8) is trivially fulfilled by con-
tinuous spinor wave functions. The resulting BdG eigenstates
�α (x, E ) are labeled by the conserved chirality σz = α = ±
and the conserved energy E , where Eqs. (9) and (10) imply

(−iαvF τz∂x + �τx − Eατ0)�α (x, E ) = 0. (11)

The resulting bulk dispersion for α movers of electron (e) or
hole (h) type is given by

Ee/h(k) = αvF q ±
√

(vF k)2 + �2, (12)

see Fig. 1(a) for an illustration. For qξ < 1, the positive con-
tinuum threshold energies (spectral gaps) are therefore given
by

�± = � ± vF q. (13)

They differ from � because of the Doppler shift generated by
the CP momentum 2q.

We then return to the generic case with T < 1 and/or ϕ �=
0. The above discussion indicates that Andreev bound states
can only exist at subgap energies with respect to both spectral

FIG. 1. Schematic illustration of the quasiparticle dispersion and
the MAR ladder. (a) The dispersion Eq. (12) for electron (e) and
hole (h) like states with chirality α = ±. The four possible types
of incident states (s = 1, 2, 3, 4) are marked by filled (open) circles
for electron (hole) states. Arrows indicate the propagation direction.
(b) The MAR ladder picture for the example of one MAR trajectory
in the ballistic limit. Here an electronlike state with incident energy
E just below −�− impinges on the junction from the left side,
corresponding to s = 1. By traversing the normal weak link region
as right-moving electron (red arrow), it gains the energy eV and
is Andreev reflected at the right (NS) interface as left-moving hole
(blue dashed arrow). After gaining another eV quantum, the hole
is Andreev reflected at the left (SN) interface. The right-moving
electron has energy E3 = E + 3eV after traversing the normal region
and enters the right superconductor. If E3 is just above �+, a MAR
feature corresponding to eV = 2�/3 will result.

gaps (|E | < �−). While for |E | > �+, continuum quasipar-
ticles can freely propagate to the right and left sides, we
have mixed-character states for �− < |E | < �+. By means
of analytic continuation, we can describe all three spectral
regions in a unified manner (including the finite-voltage case
considered later) as follows. For arbitrary energy E , we first
introduce the Andreev reflection amplitude ρ(E ) for an NS
interface,

ρ(E ) = σE e−γ̃E =
⎧⎨
⎩

σE
|E |−√

E2−�2

�
, |E | � �

E−i
√

�2−E2

�
≡ e−iγE , |E | < �,

(14)

with σE = sgn(E ) and γE = cos−1(E/�) ∈ (0, π ) for sub-
gap energies with |E | < �. Note that γ̃E is real-valued for
|E | � � but purely imaginary for subgap energies.

For the conventional case q = 0, Nambu spinors ψe/h(E )
for incoming states of electron or hole type, with energy |E | �
�, are then given by

ψe(E ) = τxψh(E ) = λ(E )√
2

(
1

ρ(E )

)
,

λ(E ) =
√

2

1 + ρ2(E )
. (15)

These states satisfy the standard normalization condition
ψ

†
e/h(E ) · ψe/h(E ) = 1. For the scattering state construction

used below, it is very convenient to also introduce partially
normalized Nambu spinors ψ̃e/h(E ) for outgoing states,

ψ̃e(E ) = τxψ̃h(E ) = 1√
2

(
1

ρ(E )

)
, (16)

which are defined for all possible energies E . For subgap
energies, these states again satisfy the standard normalization
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condition because then ρ(E ) is just a complex phase factor.
Otherwise, the unconventional normalization condition

ψ̃
†
e/h(E ) · ψ̃e/h(E )||E |�� = 1

λ2(E )
(17)

has to be taken into account.
For CP momentum 2q �= 0, we then express the corre-

sponding Nambu spinors ψα,e/h(E ) and ψ̃α,e/h(E ) for states
with momenta near αkF (with α = ±) by incorporating the
Doppler shift E → Eα , see Eq. (10), in the above spinors, see
Eqs. (15) and (16):

ψα,e/h(E ) = ψe/h(Eα ), ψ̃α,e/h(E ) = ψ̃e/h(Eα ). (18)

These states solve the BdG equation for x �= 0,

(±vF kα (E )τz + �τx − Eατ0)ψα,e/h(E ) = 0, (19)

and similarly for ψ̃α,e/h(E ), with the + (−) sign for electron
(hole)-type solutions. For incoming spinors ψα,e/h(E ), we de-
mand |Eα| � �, but no energy restrictions apply to outgoing
spinors ψ̃α,e/h(E ). For arbitrary E , with σα (E ) = sgn(Eα ), the
momentum kα (E ) in Eq. (19) is given by

vF kα (E ) =
{

σα (E )
√

E2
α − �2, |Eα| � �

i
√

�2 − E2
α ≡ ivF κα (E ), |Eα| < �.

(20)

This introduces the decay length scale κ−1
α (E ) for evanescent

states with |Eα| < �.
For given energy E , a BdG eigenstate can then be written

in terms of incoming and outgoing states:

�(x, E ) = �in(x, E ) + �out (x, E ). (21)

For |E | > �−, we have �in �= 0 and normalization of the
scattering state follows automatically by the conservation of
probability current. Subgap states with |E | < �− are included
in Eq. (21) by putting �in = 0, where normalization is im-
posed by ∫ ∞

−∞
dx �†(x, E ) · �(x, E ) = 1. (22)

1. Continuum and mixed-character states

We first consider the case |E | > �−, such that we have
either continuum or mixed-character states and �in �= 0. With
the length L of the superconducting banks, the Heaviside step
function �(x), and using the momenta k± in Eq. (20), the four
possible types (s = 1, 2, 3, 4) of incoming bispinor states are
indicated in Fig. 1(a) and are given by

�in(x) = �(−x)√
L

[
δs,1eik+x

(
ψ+,e

0

)
+ δs,2eik−x

(
0

ψ−,h

)]

+ �(x)√
L

[
δs,3e−ik+x

(
ψ+,h

0

)
+ δs,4e−ik−x

(
0

ψ−,e

)]
.

(23)

In particular, s = 1 (s = 4) refers to electronlike states with
momenta near +kF (−kF ). Similarly, s = 2 (s = 3) describes
holelike states with momenta near −kF (+kF ). Hence, the
channels s = 1, 3 describe states with index α = +, while for
s = 2, 4, we have α = −. The two-spinor structure in Eq. (23)
refers to right- and left-mover spaces, with the Nambu spinors

ψα,e/h(E ) in Eqs. (18). For the outgoing state, we use the
Nambu spinors ψ̃α,e/h(E ) in Eqs. (18) and write

�out (x) = �(−x)√
L

[
ae−ik+x

(
ψ̃+,h

0

)
+ be−ik−x

(
0

ψ̃−,e

)]

+ �(x)√
L

[
ceik+x

(
ψ̃+,e

0

)
+ deik−x

(
0

ψ̃−,h

)]
, (24)

where the complex-valued scattering amplitudes (a, b, c, d )
implicitly depend on the incident-state type s and its energy
E . They are determined by solving the matching condition
Eq. (8).

The corresponding normalization condition follows by not-
ing that Eqs. (8) and (9) imply that the probability current
density,

J (x, E ) = vF �
†
inσzτz�in + vF �

†
outσzτz�out, (25)

must be continuous at x = 0. Using �(x, E ) in Eqs. (23) and
(24), the normalization condition for continuum and mixed-
character states (|E | > �−) follows with γ̃α (E ) in Eq. (14)
as

(|a|2 + |c|2) sinh γ̃+ + (|b|2 + |d|2) sinh γ̃−

= δs,1 + δs,3

ν+(E )
+ δs,2 + δs,4

ν−(E )
, (26)

where we introduced a superconducting density-of-states fac-
tor for α movers:

να (E ) = |Eα|√
E2

α − �2
�(|Eα| − �). (27)

The SDE is linked to the fact that ν+(E ) �= ν−(E ) for q �= 0.

