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RECENT DEVELOPMENTS ON
COMPACTIFICATIONS OF STACKS OF SHTUKAS

TUAN NGO DAC AND YAKOV VARSHAVSKY

Abstract. This text presents an overview of recent developments
on compactifications of moduli stacks of shtukas. The aim is to ex-
plain how to tackle the problem of compactifying stacks of shtukas
by two different methods: the Langton semistable reduction and
the Geometric Invariant Theory.
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1. Introduction

LetX be a geometrically connected smooth projective curve over a fi-
nite field Fq and let F denote its function field. In the seventies Drinfeld
[4, 5, 6] invented several fundamental objects called Drinfeld modules
and shtukas over this curve which are analogues of elliptic curves in the
function field setting. In this setting, moduli spaces or stacks classify-
ing these objects are analogues of Shimura varieties. Drinfeld [6, 7, 8]
studied the moduli space of Drinfeld shtukas of rank 2 and its com-
pactifications and proved the Langlands correspondence for GL2 over
F . Subsequently, Lafforgue [12, 13, 14] studied the moduli space of
Drinfeld shtukas of arbitrary rank r and its compactifications to prove
the Langlands correspondence for GLr over F .

The notion of shtukas can be generalized for other reductive groups
over F . Laumon, Rapoport and Stuhler [23] used the moduli space of
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shtukas for division algebras or D-shtukas and proved the local Lang-
lands conjecture for GLr over local fields of equal characteristic. Similar
moduli stacks of D-shtukas were studied by Lafforgue [12], Lau [19, 20],
and Ngo Bao-Chau [26]. For a more general reductive group G over F ,
stacks of G-shtukas were introduced and studied by the second author
[30] (for G split) and V. Lafforgue [16, 17]. We mention that moduli
stacks of G-shtukas for flat affine group schemes G of finite type over
X are constructed by Arasteh Rad and Hartl in [1].

In the aforementioned works of Drinfeld and Lafforgue, a major chal-
lenge is to construct compactifications of stacks of shtukas. The main
goal of this paper is to report on recent developments in this problem.
This text is mainly based on the notes from the first author’s talk at
the BIRS-CMO workshop “Moduli, Motives and Bundles – New Trends
in Algebraic Geometry” in Oaxaca, Mexico in 2022, as well as the au-
thors’ work on this topic. Details and proofs will appear in the paper
[28].
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2. Stacks of GLr-shtukas

In this section we review the definition and basic properties of stacks
of GLr-shtukas, which generalize the moduli stacks of Drinfeld shtukas
studied by Drinfeld [6, 7, 8], Lafforgue [12, 13, 14, 15] (see also Var-
shavsky [30], V. Lafforgue [16, 17] and Arasteh Rad-Hartl [1] for a more
general setting).

2.1. Notation.
Let Fq be a finite field with q elements. We denote by p the charac-

teristic of Fq and Fq be an algebraic closure of Fq.
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Let X be a geometrically connected smooth projective curve over
Fq. Denote by F its function field. We always consider schemes and
stacks over Fq. Letting Y and Z be schemes or stacks over Fq, we
use Y × Z to denote the fiber product of Y and Z over Fq and by
FrobY : Y −→ Y the absolute Frobenius morphism of Y over Fq. The
latter is the identity on the underlying topological space and the q-th
power on the structure sheaf. For any scheme S over Fq, if E is a vector
bundle over X × S, then we write

Eσ := (idX ×FrobS)∗E.