2. Subgap states

We now turn to subgap states with |E | < �−, where �in =
0 and the bispinor wave function �A(x, E ) for an Andreev
state can be obtained by analytic continuation of Eq. (24) with
kα (E ) → iκα (E ) as specified in Eq. (20),

�A(x, E ) = �(−x)

[
a

eκ+x

√
L+

(
ψ̃+,h

0

)
+ b

eκ−x

√
L−

(
0

ψ̃−,e

)]

+ �(x)

[
c

e−κ+x

√
L+

(
ψ̃+,e

0

)
+ d

e−κ−x

√
L−

(
0

ψ̃−,h

)]
,

(28)

with the localization length Lα = 1
2κα

for α-movers. From
Eq. (22), we find that the coefficients (a, b, c, d ) obey the stan-
dard normalization condition |a|2 + |b|2 + |c|2 + |d|2 = 1.

The corresponding linear algebra problem obtained from
the matching conditions Eq. (8) can then be written as ho-
mogeneous 4 × 4 matrix problem, M(a′, b′, c′, d ′)T = 0, with
rescaled amplitudes a′ = a/

√
L+ (and so on). For junction

transparency T (with r = √
1 − T ) and phase difference ϕ,

with γα (E ) = cos−1(Eα/�) in Eq. (14), the matrix M is
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explicitly given by

M =

⎛
⎜⎜⎜⎝

−√
T 0 e

i
2 (2γ++ϕ) re

i
2 (γ+−γ−+ϕ)

−√
T 0 e− i

2 (2γ++ϕ) re− i
2 (γ+−γ−+ϕ)

0 −√
T re

i
2 (γ+−γ−+ϕ) e− i

2 (2γ−−ϕ)

0 −√
T re− i

2 (γ+−γ−+ϕ) e
i
2 (2γ−−ϕ)

⎞
⎟⎟⎟⎠.

(29)

The spectral condition for Andreev states follows from the
vanishing of the determinant:

sin2

(
γ+ + γ−

2

)
= T sin2

(
γ+ − γ− + ϕ

2

)
. (30)

The corresponding eigenvectors of M determine the coeffi-
cients (a, b, c, d ) and thus the associated normalized spinor
eigenstate Eq. (28).

We note that for T < 1, Eq. (30) differs from the corre-
sponding result of Ref. [26], which also does not recover the
q = 0 Andreev state dispersion [80,81]:

E (0)
± (ϕ) = ±�

√
1 − T sin2(ϕ/2). (31)

The discrepancy is due to a technical mistake in Ref. [26],
which has been corrected in Ref. [27]. For small CP momen-
tum, qξ � 1, by expanding Eq. (30) up to terms of order
O((qξ )2), we find the Andreev state dispersion:

E±(ϕ) = E (0)
± (ϕ) − qξ

√
T cos(ϕ/2)sgn(sin(ϕ/2))

E (0)
± (ϕ)

. (32)

In the ballistic limit of perfect transparency T = 1, Eq. (32)
turns out to be exact for all values of qξ , see Sec. III B below,
in accordance with the results of Ref. [26].

III. EQUILIBRIUM SUPERCONDUCTING DIODE EFFECT

In this section, we discuss the equilibrium CPR for the su-
perconducting weak link defined by the BdG problem Eq. (9),
in particular, how the SDE efficiency η0 depends on the CP
momentum 2q and on the junction transparency T . We start
by deriving general expressions for the CPR in Sec. III A.
We then continue with the ballistic case T = 1 in Sec. III B,
where we reproduce the results of Ref. [26]. The case T < 1
is addressed in Sec. III C. In addition, in Appendix, we discuss
a different Josephson diode model, where the weak link is
represented by a spin-orbit coupled nanowire in a magnetic
Zeeman field. In that case, a magnetochiral anisotropy is re-
sponsible for the SDE.

A. Current-phase relation

The equilibrium supercurrent I (ϕ) = Icont + IA can conve-
niently be evaluated at x = 0,

I = evF

∑
E

nF (E )�†(x, E )σz�(x, E )|x=0, (33)

with the Fermi function nF (E ) = 1/(eE/kBT + 1) at temper-
ature T (with the Boltzmann constant kB). The absence of
τz in Eq. (33) as compared to Eq. (25) for the probability
current J (x, E ) arises because we study the charge current.
Since U †σzU = σz, the transformation Eqs. (6) has no effect

in Eq. (33). Current contributions from continuum and mixed-
character states with |E | > �− are summarized in Icont, and
those from Andreev subgap states in IA. We separately address
both terms.

1. Continuum contribution

Using Eqs. (23) and (24), taking the limit L → ∞ and
using the density-of-states factors να (E ) in Eq. (27), we obtain

Icont = e
4∑

s=1

∫ ∞

−∞

dE

2π
nF (E )ναs (E )Is(E ), (34)

with αs = (−1)1+s for incident-state type s, see Eq. (23), and

Is(E ) = cosh(γ̃αs ) ×
{

|c|2 − |d|2, s = 1, 2

|a|2 − |b|2, s = 3, 4,
(35)

with γ̃α (E ) in Eq. (14). The scattering amplitudes (a, b, c, d ),
see Eq. (24), and hence also Is(E ), follow by solving the linear
algebra problem posed by the matching conditions Eq. (8).

2. Subgap contribution

The Andreev current follows from Eq. (33) as

IA = evF

∑
λ

nF (Eλ)

( |aλ|2
L+

− |bλ|2
L−

)

= evF

∑
λ

nF (Eλ)

( |cλ|2
L+

− |dλ|2
L−

)
, (36)

where Eλ(ϕ) is the dispersion relation of the respective
Andreev state and the amplitudes (a, b, c, d ) in Eq. (28) fol-
low from the corresponding eigenvector of the matrix M in
Eq. (29), with Lα = 1

2κα
.

B. Perfect transparency

We first briefly demonstrate that in the ballistic limit with
T = 1, our formalism reproduces the results of Ref. [26]. For
T = 1, the matching condition Eq. (8) simplifies to �(0−) =
eiτzϕ/2�(0+), and thus chirality is conserved, with eigenvalue
α = ± of σz. Mixed-character states with energies in the win-
dow �− � |E | � �+ then split up into Andreev states and
continuum states without evanescent contribution. Both types
of states coexist in this spectral range for T = 1.

Let us begin with subgap states with |Eα| < �, where
insertion of Eq. (28) into the matching conditions gives decou-
pled linear equations for the scattering amplitudes. Using the
notation γ̂α = γα + α

ϕ

2 , we find from Eq. (29) the relations

a = ceiγ̂+ = ce−iγ̂+ , b = deiγ̂− = de−iγ̂− . (37)

The resulting dispersion equation, e2iγ̂α = 1, agrees with
Eq. (30). The solution is given by γ̂α = πn with integer n.
Since γα (E ) ∈ (0, π ), there are exactly two solutions corre-
sponding to α = ±. Defining EA(ϕ) = � cos(ϕ/2) − vF q, we
obtain for α = + the Andreev level energy E1 = −EA with
a = −c = 1√

2
and b = d = 0, see Eqs. (37). Similarly, for

α = −, we find the energy E2 = +EA with b = d = 1√
2

and
a = c = 0. These energies agree with the small-q Andreev
dispersion in Eq. (32) for T = 1. We thus conclude that
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Eq. (32) is exact for all values of qξ in the ballistic limit. The
Andreev current follows from Eq. (36) as

IA = e� sin(ϕ/2) tanh

(
� cos(ϕ/2) − vF q

2kBT

)
. (38)

Next we turn to continuum states with |Eα| > �. For the
four possible incident-state types, the matching conditions
give the nonvanishing scattering probabilities

|cs=1|2 = 1 − |as=1|2 = �2

E2
α=+ − �2 cos2(ϕ/2)

,

|d2|2 = 1 − |b2|2 = �2

E2
α=− − �2 cos2(ϕ/2)

,

|d3|2 = 1 − |c3|2 = |c1|2, |b4|2 = 1 − |d4|2 = |d2|2.
(39)

From Eq. (34), we obtain

Icont = e
∑
α=±

∫
dE

π
nF (E )

α|Eα|√E2
α − �2

E2
α − �2 cos2(ϕ/2)

�(|Eα| − �).

(40)
In general, this result depends on the phase difference ϕ. For
q = 0, we have Eα = E and Eq. (40) implies Icont = 0.

1. Zero-temperature limit

Putting T = 0, the continuum contribution Eq. (40) is
given by

Icont = e lim
�→∞

(∫ �+vF q

�

−
∫ �−vF q

�

)
dE

π

× E
√

E2 − �2

E2 − �2 cos2(ϕ/2)
= e�

2qξ

π
. (41)

Note that the integration can be carried out in an almost trivial
manner by writing it in the above form, where we observe that
the phase dependence drops out in the T = 0 limit. One can
now easily read off the critical currents Ic± which determine
the SDE efficiency according to Eq. (1):

η0 = 1 − 2 − 4qξ/π

1 +
√

1 − (qξ )2
. (42)

For qξ � 1, Eq. (42) gives η0 ≈ 2
π

qξ , while for qξ → 1, we
obtain η0 ≈ 4

π
− 1 ≈ 0.27. The point of maximal efficiency is

reached for qξ ≈ 0.9 with η0 ≈ 0.4.

C. Nonideal transparency

We now turn to numerical results for T < 1, where our
code accurately reproduces the exact results for T = 1 in
Sec. III B. Another check passed by our code is given by the
small-q expansion of the Andreev level energies in Eq. (32).
In numerical calculations, we obtain the CPR from Eqs. (34)
and (36) after solving the corresponding matching problem
for a given parameter set (qξ, T , kBT/�). Given the CPR, we
then read off the critical currents Ic± and determine the SDE
efficiency η0 according to Eq. (1).

The main panel in Fig. 2 is for the zero-temperature
limit and shows the dependence of η0 on the CP momentum

FIG. 2. SDE efficiency η0 in Eq. (1) corresponding to the equi-
librium CPR, computed from Eqs. (34) and (36). The main panel
shows η0 vs the CP momentum parameter qξ for several junction
transparencies T in the zero-temperature (T = 0) limit. The T = 1
result is given by Eq. (42). The inset shows η0 vs temperature T
(in units of �/kB) for the same transparencies as in the main panel,
choosing qξ = 0.9 where near-optimal SDE efficiency is realized for
T = 0.

parameter qξ for selected transparencies T , including the
ballistic case where Eq. (42) applies. Our results for T < 1
coincide with the recently corrected [27] version of Ref. [26].
We conclude that for decreasing transparency T , the SDE
efficiency also decreases since the anharmonic content in the
CPR becomes suppressed. For a given T , we observe that
the optimal efficiency is reached for qξ ≈ 0.9, practically
independent of the value of T .

The inset of Fig. 2 shows the impact of thermal fluctuations
on the SDE efficiency for the near-optimal case qξ = 0.9 and
the same transparencies T as in the main panel. We observe
a rapid decrease of η0 with kBT/� for transparencies near the
ballistic limit, while for T � 0.9, the efficiency approximately
remains at the T = 0 value for kBT � 0.1�. However, with
further increase of the temperature, the efficiency η0 becomes
very small for all values of T .

IV. NS JUNCTION

In this section, we discuss charge transport through a
voltage-biased NS junction [82] of transparency T between
a normal metal (x < 0) and a helical superconductor (x > 0)
with finite CP momentum 2q. We derive general expressions
for the nonlinear differential conductance G(V ) in Sec. IV A.
Analytical results for the conductance in the ballistic limit
(T = 1) are summarized in Sec. IV B. For nonideal trans-
parency T < 1, we present numerical results for G(V ) in
Sec. IV C.

A. Nonlinear conductance

We describe the normal-conducting region (x < 0) by the
Hamiltonian HL in Eq. (4) but with vanishing pairing gap
(� = 0). Including the bias voltage V as potential shift in the
normal region x < 0, it is convenient to perform a gauge trans-
formation, �(x, t ) �→ eiτzV t�(x, t ) for x < 0. For an incoming
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state with energy E , one thereby arrives at an effectively
stationary scattering problem characterized by the matching
condition:

�(0−, E ) = 1√
T

(σ0 + rσx )τ0�(0+, E ). (43)

For a calculation of the I-V curve, the bias voltage is then
accounted for by V -dependent Fermi factors for incoming
electrons or holes in the normal lead. Using the scattering
states in Eqs. (23) and (24), the bispinors at x = 0± are given
by

�(0−, E ) =
(

δs,1χe

δs,2χh

)
+

(
aχh

bχe

)
,

�(0+, E ) =
(

δs,3ψ+,h(E )

δs,4ψ−,e(E )

)
+

(
cψ̃+,e(E )

dψ̃−,h(E )

)
, (44)

with Nambu spinors ψα,e/h for incoming states and ψ̃α,e/h for
outgoing states, see Eqs. (18). The corresponding spinors in
the normal lead follow accordingly by letting � → 0:

χe =
(

1

0

)
, χh =

(
0

1

)
. (45)

The scattering amplitudes (a, b, c, d ) depend on the incoming
state type s and are determined by the matching condition
Eq. (43).

Assuming that the density of states in the normal region
is constant and given by the normal-phase value on the su-
perconducting side, νN = 1/(2πvF ) per spin, the dc current-
voltage characteristics, I (V ), then follow from Eq. (34). With
γ̃α (E ) in Eq. (14) and να (E ) in Eq. (27), we obtain

I (V ) = e
4∑

s=1

∫ ∞

−∞

dE

2π
Ñs(E )Ĩs(E ),

Ñs(E ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nF (E − eV ), s = 1

nF (E + eV ), s = 2

nF (E )ν+(E ), s = 3

nF (E )ν−(E ), s = 4,

Ĩs(E ) =
{

cosh(γ̃+)|c|2 − cosh(γ̃−)|d|2, s = 1, 2

|a|2 − |b|2, s = 3, 4.
(46)

The differential conductance is thus given by

G(V ) = dI

dV
= e

∫
dE

2π

(
dnF (E − eV )

dV
Ĩ1(E )

+ dnF (E + eV )

dV
Ĩ2(E )

)
, (47)

where only the scattering channels s = 1, 2 contribute in the
chosen gauge.

In what follows, we study the nonlinear NS conductance
in the zero-temperature limit (T = 0). Using the conductance
quantum G0 = 2e2/h, Eq. (47) then simplifies to

G(V )

G0
= 1

2
(Ĩ1(eV ) − Ĩ2(eV )). (48)

Importantly, one finds from Eqs. (46) that the NS conductance
Eq. (48) is always even under voltage reversal, G(−V ) =
G(V ). NS junctions involving a helical superconductor there-
fore do not exhibit rectification.

B. Ballistic limit

We first consider the case T = 1, where the matching
condition Eq. (43) is fulfilled automatically by continuous
bispinor wave functions �(x, E ). The nonvanishing scattering
amplitudes (as, bs, cs, ds) for given energy E and scattering
channel s are given by

a1 = σ+e−γ̃+ , c1 =
√

2,

b2 = σ−e−γ̃− , d2 =
√

2σ−,

a3 = σ+
1 − e−γ̃+

√
2 cosh γ̃+

, c3 = − e−γ̃+
√

cosh γ̃+
,

b4 = 1 − e−γ̃−
√

2 cosh γ̃−
, d4 = − e−γ̃−

√
cosh γ̃−

, (49)

with σα = sgn(Eα ). The zero-temperature nonlinear conduc-
tance Eq. (48) thus follows from Eqs. (46) as

G(V )

G0
= 1 + 1

2

∑
α=±

e−2γ̃α (eV )

= 1 + 1

2
(|a1(eV )|2 + |b2(eV )|2), (50)

where |a1|2 and |b2|2 are the probabilities for electron- and
hole-type Andreev reflections, respectively, where the re-
flected quasiparticle stays on the same branch (α = ±) as the
incident one. Using Eq. (14), we obtain G as a function of the
dimensionless parameters v = eV/� and qξ in explicit form:

G(v, qξ )

G0
= 1 + 1

2

∑
α=±

(
�(1 − |v − αqξ |)

+ �(|v − αqξ | − 1)

(|v − αqξ | +
√

(v − αqξ )2 − 1)2

)
. (51)

Note that G0 � G � 2G0.
In Fig. 3(a), we show the nonlinear conductance Eq. (51)

for different values of the CP momentum parameter qξ ,
restricting ourselves to positive voltages in view of the sym-
metry relation G(−V ) = G(V ). For T = 1, G(V ) stays at the
maximal value G = 2G0 for voltages below the lower spectral
gap, eV < �− = �(1 − qξ ). The nonlinear conductance then
monotonically decreases with increasing V for eV > �−, and
approaches the limiting value G = G0 for very large volt-
age eV � �+ = �(1 + qξ ). Clearly, the derivative dG

dV = d2I
dV 2

shows discontinuous jumps at the voltages eV = �± corre-
sponding to the two spectral gaps, where the conductance
decreases in a steplike way.