Let r be a positive integer and G = GLr the general linear group
of rank r. Let T ⊂ G be the split maximal torus of diagonal matrices
and let B ⊂ G be the Borel subgroup of upper triangular matrices.
We identify the set of characters and that of cocharacters with Zr as
follows. A character (resp. cocharacter) of T is always of the form

t = (t1, . . . , tr) 7→ tλ
1

1 . . . tλ
r

r

(resp. t 7→ (tλ
1
, . . . , tλ

r
)) for some λ = (λ1, . . . , λr) ∈ Zr, and we iden-

tify it with the element λ = (λ1, . . . , λr) of Zr. The natural pairing is
therefore identified with the natural product Zr×Zr −→ Z. The set of
roots Φ (resp. of positive roots Φ+) with respect to our choice (B, T )
consists of the elements of the forms ei − ej with 1 ≤ i 6= j ≤ r (resp.
with 1 ≤ i < j ≤ r). The set of simple roots ∆ consists of the elements
of the forms ei − ei+1 with 1 ≤ i ≤ r − 1.

Let λ = (λ1, . . . , λr) ∈ Zr be a character (resp. a cocharacter). We
say that λ is dominant if (λ1, . . . , λr) lies in the subset (Zr)+ of de-
creasing sequences of integers, i.e., λ1 ≥ · · · ≥ λr. We set

deg λ :=
r∑
i=1

λi.

Further, let µ = (µ1, . . . , µr) be another character (resp. a cocharacter),
we say that λ ≤ µ if and only if

λ1 ≤ µ1,

λ1 + λ2 ≤ µ1 + µ2,

· · ·
λ1 + · · ·+ λr−1 ≤ µ1 + · · ·+ µr−1,

λ1 + · · ·+ λr = µ1 + · · ·+ µr.

2.2. Vector bundles on curves.
Recall that a vector bundle of rank r over X is a locally free sheaf

of rank r on X. Let Bunr be the functor which assigns to a scheme S
the groupoid of vector bundles of rank r over X×S, where morphisms
are isomorphisms of vector bundles. This stack Bunr is called the stack
classifying vector bundles of rank r over X.
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Proposition 2.1. The stack Bunr is a smooth Artin stack, locally of
finite type over Fq.

Proof. By [22, Théorème (4.6.2.1)], Bunr is an Artin stack locally of
finite type over Fq. By the deformation theory, Bunr is formally smooth,
and the proposition follows.

The interested reader may refer to [11, §1 and §2], [21, §2.3], [25,
Theorem 2.67], and [30, Lemma 3.1] for different proofs of this proposi-
tion. These texts provide additional approaches to prove the mentioned
proposition. �

Proposition 2.2. For any integer d ∈ Z, we denote by Bundr the sub-
stack of Bunr classifying vector bundles of rank r and of degree d. Then
the connected components of Bunr are exactly Bundr (d ∈ Z).

Proof. See for example [30, Lemma 2.2 and Appendix A.1] where a
more general statement is proved. �

2.3. Harder-Narasimhan truncation.

Definition 2.3. By a rational Harder-Narasimhan (HN for short) poly-
gon, we mean an element p = (p(0), p(1), . . . , p(r)) of Qr+1 such that

i) p(0) = p(r) = 0,
ii) p is convex, i.e., for every 1 ≤ i ≤ r, we put

∆p(i) := p(i)− p(i− 1)

and we require that ∆p(i) ≥ ∆p(i+ 1) for 1 ≤ i < r.

In this section, let κ be an algebraically closed field and let E be
a vector bundle of rank r over X × κ. For a subbundle F of E, the
normalized degree of F is defined by

ndegE F := degF − rkF

rkE
degE.

Definition 2.4. We keep the above notation. We say that E is semistable
(resp. stable) if for every nonzero subbundle F of E, we have the in-
equality

degF

rkF
≤ degE

rkE
,

(resp. degF

rkF
< deg E

rkE
).

In other words, E is semistable (resp. stable) if for every nonzero
subbundle F of E, we have ndegE F ≤ 0 (resp. ndegE F < 0).

We are ready to introduce the notion of Harder–Narasimhan strati-
fication of vector bundles.

Proposition 2.5. There exists a canonical filtration

0 =: E0 ( E1 ( · · · ( En := E

such that for every 0 ≤ i ≤ n− 1 we have
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1) deg Ei

rkEi
> deg Ei+1

rkEi+1
,

2) Ei+1/Ei is semistable.