C. Nonideal transparency

We next turn to the case of nonideal junction transparency,
T < 1, where we numerically solve the matching problem
described in Sec. IV A and determine the T = 0 conductance
Eq. (48) from Eqs. (46). The dependence of the conductance
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FIG. 3. Zero-temperature nonlinear conductance G(V ) (in units of G0 = 2e2/h) for a NS junction with several values for the CP momentum
parameter qξ . Since G(−V ) = G(V ), we only show G(V ) for positive voltages. (a) is for transparency T = 1 and was obtained from Eq. (51).
(b)–(d) are for T = 0.9, 0.5, 0.1, respectively, and were obtained by numerically solving Eqs. (46) and (48).

on qξ is shown for several T in Fig. 3. We draw several
conclusions:

(1) For large voltage V → ∞, the NS conductance G(V )
approaches the q-independent Ohmic conductance [77]

G∞ = T G0 (52)

of the corresponding NN contact.
(2) The conductance also becomes independent of the CP

momentum 2q in the linear-response limit V → 0, where the
conductance scales as G(0) ∝ T 2 because it is governed by
Andreev reflections. The conductance G(V ) thus depends on
qξ only for voltages that are neither very small nor very large.

(3) For the conventional case q = 0, we recover a sharp
universal conductance peak with G = 2G0 for eV = � [82],
with a discontinuity in the derivative dG/dV .

(4) For finite CP momentum 2q �= 0, the voltage-
dependent conductance has two singular features: the single
conductance peak at eV = � found for q = 0 splits into a
pair of singularities at the Doppler shifted spectral gaps, eV =
�±, as in the ballistic case. At these voltages, the derivative
dG/dV is discontinuous since a peak in the α-dependent
superconducting density of states Eq. (27) aligns with an
effective Fermi level on the normal side. The doubling of
singular features for q �= 0 is a characteristic prediction for
the NS conductance of a helical superconductor.

(5) For q �= 0, the peak conductance is found at eV =
�− if the transparency is large, with a steplike conductance

decrease at eV = �+, see Fig. 3(b). On the other hand, for
low transparency, there is a steplike conductance increase
at eV = �− and the peak instead occurs at eV = �+, see
Figs. 3(c) and 3(d).

(6) For q �= 0, the peak conductance value is not universal
anymore and explicitly depends both on T and on qξ . In
particular, it always stays below the maximal value 2G0.

The observation of the above predictions in tunneling
spectroscopy experiments could help in identifying helical
superconductors.

V. VOLTAGE-BIASED JOSEPHSON DIODE

We now return to the case of a Josephson diode and
study the I-V characteristics under a constant bias voltage
V . To that end, we formulate a scattering theory accounting
for MAR processes. In contrast to previous work, see, e.g.,
Refs. [66–68], our theory allows for a finite CP momentum
2q.

Assuming a symmetric voltage bias, VL = −VR = V/2, the
phase difference is given by ϕ(t ) = 2eV t and Eq. (8) leads to
the time-dependent matching condition

�E (0−, t ) = 1√
T

(σ0 + rσx )eiτzeV t�E (0+, t ), (53)

where E is the energy of the incident state. We require |Eα| >

� for an incoming α mover. However, the energy of outgoing
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FIG. 4. Sketch of the BdG dispersion and the MAR ladder pic-
ture. Upper panel: The quasiparticle dispersion is shown on the left
and right sides, where the shaded central region refers to the normal
weak link. Electron (e) and hole (h) states are indicated by filled red
(open blue) circles and their trajectories in energy space are shown
as red (blue) lines. In this representation, the voltage drops across
the normal region and the shown e/h trajectories gain energy eV by
traversing it. A typical MAR trajectory for T = 1 is shown, see also
Fig. 1, where an e state impinges from the left side (channel type
s = 1) with energy E � −�−. The scattering amplitudes (a, b, c, d )
in Eqs. (56) are also indicated. Lower panel: In the presence of
normal reflection r �= 0, i.e., for T < 1, new types of trajectories are
possible which generate additional MAR features for 2�±/eV = n
(integer n). In the shown example, the voltage is eV = �−. In the
last step, the electron undergoes normal reflection and ends in the
left side at energy E ≈ �−. This trajectory is of first order in r and
causes a MAR feature at 2�−/eV = 2.

states may differ from E due to the absorption or emission of
eV quanta. In general, the energy could be of the form

En = E + neV, (integer n), (54)

which may include subgap energies.
In Sec. V A, we describe the MAR theory for helical su-

perconductors (q �= 0), using the model in Sec. II. Our theory
recovers the results of Ref. [67] for q = 0. We present an
analytical solution for the I-V curve in the ballistic limit
T = 1 in Sec. V B, where we also discuss the higher harmonic
components of the ac current at low voltages. For T < 1, we
discuss numerical results for I (V ) in Sec. V C and interpret
them in terms of the MAR ladder picture in Fig. 4. In Sec. VI,
we then describe the corresponding results for the voltage-
dependent efficiency η(V ) in Eq. (2).

A. MAR theory

We now construct scattering states for the finite-voltage
case taking into account MAR processes. Typical MAR tra-
jectories in energy space (MAR ladder) are shown in Figs. 1
and 4. We consider an incident α mover which is an electron
or hole like quasiparticle with energy E in the respective
continuum, |Eα| > �. For each step of the MAR ladder, the
energy of an electron changes by ±eV for right or left movers

when traversing the normal junction region, and similarly the
energy shift for holes is ∓eV . The energy En = E + neV
of an outgoing (reflected or transmitted) state may therefore
involve the emission or absorption of an integer number n of
eV quanta.

In what follows, we employ the electron-type Nambu
spinor ψ̃α,n(E ) for an outgoing α mover with energy En. Sim-
ilarly, we define the corresponding incoming Nambu spinors
ψα,n(E ), which are only needed for n = 0. Using Eqs. (15)
and (16):

ψα,n(E ) = ψe(En − αvF q), ψ̃α,n(E ) = ψ̃e(En − αvF q).
(55)

The respective hole-type Nambu spinors follow by acting
with τx on the spinors Eqs. (55). For instance, in the new
notation, the Nambu spinors ψα,e/h(E ) in Sec. II are given
by ψα,0(E ) and τxψα,0(E ), respectively. Using the general
scattering states in Eqs. (23) and (24) with four possible types
s ∈ {1, 2, 3, 4} of incident states, the bispinor states at x = 0±
for the voltage-biased case then have the form

�E (0−, t ) = e−iEt

(
δs,1 ψ+,0(E )

δs,2 τxψ−,0(E )

)

+
∑

n

e−iEnt

(
anτxψ̃+,n(E )

bnψ̃−,n(E )

)
,

�E (0+, t ) = e−iEt

(
δs,3 τxψ+,0(E )

δs,4 ψ−,0(E )

)

+
∑

n

e−iEnt

(
cnψ̃+,n(E )

dnτxψ̃−,n(E )

)
. (56)

We keep the dependence of the scattering amplitudes
(an, bn, cn, dn) on the incident-state energy E and channel-
type s implicit and define the quantities

ρα,n = ρ(En − αvF q), (57)

with ρ(E ) in Eq. (14) and

λα = λ(E − αvF q) =
√

2

1 + ρ2
α,0

. (58)

We refer to Fig. 4 for an illustration of these scattering states.
To proceed, we write the matching condition Eq. (53)

for given incident-state energy E separately for the upper
(electronlike) and lower (holelike) components of the Nambu
spinors. Consider first the upper components for s = 1, 2,
where we obtain a recurrence relation for spinors in right-left
mover space:

δn,0

(
δs,1 λ+

δs,2 ρ−,0λ−

)
+

(
ρ+,nan

bn

)
= σ0 + rσx√

T

(
cn+1

ρ−,n+1dn+1

)
.

(59)

Similarly, the lower components for s = 1, 2 imply the rela-
tion

δn,0

(
δs,1 ρ+,0λ+

δs,2 λ−

)
+

(
an

ρ−,nbn

)
= σ0 + rσx√

T

(
ρ+,n−1cn−1

dn−1

)
.

(60)
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Repeating the above exercise for s = 3, 4 then gives another
pair of recurrence equations. From the upper components, we
find

δn,0

(
δs,3 ρ+,0λ+

δs,4 λ−

)
+

(
cn

ρ−,ndn

)
= σ0 − rσx√

T

(
ρ+,n−1an−1

bn−1

)
,

(61)

while the lower component gives

δn,0

(
δs,3 λ+

δs,4 ρ−,0λ−

)
+

(
ρ+,ncn

dn

)
= σ0 − rσx√

T

(
an+1

ρ−,n+1bn+1

)
.