Remark 2.6. 1) It follows that the set of points {(rkEi, degEi −
rkEi

deg E

rkE
) : 0 ≤ i ≤ n} defines a HN polygon as introduced in Defini-

tion 2.3. This is called the Harder-Narasimhan polygon associated to
the vector bundle E. The canonical filtration is also called the Harder-
Narasimhan filtration of E.

2) Another consequence is that for every subbundle F of E, the point
(rkF, degF − rkF

rkE
degE) lies below the Harder-Narasimhan of E.

3) If we consider a family of vector bundles on X, then the Harder-
Narasimhan polygon can only get bigger under specialization.

Definition 2.7. Let p be a HN polygon. We will say that the Harder-
Narasimhan polygon of E is bounded by p if and only if for every
subbundle F of E, we have the inequality

degF ≤ rkF

rkE
degE + p(rkF),

or equivalently,
ndegE F ≤ p(rkF).

Proposition 2.8. Let p be a HN polygon and d ∈ Z. Then the substack
Bund,≤pr of Bundr is open and of finite type.

Proof. See for example [30, Appendix A.3 and A.4]. �

2.4. Hecke stacks.
We introduce the Hecke stack of modifications Hecker following Beilin-

son and Drinfeld [2].

Definition 2.9. The Hecke stack Hecker is the stack over the cate-
gory of schemes which, for every scheme S, classifies the data E =
(x,E,E′, ϕ) where

i) x ∈ X(S) called the leg of E,
ii) E and E′ are vector bundles of rank r over X × S,

iii) ϕ : E|X×S−Γx

∼−→ E′|X×S−Γx is an isomorphism of these vector
bundles outside the graph Γx of x.

Let κ be an algebraically closed field and let E = (x,E,E′, ϕ) be
a κ-point of Hecker. We denote by Ox the completion of OX×κ at x
and by Fx its fraction field. Then ϕx allows us to identify E|SpecFx

and E′|SpecFx which are both vector spaces of dimension r over Fx.
Consider two lattices E|SpecOx and E′|SpecOx in this vector space. Let $x

be a uniformizing element of Ox. By the theory of elementary divisors,
there exist a basis (e1, e2, . . . , er) of E|SpecOx and a dominant coweight

λ = (λ1, . . . , λr) ∈ (Zr)+ such that ($λ1

x e1, . . . , $
λr

x er) is a basis of
E′|SpecOx . We denote λ by inv(E). Remark that we always have the
equality

degE′ = degE + deg inv(E).
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Definition 2.10. Let λ ∈ (Zr)+ be a dominant coweight of GLr. It
is well-known (see [2]) that there is a closed reduced substack Hecker,λ
of Hecker such that for every algebraically closed field κ, Hecker,λ(κ)
consists of E = (x,E,E′, ϕ) ∈ Hecker(κ) such that inv(E) ≤ λ.

2.5. Iterated version of Hecke stacks.

Notation 2.11. From now on we will fix an integer n ≥ 1 and denote
by I the finite set {1, . . . , n}. Further, we fix a collection λ = (λi)i∈I of
dominant coweights of GLr such that

(2.1) deg λ :=
n∑
i=1

deg λi = 0.

Definition 2.12. We define the iterated Hecke stack Hecker,λ which,
to every scheme S classifies the data

((xi)i∈I ,E0, . . . ,En, (ϕi)i∈I)

(or (x,E, ϕ) for short) where for i ∈ I, we require that

(xi,Ei−1,Ei, ϕi) ∈ Hecker,λi(S).

It should be noted that there is a non-iterated version of these stacks
that consider only one modification. This can be found in [30, Definition
2.4].