(62)

We observe that symmetry relations connect the recurrence
relations for s ∈ {1, 2} with those for s ∈ {3, 4}:

s ∈ {1, 2} ↔ s ∈ {3, 4},
{a, b, c, d} ↔ {c, d, a, b},

r ↔ −r. (63)

We therefore only need to study the relations for, say, s ∈
{1, 2}, where the result for s ∈ {3, 4} directly follows from
Eq. (63).

We then focus on states incident from the left side (s =
1, 2). By eliminating (an, bn) in Eqs. (59) and (60), we ob-
tain a closed recurrence relation for the scattering amplitudes
(cn, dn),

Xn,n+1(r)

(
c

d

)
n+1

= Yn,n−1(r)

(
c

d

)
n−1

+ δn,0

(
δs,1 J+
δs,2 J−

)
,

(64)

which are needed below for computing the current in terms of
outgoing states at x > 0. We use the source terms

Jα=± = α
(
ρ−1

α,0 − ρα,0

)
λα, (65)

and 2 × 2 matrices in right-left mover space:

Xn,n+1(r) = 1√
T

(
ρ−1

+,n rρ−1
+,nρ−,n+1

r ρ−,n+1

)
,

Yn,n−1(r) = 1√
T

(
ρ+,n−1 r

rρ+,n−1ρ
−1
−,n ρ−1

−,n

)
. (66)

They are connected by the relation

X −1
n,n+1(r) = Yn+1,n(−r). (67)

Equation (64) implies that only odd values of n will contribute
finite scattering amplitudes (cn, dn), i.e., cn = dn = 0 for even
n. By virtue of the symmetry relations Eq. (63), the recurrence
relation for s = 3, 4 can be inferred without additional calcu-
lations.

Taking into account all four incident-state types s, the time-
dependent expectation value of the charge current follows
from Eq. (33) with να=±(E ) in Eq. (27) as

I (t ) =
∑

even m

e−imeV t Im,

Im = e

2h

∑
α

∫
dE nF (E )να (E )I (m)

α (r, E ) + (r → −r),

(68)

where the terms with reflection amplitude r → −r describe
incident states of type s ∈ 3, 4. It is convenient to define
c+,n = cn and d+,n = dn for the s = 1 solution of the recur-
rences, and similarly c−,n and d−,n for s = 2, i.e., the index
α = ± in cα,n and dα,n corresponds to s ∈ {1, 2}. With this
convention and using Eq. (57), for even m, we find

I (m)
α (r, E ) =

∑
odd n

[c∗
α,ncα,n+m(1 + ρ∗

+,nρ+,n+m)

− d∗
α,ndα,n+m(1 + ρ∗

−,nρ−,n+m)], (69)

where =∗ indicates complex conjugation. The symmetry re-
lation

I (−m)
α (r, E ) = (

I (m)
α (r, E )

)∗
(70)

then implies I−m = I∗
m for the current harmonics in Eqs. (68).

The dc current-voltage characteristics follows from the
m = 0 component:

I (V ) = e

2h

∑
α

∫
dE nF (E )να (E )I (0)

α (r, E ) + (r → −r).

(71)
The current expression Eq. (71) affords a transparent physical
interpretation. Summing over all scattering channels s and
integrating over all incident energies E , the weight of the
corresponding incident state in the current is determined by
the product of the Fermi function, the density of states, and a
current matrix element. The latter follows by summing over
all orders n of the MAR ladder, where current contributions
only arise for odd n. At given order n, electrons (∝ |cα,n|2)
and holes (∝ |dα,n|2) enter with opposite signs, where the
corresponding Doppler-shifted energy En ∓ vF q appears in
the Andreev reflection amplitude.

B. Ballistic limit

Let us first discuss the ballistic case, T = 1, where the
reflection amplitude vanishes (r = 0) and a closed analytical
solution is possible.

1. Solution of the recurrence relations

We first note that the matrices Eqs. (66) appearing in
the recurrence relations Eq. (64) are diagonal for r = 0. For
s = 1, Eq. (64) is then solved by d+,n = 0 (for all n), where
c+,n �= 0 is possible for odd n. We thus obtain from Eq. (64)
the recurrence relation

c+,n+2 = ρ+,n+1ρ+,n c+,n + δn,−1ρ+,0J+, (72)

with ρα,n in Eq. (57) and Jα in Eq. (65). To obtain conver-
gent solutions at large energies, we require c+,−1 = 0. As a
consequence, we find c+,n = 0 for all n < 0. Nonvanishing
coefficients are then given by

c+,n = J+
n−1∏
k=0

ρ+,k, n ∈ {1, 3, · · · }. (73)

Similarly, for s = 2, one finds c−,n = 0 for all n while
d−,n �= 0 is possible for odd n according to the recurrence
relation

d−,n−2 = ρ−,n−1ρ−,n d−,n − δn,1ρ−,0J−, (74)
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where convergent solutions require d−,1 = 0. We therefore
must have d−,n = 0 for all n > 0, and the nonvanishing co-
efficients are given by

d−,n = −J−
n+1∏
k=0

ρ−,k, n ∈ {−1,−3, · · · }. (75)

Using the relation ρα,0Jα = α
√

2(1 − ρ2
α,0)/να (E ), Eqs. (73)

and (75) imply that all nonvanishing coefficients cα,n and
dα,n for given energy E can be summarized as follows: For
electronlike quasiparticles (described by c+,n), we find

c+,n

c+,1
=

n−1∏
k=1

ρ(E + keV − vF q), (n = 3, 5, · · · ),

c+,1 =
√

2

ν+(E )
[1 − ρ2(E − vF q)]1/2, (76)

with ρ(E ) in Eq. (14). For holelike quasiparticles (d−,n), we
find

d−,n

d−,−1
=

n+1∏
k=−1

ρ(E + keV + vF q), (n = −3,−5, · · · ),

d−,−1 =
√

2

ν−(E )
[1 − ρ2(E + vF q)]1/2. (77)

As a consequence, electron- and hole-type quasiparticles
climb the MAR ladder in opposite directions and their tra-
jectories in energy space are shifted by −vF q and +vF q,
respectively.

2. dc current-voltage curve

The dc current-voltage curve then follows by inserting
Eqs. (76) and (77) into Eq. (71). Using R(E ) = |ρ(E )|2, we
find

I (V ) = e

h

∑
α

∫
dE nF (E )να (E )

∑
odd n

[|cα,n|2(1 + R(E + neV + vF q)) − |dα,n|2(1 + R(E + neV − vF q))]

= 2e2

h
V + 2e

h

∑
α

∫
dE nF (E )�(|E − αvF q| − �) [1 − R(E − αvF q)]

(
1 +

∞∑
m=1

m∏
n=1

R(E + α(neV − vF q))

)
, (78)

where we have carefully taken the large-bandwidth limit in the second step such that the Ohmic conductance due to direct
quasiparticle tunneling processes (without Andreev reflections) is made explicit, see also Ref. [83]. For general transparency
T , the I (V ) curve contains the corresponding term G∞V with G∞ in Eq. (52). In the zero-temperature limit, Eq. (78) can be
simplified to

I (V ) = 2e2

h
V − 2e

h

∫
dE sgn(E ) �(|E − vF q| − �) [1 − R(E − vF q)]

(
1 +

∞∑
m=1

m∏
n=1

R(E + neV − vF q)

)
. (79)

We observe that the current is determined by quasiparticle
leakage into the leads due to MAR processes of all orders.
The finite-T result for I (V ) follows from Eq. (79) by replacing
sgn(E ) → tanh[E/(2kBT )].