2.6. Stacks of shtukas.

Definition 2.13. a) For every scheme S, the stack Shtr,λ of shtukas of
rank r with modifications bounded by λ classifies the data

E = ((xi)i∈I ,E0, . . . ,En, (ϕi)i∈I , ψ)

(or (x,E, ϕ, ψ) for short) such that

i) (x,E, ϕ) ∈ Hecker,λ(S),

ii) ψ : Eσ0
∼−→ En is an isomorphism of vector bundles of rank r over

X × S.

b) For every integer d, we define Shtdr,λ to be the substack of Shtr,λ
classifying the data (x,E, ϕ, ψ) with degE0 = d.

Remark 2.14. 1) Recall that we have assumed (see (2.1)) that

deg λ :=
n∑
i=1

deg λi = 0.

This condition is needed in order to get a non-empty stack Shtr,λ (see
[30, Proposition 2.16 (d)]).

2) The stacks Shtr,λ, Shtdr,λ (d ∈ Z) are Artin stacks locally of finite
type.
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3) We have a Cartesian diagram

Shtdr,λ −−−→ Bunry y
Heckedr,λ −−−→ Bunr×Bunr,

where

• the upper horizontal map is

E = ((xi)i∈I ,E0, . . . ,En, (ϕi)i∈I , ψ) 7→ E0,

• the lower horizontal map is

((xi)i∈I ,E0, . . . ,En, (ϕi)i∈I) 7→ (E0,En),

• the left vertical map is

E = ((xi)i∈I ,E0, . . . ,En, (ϕi)i∈I , ψ) 7→ ((xi)i∈I ,E0, . . . ,En, (ϕi)i∈I),

• the right vertical map is

E0 7→ (E0,E
σ
0 ).

Proposition 2.15. Let Sht≤pr,λ (resp. Shtd,≤pr,λ ) be the substack of Shtr,λ

(resp. Shtdr,λ) classifying shtukas of rank r bounded by p, i.e., the data
E = (x,E, ϕ, ψ) such that the Harder-Narasimhan polygon of the corre-
sponding vector bundle E0 is bounded by p. Then it is an open substack
of Shtr,λ and the connected components Shtd,≤pr,λ of this substack are of
finite type.

Proof. See [30, Proposition 2.16] where a more general result is proved.
�

2.7. Example: stacks of Drinfeld shtukas.
When I = {1, 2} and λ = (λ1, λ2) where λ1 = (1, 0, . . . , 0) ∈ Zr and

λ2 = (0, . . . , 0,−1) ∈ Zr, the corresponding stack is known as the stack
Shtr classifying Drinfeld shtukas of rank r, studied by Drinfeld [6, 7, 8]
for r = 2 and by Lafforgue [12, 13, 14] for general r. For every scheme
S, Shtr(S) classifies the following data

E ↪→ E′ ←↩ E′′ ∼←− Eσ

where E, E′ and E′′ are vector bundles of rank r over X×S and E ↪→ E′

and E′′ ↪→ E′ are injective homomorphisms of vector bundles such that

• the supports of these maps are the graphs of morphisms ∞ :
S → X and 0 : S → X, respectively,
• the cokernels of these maps are the direct images of locally free

of rank 1 as OS-modules on the graphs of∞ and 0, respectively.
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2.8. Compactifying stacks of shtukas.
For every HN polygon p, the substack Sht≤pr,λ (resp. Shtd,≤pr,λ ) is an

open substack of finite type of Shtr,λ (resp. Shtdr,λ). However, they are
not proper.

In the works of Drinfeld and Lafforgue, a major challenge lies in
constructing compactifications for the corresponding substacks Sht≤pr,λ
of the stack of Drinfeld shtukas Shtdr (as discussed in §2.7). In the
general case, it would be interesting to construct compactifications for
the substack Shtd,≤pr,λ of Shtdr,λ.

To do so, we follow the strategy of Drinfeld [8] and Lafforgue [13, 15]
which can be described as follows.

• The notion of generalized shtukas. Drinfeld and Lafforgue
start by introducing the concept of generalized shtukas, which
expands that of shtukas by considering pseudo-complete ho-
momorphisms instead of isomorphisms. The stacks classifying
these generalized shtukas have a stratification, with the open
stratum corresponding to Shtr,λ.
• Stability conditions. The next and crucial step is to find sta-

bility conditions for the truncating substacks to ensure proper-
ness.