From Eq. (79), we directly observe that I (−V ) = −I (V )
for q = 0. Rectification is possible, however, for q �= 0. Let
us show this first for the limit eV � � with T = 0. Using
R(E ) = �2

4E2 � 1 for E � �, see Eq. (14), we obtain from
Eq. (79), up to terms of order �2/(eV )2,

I (V ) = 2e2

h
V − 2e

h

∫
dE sgn(E ) �(|E − vF q| − �)

× [1 + R(E + eV − vF q)]

= 2e2

h
V + 2e

h
lim

�→∞

(∫ −�+vF q

−�

−
∫ �

�+vF q

)
dE

× [1 + R(E + eV − vF q)]

= 2e

h
[eV + 2(sgn(V ) + qξ )�]. (80)

In the ballistic limit, the current Eq. (80) splits into the sum
of the well-known current Iq=0(V ) for q = 0 [67] (here taken
in the large-V limit) plus a constant current (vF /h)(2e)(2q)
carried by Cooper pairs propagating with finite momentum 2q

and charge 2e. A similar decomposition of the current is also
found for the T = 1 equilibrium CPR, see Eq. (41).

The above separation is, in fact, valid for arbitrary voltage
V as long as T = 1. Technically, one can show this by shifting
the integration variable E → E + vF q in Eq. (79). For arbi-
trary V , we then obtain

Iq �=0(V ) = Iq=0(V ) + 4e�

h
qξ . (81)

3. Higher harmonics at low voltages

Before turning to the general case with T < 1 in Sec. V C,
let us address the higher harmonics of the ac current in the
deep subgap regime e|V | � �, still for T = 1 and T = 0.
Here only incoming states with Eα < −� (where Eα = E −
αvF q and α = ±) contribute to the current. To simplify the
analysis, we note that the Andreev reflection amplitude ρ(E )
in Eq. (14) is very small for above-gap energies E > �, and
we therefore assume ρ(E > �) = 0 below.

We next observe that for scattering channel s = 1, where
states with incident energy E are described by the scatter-
ing amplitudes c+,n with n ∈ {1, 3, 5, . . .}, contributions to
the MAR ladder are only possible for the energy window
−� − eV < E − vF q < −�. Indeed, only for such energies,
one can have steps with ρ(E + keV − vF q) = 1 in Eqs. (76).
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Note that this window requires V > 0. Similarly, for s = 2,
the amplitudes d−,n with n ∈ {−1,−3, . . .} in Eqs. (77) imply
that only states with −� + eV < E + vF q < −� contribute
to the MAR ladder and we must have V < 0. As a con-
sequence, for V > 0 (V < 0), only states of incoming type
s = 1 (s = 2) can climb the MAR ladder and thus contribute
to the current. They must originate from a narrow energy
region near the gap edges, −� − e|V | < Eα < −�.

Let us then consider the case 0 < eV � �, where, within
our approximations, we have d−,n = 0 from Eqs. (77) and
I (m)
− = 0 from Eq. (69). Truncating the MAR ladder at or-

der nmax ≈ 2�/eV � 1, the amplitudes in Eqs. (76) are now
given by

c+,n = e−i
∑n−1

k=1 γ+,k c+,1, c+,1 =
√

2

ν+(E )
,

γα,k = cos−1

(
E + keV − αvF q

�

)
∈ [0, π ], (82)

where n = 3, 5, . . . , nmax. The non-vanishing terms in
Eq. (69) have the form (with r = 0 and even m)

I (m)
+ (0, E ) =

nmax−m∑
n=1

c∗
+,nc+,n+m(1 + ei(γ+,n−γ+,n+m ) ). (83)

The current harmonics Im for m = 2, 4, . . ., see Eq. (68), are
then given by

Im = e

h

∫ 0

−∞
dE ν+(E )I (m)

+ (0, E )

� 2e

h

∫ −�+vF q

−�+vF q−eV
dE

nmax−m∑
k=1

e−i
∑m−1

j=0 γ+,k+ j

= 2e

h

∫ −�

−�−eV
dE

nmax−m∑
k=1

e−i
∑m−1

j=0 γk+ j , (84)

where γk ≡ γ+,k (q = 0) and we have shifted the energy inte-
gration variable in the last step. We thus arrive at the q = 0
result of Ref. [67],

Im = 2�

h

∫ 1

−1
dz e−im cos−1 z, (85)

which continues to hold for q �= 0 and m �= 0. We conclude
that the higher current harmonics are not affected by the q
shift of the dc current in Eq. (81). We emphasize that the q
independence of Im �=0 holds in the ballistic limit and for low
voltages, where the above derivation is justified. It is an open
question if and how the current harmonics are affected by
q �= 0 otherwise.

Neglecting the (now subleading) Ohmic contribution, we
conclude that for e|V | � � and T = 0, the time-dependent
current I (t ) in Eq. (68) is given by

I (t ) = 4e�

h
qξ + e�

h̄
sgn(V ) |sin(eV t )|. (86)

The time-averaged current obtained from Eq. (86) is consis-
tent with the dc current in Eq. (81) since I0 � (4e�/h) sgn(V )
for e|V | � � [67]. We then obtain for e|V | � � the dc

current-voltage curve as

I (V ) = 4e�

h
(qξ + sgn(V )). (87)

For qξ → 1, we obtain I (V > 0) = 8e�/h and I (V < 0) =
0, resulting in full rectification with maximal efficiency
η(V ) = 1, see Sec. VI.

In addition, Eq. (86) is also consistent with our results for
the CPR of the ballistic Josephson diode, see Sec. III B, with
two Andreev states ±EA(ϕ) for EA(ϕ) = � cos(ϕ/2) − vF q.
At small but finite voltage V , these Andreev level energies ac-
quire an adiabatic time dependence because of the Josephson
relation ϕ(t ) = 2eV t . For instance, starting from EA = −� at
time t = 0, we have EA(t ) = � cos[eV (t − t0)] with eV t0 =
cos−1(qξ − 1). In the ballistic limit with q �= 0, and assuming
that no other dissipation channels are present, each Andreev
level for chirality α may dive into (or out of) the continuum
associated with the opposite chirality −α without changing
its occupation probability. The reason for this behavior has
been discussed in Sec. II B: even though there is a spectral
overlap of states with α = + and α = −, and therefore be-
tween continuum and Andreev states, both types of states are
completely decoupled in the ballistic case. As a consequence,
the occupation probability of Andreev levels can only change
near gap edges of the same chirality.

C. Nonideal transparency

We now show results for the I-V characteristics for
voltage-biased Josephson diodes with finite CP momentum
2q �= 0 and transparency T < 1. We focus on the case T = 0.
The results shown below have been obtained from Eq. (71) by
numerical solution of the recursion relation Eq. (64). It is a
well-known challenge to describe the limit V → 0 with T �
1 numerically [66–68,70] since the MAR order contributing to
the current, nmax ∼ 2�/e|V |, becomes very large. As a check,
our code reproduces (i) the q = 0 results of Ref. [67] and (ii)
the ballistic result for q �= 0 in Eq. (81).

In Fig. 5, we illustrate our numerical results for the dif-
ferential conductance G(V ) = dI/dV and for the derivative
dG/dV = d2I/dV 2. We find a rich subharmonic structure,
with sharp peaks and dips at certain voltages. In particular, we
find the conventional MAR features at voltages eVn = 2�/n
(integer n) but also shifted features at 2�±/eV = n corre-
sponding to the Doppler shifted spectral gaps in Eq. (13).

An example for a typical MAR trajectory (representing
the MAR ladder in energy space) in the ballistic limit is
schematically illustrated in the top panel of Fig. 4. Because
of the characteristic peak structure near the band edge in the
superconducting density of states Eq. (27), the shown process
in Fig. 4 with an incoming electron of energy E ≈ −�−
will have a resonant enhancement if the energy E + 3eV
of the outgoing electron is just above �+. The MAR reso-
nance then occurs if 2�/eV = 3 since �− + �+ = 2�, see
also Fig. 1(b). More generally, similar MAR trajectories can
explain the occurrence of MAR features at voltages where
2�/eV = n with integer n.

In the absence of normal reflection, MAR trajectories
such as the one shown in the top panel of Fig. 4 cannot
end in an outgoing electron state with En ≈ +�− since the
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FIG. 5. Differential conductance G = dI/dV (top and bottom
panel, in units of G0 = 2e2/h), and derivative dG/dV (center panel,
in units of eG0/�) of a Josephson diode as function of the volt-
age parameter 2�/eV for T = 10−3�, T = 0.7 and qξ = 0.3. The
bottom panel shows a waterfall plot for T = 0.7 and several qξ .
Red and blue arrows labeled by n± correspond to MAR features at
2�±/eV = n, respectively, with �± in Eq. (13). MAR features at
2�/eV = n correspond to the dotted vertical lines.

corresponding matrix elements vanish. However, for finite re-
flection amplitude r, i.e., for T < 1, MAR trajectories are able
to connect quasiparticle states with incident energy E ≈ −�±
and outgoing energy En ≈ +�±. In such cases, depending on
the magnitude of the current matrix elements, one can obtain
MAR side features at eV = 2�±/n. An example for such a
case is shown in the lower panel of Fig. 4.