There are two methods to find stability conditions:

(1) The semistable reduction à la Langton. One approach is
the semistable reduction à la Langton, which involves educated
guessing and the use of the valuative criterion for properness.
This method was successfully applied by Langton [18] to prove
the properness of moduli spaces of semistable vector bundles on
a smooth projective curve (even variety) over a field. We refer
the reader to the works of Heinloth [9, 10] for another semistable
reduction proof of this result using the affine Grassmannian.

(2) The Geometric Invariant Theory (GIT). Another method
uses the GIT theory developed by Munford among others (see
for example [24]), which is a powerful and conceptual approach.
Stability conditions are derived from the Hilbert-Mumford cri-
terion from GIT, although this is a difficult and lengthy task in
many cases. Again this method was successfully applied by Se-
shadri [29] to prove the properness of moduli spaces of semistable
vector bundles on a smooth projective curve over a field.

In what follows we explain how to employ both of these methods to
tackle the problem of compactifying stacks of shtukas.

3. Generalized GLr-shtukas

In this section we review the notion of generalized GLr-shtukas, intro-
duce stacks classifying these objects and present their basic properties.
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3.1. Pseudo-complete homomorphisms.
We recall the scheme of complete homomorphisms given in [13] (see

also [20, §4]) and that of pseudo-complete homomorphisms. As noticed
in loc. cit., this scheme is closely related to the De Concini-Procesi
wonderful compactification [3] and the Vinberg semigroup [31].

We consider the immersion

GLr×Gr−1
m →

r∏
i=1

End(∧iAr)× Ar−1,

which sends (g, α1, . . . , αr−1) ∈ GLr×Gr−1
m to (u1, . . . , ur, α1, . . . , αr−1)

where

u1 = g,

∧2u1 = α1u2,

∧3u1 = α2
1α2u3,

...

∧ru1 = αr−1
1 αr−2

2 . . . αr−1ur.

We observe that the image of GLr×Gr−1
m lies in

∏r
i=1

(
End(∧iAr) −

{0}
)
× Ar−1.

Definition 3.1. a) We define the scheme V 0
GLr

of complete homomor-

phisms to be the schematic closure of GLr×Gr−1
m in

∏r
i=1

(
End(∧iAr)−

{0}
)
× Ar−1.

b) We define the scheme VGLr of pseudo-complete homomorphisms
to be the schematic closure of GLr×Gr−1

m in
∏r

i=1 End(∧iAr)× Ar−1.

Let r = (r1, . . . , rk−1) be a strictly increasing sequence of integers
between 0 and r, i.e., 0 < r1 < · · · < rk−1 < r. Put r0 = 0 and
rk = r. Denote by V 0

GLr,r
the locally closed subscheme of V 0

GLr
defined

by requiring that αi = 0 for every i ∈ r and that αi is invertible for
every i /∈ r. Then V 0

GLr,r
admits a modular interpretation (see [13, §1,

Proposition 1]).

3.2. Stacks of generalized shtukas.

Definition 3.2. We define the stack of generalized shtukas GenShtr,λ
which for every scheme S, classifies the data

(x1, . . . , xn,E0, . . . ,En, ϕ1, . . . , ϕn,L1, . . . ,Lr−1, l1, . . . , lr−1, u1, . . . , ur)

(or (x,E, ϕ,L, l, u) for short) where
i) (x,E, ϕ) is an object of Hecker,λ(S),

ii) for every 1 ≤ i ≤ r−1, Li is a line bundle over S and li is a global
section of Li, i.e., (Li, li) ∈ [A1/Gm](S),
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iii) u is a pseudo-complete homomorphism Eσ0 ⇒ En over (L⊗(q−1), lq−1),
i.e., for every 1 ≤ i ≤ r,

ui :
(
∧i E0 ⊗

⊗
1≤j<i

L
i−j
j

)σ −→ ∧iEn ⊗ ⊗
1≤j<i

L
i−j
j

is a homomorphism of vector bundles such that the following conditions
hold:

a) For any choice of trivialization of E0, En and Li locally on X ×S,
the family (u1, . . . , ur, l1, . . . , lr−1) lies in VGLr .

b) If we identify E0 and En outside the union of the graphs of xj
(j ∈ I), then for all 1 ≤ i ≤ r, ui can be iterated and we require that
none of ui are nilpotent at any geometric point of S.