Such features are clearly observed from our numerical
results in Fig. 5, where side peaks or dips for 2�±/eV = n are

indicated by red and blue arrows, respectively. While some of
those features are hardly visible in the nonlinear conductance
(top panel), the derivative dG/dV (center panel) reveals sharp
features. We remark that for some points with 2�±/eV =
n in Fig. 5, MAR features are (almost) absent since the
corresponding current matrix elements are very small. This
happens, for instance, near 2�−/eV ≈ 8.

We conclude that the rich subharmonic structure in Fig. 5
is connected to the pair of Doppler shifted spectral gaps. The
presence of two gaps enriches the MAR ladder picture and
implies that MAR features can occur not only for 2�/eV = n
but also for 2�±/eV = n.

VI. FINITE-VOLTAGE RECTIFICATION

In this section, we discuss the finite-bias rectification ef-
ficiency in the zero-temperature limit. For arbitrary system
parameters represented by the dimensionless quantities qξ , T ,
and eV/�, the efficiency η(V ) in Eq. (2) follows from Eq. (68)
by numerically solving the recurrence relations. In Sec. VI A,
we show that the perfect efficiency η = 1 is reachable in
the ballistic case T = 1. We then turn to the subharmonic
structure for T < 1 in Sec. VI B, and finally comment on the
large-bias regime in Sec. VI C.

A. Ideal rectification

For T = 1, the matching conditions as well as the BdG
Hamiltonian conserve chirality, σz = α = ±, and the recur-
rence relations admit a closed solution. As discussed in
Sec. V B, we find that I (V ) for q �= 0 is related to the known
q = 0 curve Iq=0(V ) [67] by a simple shift, see Eq. (81). This
shift has a clear physical interpretation: it is the current carried
by Cooper pairs with finite momentum 2q and charge 2e.
The decomposition Eq. (81) only applies in the ballistic limit
where chirality is conserved. The rectification efficiency then
follows from Eq. (2) as

η(V, qξ, T = 1) = 4e�

h

qξ

Iq=0(V )
, (88)

which depends on the voltage only through the ratio eV/�,
i.e., the Doppler shifted gaps �± do not appear. For
e|V | � �, the Ohmic result of a normal-conducting con-
tact, I0(V ) ≈ (2e2/h)V , implies η(V ) � 2qξ �

eV . On the other
hand, for e|V | � �, using Iq=0(V → 0) ≈ (4e�/h) sgn(V )
[67], Eq. (88) gives η(V ) � qξ . Remarkably, for qξ → 1, one
thus approaches the ideal rectification limit since the MAR-
induced current I0 now precisely cancels the finite-momentum
Cooper pair current for V < 0, i.e, I (V < 0) = 0 in Eq. (81),
while both currents add for V > 0 to give I (V > 0) = 8e�/h.
As a result, we have η(V ) = 1. Clearly, there is no current
suppression for qξ → 1 even though one of the spectral gaps
vanishes, �− → 0.

We conclude that MAR processes can generate highly
efficient superconducting diode behavior along with large
currents in the deep subgap regime e|V | � � and at low
temperatures. The perfect rectification limit is reached for
ballistic junctions with CP momentum parameter qξ → 1.
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FIG. 6. Rectification efficiency η(V ) obtained by numerical eval-
uation of Eqs. (2) and (68). Top panel: The main part shows η(V ) vs
2�/eV for qξ = 0.3 and several T . Dotted vertical lines indicate
standard MAR features at 2�/eV = n (integer n) [66,67,69,70]. The
inset is for T = 0.7 and different qξ . Bottom panel: dη/dV vs
2�/eV for qξ = 0.3 and the same T as in the main part of the top
panel. Arrows labeled by n± indicate the points where 2�±/eV = n.

B. Subharmonic structure

In Fig. 6, we show numerical results for η(V ) for different
values of (qξ, T ). We observe an overall increase of η(V )
with increasing Cooper pair momentum 2q and/or junction
transparency T . The efficiency is particularly large in the
subgap regime e|V | � 2�, where we also observe a sub-
harmonic structure with peaks or dips. The enhancement of
η(V ) for e|V | � � compared to η0 (for otherwise identical
parameters) thus persists for T < 1, with optimal rectification
at T = 1. The subharmonic structure is more clearly visible
in the derivative dη(V )/dV (bottom panel in Fig. 6). Apart
from the standard q = 0 MAR features at 2�/eV = n (integer
n), which are also observed for q �= 0 and follow from MAR
trajectories as drawn in the upper panel in Fig. 4, we also find
resonances or antiresonances corresponding to the Doppler-
shifted pairing gaps �± (indicated by arrows in Fig. 6). The
physics of these features has already been described above
for the nonlinear conductance: The transitions are naturally
explained from the MAR ladder picture, see the lower panel
of Fig. 4, where the presence of normal reflection r �= 0 en-
ables MAR trajectories between states near the same type of
spectral gap (±�+ or ±�−) where να (E ) has sharp peaks.

FIG. 7. I-V curves and high-voltage rectification. Main panel: I-
V curves for different values of (qξ,T ), with currents in units of
2e�/h. Inset: Rectification coefficient A vs qξ for several T in the
large-voltage limit, see Eq. (89), obtained by numerical solution of
Eq. (68) for eV/� = 50.

C. Large-bias behavior

In Fig. 7, we illustrate the I-V curves for several values
of (qξ, T ). Note that the current remains large for qξ → 1,
indicating efficient diode behavior along with large currents.
For eV � �, we find

η(eV � �, qξ, T ) � A(qξ, T )
�

eV
. (89)

The dimensionless coefficient A(qξ, T ) is shown in the inset
of Fig. 7, with A = 2qξ for T = 1 from the analytical solu-
tion. For qξ � 1, our numerical results suggest A(qξ, T ) ≈
2qξT .

We conclude that even for large bias voltages well above
the superconducting pairing gap, eV � �, some degree of
rectification can persist at low temperatures.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the physics of supercon-
ducting diodes when operated under voltage-biased nonequi-
librium conditions. By developing a scattering approach for
a single-channel junction involving helical superconductors
with finite CP momentum 2q, the current-voltage character-
istics can be computed, fully including MAR processes to
all orders. Apart from the case of voltage-biased Josephson
junctions, we have also studied the equilibrium case and the
case of NS junctions. Our main results are as follows.

First, for the equilibrium case corresponding to a current-
biased junction, the SDE efficiency η0 reaches a maximal
value of η0 ≈ 0.4 in the limit of a ballistic junction (trans-
parency T = 1) with T = 0 and CP momentum parameter
qξ ≈ 0.9. These results reproduce those in Refs. [26,27].

Second, for the NS junction, the nonlinear T = 0 conduc-
tance G(V ) = dI/dV exhibits discontinuities in the derivative
dG/dV at the voltages corresponding to Doppler-shifted spec-
tral gaps, eV = �± = � ± vF q. Tunneling spectroscopy of
helical superconductors is thus predicted to find clear traces
of the finite CP momentum through the doubling of such
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singular features. However, the NS junction can never exhibit
rectification.

Third, for voltage-biased Josephson diodes, we have de-
veloped a scattering approach including MAR processes to
all orders. Our theory reproduces the results of Ref. [67] in
the limit of vanishing CP momentum. For the ballistic case,
an analytical solution has been presented which facilitates
the calculation of the current-voltage characteristics. We can
thereby compute the rectification efficiency η(V ) as a function
of the dimensionless parameters of this problem (which are
given by qξ, T , kBT/�, and eV/�). We obtain large efficien-
cies approaching the ideal value η(V ) = 1 at low temperature
and very small voltage, assuming a junction with high trans-
parency T → 1 and CP parameter qξ → 1. While the SDE
efficiency η0 is always smaller than η0 ≈ 0.4, going out of
equilibrium can thus result in ideal rectification.

Fourth, for finite CP momentum, we predict that the
standard MAR features at 2�/eV = n (integer n) will be
accompanied by side features (peaks or dips) at 2�±/eV = n
determined by the Doppler shifted spectral gaps �±.

A central and remarkable result of our paper is that in
the subgap regime, MAR processes can allow for very large
rectification efficiency, accompanied by large currents. The
I-V curve for e|V | � � can be computed analytically from a
time average over quasistationary Andreev levels [67] by us-
ing the Josephson relation ϕ̇ = 2eV/h̄. In this case, relaxation
mechanisms mixing Andreev states are inefficient and one
can obtain perfect rectification (η = 1) at the optimal working
point qξ = 1. On the other hand, under current-biased con-
ditions, an effective relaxation mechanism is tacitly assumed,
and this results in η0 � 0.4 and a different optimal working
point (qξ ≈ 0.9). One may also expect a similar rectification
efficiency enhancement in voltage-biased Josephson diodes if
other mechanisms are responsible for the SDE. We hope that
future experimental and theoretical work will shed light on
this intriguing question.

Apart from obvious implications for experiments on
Josephson diode, our work raises several interesting ques-
tions for future theoretical research. Let us mention just a
few points. First, a relatively straightforward extension of our
theory is to analyze the higher current harmonics Im �=0 in
Eq. (68). While we have studied them in the ballistic limit
at very low voltages, the case of T < 1 and larger voltages
remains open. Second, it would be of interest to analyze the
gapless case realized for large CP momentum with qξ > 1,
which has not been discussed in the present paper. Third, in
the dc limit, quantum noise could exhibit interesting features
in a voltage-biased Josephson junction with q �= 0. Fourth,
the above MAR recurrence relations may also allow for an-
alytical progress by expanding in the reflection amplitude
r = √

1 − T for r � 1, see Ref. [84] for recent work on the
q = 0 version of the model.

Finally, MAR-related effects could be different in cases
where the mechanism behind the SDE is not based on finite
CP momentum physics. In Appendix, we briefly discuss a
model with q = 0, where the weak link is defined by a tunnel-
coupled quantum dot with spin-orbit coupling and a magnetic
Zeeman field. This model exhibits the SDE and, according
to our preliminary results, the efficiency η(V ) can again
be large in the low-voltage regime at high transparency. In

addition, such models allow one to study Coulomb interaction
effects.

To conclude, we hope that our paper will inspire future
research on nonequilibrium transport in systems exhibiting the
SDE.
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APPENDIX: QUANTUM DOT JOSEPHSON
DIODE MODEL

In this Appendix, we summarize our results for the SDE
efficiency η0 in Eq. (1) for a different Josephson diode model
[21,55,74]. In this model, the superconducting bands have
zero CP momentum, q = 0, but the weak link is defined
by a quantum dot tunnel-coupled to the superconducting
leads, H = HL + HR + Hdot + Htun. The dot is modeled as a
nanowire of length L along the x axis with spin-orbit and
Zeeman couplings [21],

Hdot =
∫ L/2

−L/2
dx d†(x)

(
p̂2

2m
− μ + α0

m
σz p̂ + b · σ

)
d (x),

(A1)
where d = (d↑, d↓)T is a fermionic spinor field, p̂ = −i∂x, m
is the effective electron mass, μ is the chemical potential of
the dot, α0 � 0 is the spin-orbit coupling, and b = (bx, by, bz )
is a constant magnetic Zeeman field (including gyromagnetic
and Bohr magneton factors). In contrast to the notation used
in the main text, the Pauli matrices σx,y,z in Eq. (A1) act in
spin space.

As in Eq. (4), the superconducting leads are described by

Hj=L,R =
∑

k

ψ
†
j,k (ξkτz + �τx )ψ j,k, (A2)

with the Nambu spinor ψ j,k = (ψ j,k↑, ψ
†
j,k↓)T . Here ψ

†
j,kσ

creates an electron in lead j = L/R with momentum k, spin
projection σ ∈ {↑,↓}, and normal-state dispersion ξk . The
Pauli matrices τx,y,z act in Nambu space.

Finally, Htun describes pointlike tunnel couplings connect-
ing the leads and the dot,

Htun =
∑
j=L,R

t je
iφ j/2

∑
σ=↑,↓

ψ
†
jσ dσ (x j ) + H.c., (A3)

with momentum- and spin-independent real-valued hopping
parameters t j > 0. The tunneling points in the nanowire are
given by x j = −s jL/2 with sL/R = ±1, and the local lead
fermion fields near the respective tunnel contact are ψ j,σ =
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FIG. 8. SDE efficiency η0 for the quantum dot model of a Joseph-
son diode in Appendix. We use units with � = 1 and the parameters
α0 = 1.4, b = (0.4, 0, 0.3), L = 3, tL = 0.45, tR = 0.4, and kBT =
0.01. Main panel: η0 vs dot potential μ. Lines connecting data points
are a guide to the eye only. Inset: CPR for μ = −0.16, where the
SDE efficiency is η0 ≈ 0.25.

∑
k ψ j,kσ . We again choose a gauge where φ j = s jϕ/2 with

the phase difference ϕ.
Integrating out the superconducting lead fermions, we

obtain the CPR in terms of the dot Green’s function, see
Refs. [21,74] for details. The resulting CPR depends on the
various model parameters. However, from numerical calcula-
tions for many different parameter configurations, the generic
behavior is as follows, see also Ref. [21]. If both the spin-orbit
parameter α0 and the magnetic Zeeman field b are finite, and if
more than one dot level contributes to the Josephson current,
the SDE efficiency η0 in Eq. (1) is generally finite. Impor-
tantly, there are always specific regions in parameter space
where the CPR implies a large SDE efficiency, η0 � 0.2. We
here illustrate this conclusion for the case of relatively short
nanowires, where precisely two dot energy levels εn satisfy
|εn| � �. (However, for very short wires, only a single dot
level is present, but then the spin-orbit coupling is not effective
and there is no SDE [21].) In the case discussed below, all
other dot levels have energy |ε| � �, and their contribution
to the Josephson current is negligible. The dot energy levels
εn follow by diagonalization of Eq. (A1) [21,74].

Figure 8 shows the resulting SDE parameter η0 as a func-
tion of the dot potential μ for a generic parameter choice.
We find that η0 is very small for most values of μ, except
near two specific values where efficiency peaks are present.
The maximal SDE efficiency is here given by η0 ≈ 0.25. The
inset in Fig. 8 shows the CPR for μ = −0.16, corresponding
to the point of maximal SDE efficiency in the main panel.
The negative critical current is here much larger (in absolute
value) than the positive critical current. Note that the CPR is
strongly anharmonic, which is a necessary condition to obtain
large η0. We stress that the results shown in Fig. 8 are generic:
similar results have been found for many different parameter
choices.

FIG. 9. Two-dimensional color-scale plot of the SDE efficiency
η0, Eq. (1), in the α0-μ plane, where α0 is the spin-orbit coupling
parameter and μ denotes the dot potential. We use the parameters in
Fig. 8 and units with � = 1. The magnitude of η0 is encoded by the
color bar. Superimposed thick black lines indicate positions in the
α0-μ plane where a dot energy level ε is nearly resonant with |ε| <

0.04�. Regions with large η0 typically are close to these resonance
lines.

Since a computation of η0 requires knowledge of the full
CPR, it is generally hard to reliably predict the precise param-
eter values allowing for large efficiencies. However, physical
insight follows by scanning the positions in parameter space
where a large η0 occurs. In Fig. 9, we show how η0 depends
on the spin-orbit coupling α0 and the dot potential μ, with
the remaining parameters chosen as in Fig. 8. In this two-
dimensional plane, the points with large η0 form a set of
curves. For a large part, these curves coincide (or are very
close) with parameter values where one of the dot levels has
energy close to zero. Such resonant dot energy positions are
shown by thick black lines in Fig. 9. Large values of η0 are
therefore tightly correlated with the existence of a (nearly)
resonant dot level. One can rationalize this conclusion by
noting that resonant dot energy levels typically cause large
transparency of the corresponding weak link, which in turn
can cause the strongly anharmonic CPR [77] needed for gen-
erating a large SDE efficiency. On a qualitative level, this
conclusion is also consistent with the results for the finite CP
momentum model presented in Sec. III and in Ref. [26], where
maximum efficiency is reached for a fully transparent junction
with T = 1.

Finally, we note that we have also obtained preliminary
results for the MAR-induced current-voltage curve for the
above model. We again find large rectification efficiencies
η(V ) in the subgap regime e|V | � 2�. A detailed account will
be given elsewhere.
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