For every integer d, let GenShtdr,λ be the substack of GenShtr,λ clas-
sifying the data (x,E, ϕ,L, l, u) with degE0 = d.

3.3. Stratification.
The stratification of [A1/Gm]r−1 induces a stratification of GenShtr,λ

as follows. Let r = (r1, . . . , rk−1) be an increasing sequence of integers
between 0 and r. We put r0 = 0. Let GenShtr,λ,r be the locally closed
substack of GenShtr,λ such that li = 0 for every i ∈ r and li is invertible
for every i /∈ r.

Let κ be an algebraically closed field. Let E = (x,E, ϕ,L, l, u) be
a κ-point of GenShtr,λ,r. We will say that E is of type r. We choose
a trivialization of line bundles Lri over κ. Then the pseudo-complete
homomorphism u : Eσ0 ⇒ En over (L⊗(q−1), lq−1) gives rise to the data
consisting of

i) a decreasing filtration E0,∗ = (E0,0 = Eσ0 ) E0,1 ) · · · ) E0,k−1 )
E0,k = 0) by subbundles E0,i of Eσ0 of rank r − ri,

ii) an increasing filtration En,∗ = (0 = En,0 ( En,1 ( · · · ( En,k−1 (
En,k = En) by subbundles En,i of En of rank ri,

iii) for every 1 ≤ i ≤ k, an isomorphism over the generic point

vi : E0,i−1/E0,i → En,i/En,i−1

of vector bundles.

Remark 3.3. 1) For all 1 ≤ i ≤ k we always have an injection

det
(
E0/E0,i

)
↪→ detEn,i

of vector bundles of the same rank.
2) Since En is obtained from E0 by a chain of modifications, the

increasing filtration En,∗ induces an increasing filtration

E0,∗ = (0 = E0,0 ( E0,1 ( · · · ( E0,k−1 ( E0,k = E0)

by subbundles E0,i of E0 of rank ri. The nilpotent conditions of ui are
equivalent to the fact that for every 1 ≤ i ≤ k, we have

E0,i ∩ Eσ0,i = 0.
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4. Stability conditions for Drinfeld shtukas

In this section we work with Drinfeld shtukas given as in §2.7 and
review the stability conditions introduced by Drinfeld [8] for r = 2 and
Lafforgue [13] for general r.

4.1. Notation.
Recall that I = {1, 2} and λ = (λ1, λ2) where λ1 = (1, 0, . . . , 0) ∈ Zr

and λ2 = (0, . . . , 0,−1) ∈ Zr. We will use the notation of Lafforgue: a
Drinfeld shtuka of rank r is represented by the data

(E ↪→ E′ ←↩ E′′ ∼←− Eσ),

and a generalized Drinfeld shtuka of rank r is represented by the data

E = (E ↪→ E′ ←↩ E′′ ⇐ Eσ, (L, l)).

We will drop the subscriptions λ and denote the stacks classifying Drin-
feld shtukas of rank r and generalized Drinfeld shtukas of rank r by Shtr
and GenShtr respectively.

4.2. Stratification and stability conditions.

4.2.1. Stratification. Let r = (r1, . . . , rk−1) be an increasing sequence
of integers between 0 and r. We put r0 = 0. Let κ be an algebraically
closed field. Let

E = (E ↪→ E′ ←↩ E′′ ⇐ Eσ, (L, l))

be a κ-point of GenShtr,r, so it is of type r. We choose a trivialization
of line bundles Lri over κ and will drop (L, l) in the data of E. Then
the pseudo-complete homomorphism Eσ ⇒ E′′ gives rise to

i) a decreasing filtration E∗ = (E = Eσ ) E1 ) · · · ) Ek−1 ) Ek = 0)
by subbundles Ei of Eσ of rank r − ri,

ii) an increasing filtration E′′∗ = (0 = E′′0 ( E′′1 ( · · · ( E′′k−1 ( E′′k =
E′′) by subbundles E′′i of E′′ of rank ri,

iii) for every 1 ≤ i ≤ k, an isomorphism over the generic point

vi : Ei−1/Ei → E′′i /E
′′
i−1

of vector bundles.
As before, we denote by E∗ and E′∗ the increasing filtration of E and

E′ respectively induced by E′′∗. Recall that for every 1 ≤ i ≤ k, we have
E0,i ∩ Eσ0,i = 0.

4.2.2. Iterated shtukas. Following Lafforgue [13, §1, Part c)], we intro-
duce the notion of iterated shtukas.

Definition 4.1. Let E be a generalized Drinfeld shtuka of rank r and
of type r over κ as in §4.2.1. We say that E is an iterated shtuka if the
following conditions hold:
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(1) For every 1 ≤ i ≤ k, the isomorphism over the generic point

vi : Ei−1/Ei → E′′i /E
′′
i−1

extends to an isomorphism of vector bundles.
(2) For every 1 ≤ i ≤ k, the injection E′′i ↪→ E′i is an isomorphism.
(3) For every 1 ≤ i ≤ k, the composition E′i → E′ → E′/E is

surjective.
(4) For every 1 ≤ i < k, we have Ei + Eσi+1 = Eσ.

The stack classifying iterated (Drinfeld) shtukas of rank r will be
denoted by Shtr.

Remark 4.2. It is important to note that for iterated shtukas, the
maps vi are isomorphisms rather than isomorphisms over the generic
point. This distinction arises from the specific choice of λ for Drinfeld
shtukas and has significant implications for the geometric properties of
the stack of Drinfeld shtukas and its compactifications.

4.2.3. Good objects of an iterated shtuka. We keep the above notation
and suppose that E = (E ↪→ E′ ←↩ E′′ ⇐ Eσ) is an iterated shtuka of
rank r and of type r over κ. By definition, a good object of E consists
of a pair (F,F′) of subbundles of E and E′ respectively such that

• F ↪→ F′ and rkF = rkF′;
• there exists some 1 ≤ i ≤ k such that Ei−1 ( F ⊆ Ei and
E′i−1 ( F′ ⊆ E′i;

• the injection Ei−1/Ei
∼−→ E′′i /E

′′
i−1 ↪→ E′i/E

′
i−1 sends the quotient

Fσ ∩ Ei−1/F
σ ∩ Ei to F′ ∩ E′i/F

′ ∩ E′i−1.

Let (F,F′) be a good object of E. Then we say that

• it is of type I if either i = 1 or Fσ + Ei−1 = Eσ;
• it is of type II if i > 1 and Fσ + Ei−1 ( Eσ.

It should be noted that if r = 2 which is the case studied by Drinfeld,
every good object of E is of type I.

4.2.4. Stability conditions. Let p be a HN polygon. We define Sht
≤p
r,r

to be the substack of Shtr,r such that E belongs to Sht
≤p
r,r (κ) if the

following conditions hold:

• For all 1 ≤ i ≤ k,

p(ri)− 1 < degEi −
rkEi
rkE

degE ≤ p(ri).

• For all good objects (F,F′) of E which is of type I,

degF − rkF

rkE
degE ≤ p(rkF).

• For all good objects (F,F′) of E which is of type II,

degF − rkF

rkE
degE ≤ p(rkF)− 1.
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4.3. Compactifications and Langton semistable reduction.
The main theorem of Lafforgue in [13] which generalizes the work of

Drinfeld [8] reads (see [13, Théorème 12, page 1015]):

Theorem 4.3. 1) There exists a unique open substack Sht
≤p
r of Shtr

whose trace in each stratum Shtr,r is Sht
≤p
r,r .

2) Suppose that p is sufficiently convex. Then the morphism

Sht
≤p
r → X ×X

is proper.

The proof of the theorem for the properness of the moduli stack
of shtukas is based on the semistable reduction technique introduced
by Langton [18]. The valuative criterion for properness is used in the
proof, and the main steps for the existence part are explained below.
For a more detailed proof, we refer the reader to [13, 14].

• Step 1: Extend a shtuka on the generic fiber.
We first focus on the generic fiber with a shtuka E bounded

by p that we have to degenerate, with its ϕ-space structure,
and introduces the notion of an iterated lattice in this ϕ-space.
Drinfeld showed that there are infinitely many iterated lattices
M , that each induces a degeneration E(M) of the shtuka and
that our task is to show that one has the properties dictated by
the chosen polygon p.
• Step 2: Find a modification of a generalized shtuka.

We then introduce the procedure of elementary transforma-
tions to move from one iterated lattice to another. If the special

fiber EM does not belong to the substack Sht
≤p
r , the procedure

can be applied to find a suitable modification E(M ′) of E, cor-
responding to an elementary transformation M ′ of M .
• Step 3: Show that after a finite number of elementary

transformations, we get a generalized shtuka bounded
by p.

In Langton’s original paper [18] and in various works using his
semistable reduction, a quantity β(M) ∈ Z is associated to each
lattice M . This quantity has the property that β(M) ≤ 0 if and
only if the lattice M is the desired one. The proof shows that
after a suitable modification, the new lattice M ′ is “less stable”,
meaning β(M ′) ≤ β(M). After a finite number of modifications,
a strict inequality must be obtained, thus completing the proof.

However, defining the quantity β(M) is a difficult task, and
the proof described in [13, 14] is much more intricate than the
simplified explanation presented here.
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5. Stability conditions for GLr-shtukas

In the study of stacks GenShtr,λ that classify GLr-shtukas with ar-
bitrary modifications, finding stability criteria is very challenging even
with educated guessing. However, the application of the GIT machin-
ery, as discussed in [27], provides a means to obtain stability condi-
tions for these stacks. The use of GIT allows stability conditions to be
deduced from the Hilbert-Mumford criterion, although this is still a
difficult and lengthy task.

5.1. Stratification and stability conditions.

5.1.1. Stratification. We use the notation of §3.3. Let r = (r1, . . . , rk−1)
be an increasing sequence of integers between 0 and r. We put r0 = 0.
Let κ be an algebraically closed field. Let E = (x,E, ϕ,L, l, u) be a
κ-point of GenShtr,λ,r. We choose a trivialization of line bundles Lri

over κ. Recall that we have
i) a decreasing filtration E0,∗ = (E0,0 = Eσ0 ) E0,1 ) · · · ) E0,k−1 )

E0,k = 0) by subbundles E0,i of Eσ0 of rank r − ri,
ii) an increasing filtration En,∗ = (0 = En,0 ( En,1 ( · · · ( En,k−1 (

En,k = En) by subbundles En,i of En of rank ri,
iii) for every 1 ≤ i ≤ k, an isomorphism over the generic point

vi : E0,i−1/E0,i ↪→ En,i/En,i−1

of vector bundles.
The increasing filtration En,∗ induces an increasing filtration

E0,∗ = (0 = E0,0 ( E0,1 ( · · · ( E0,k−1 ( E0,k = E0)

by subbundles E0,i of E0 of rank ri. It is required that for every 1 ≤
i ≤ k, we have

E0,i ∩ Eσ0,i = 0.

Definition 5.1. In the above notation, for every HN polygon p and
every subbundle F of E0, we define

pE(F) :=
k∑
i=1

(
∆p(ri−1 +1)+ · · ·+∆p(ri−1 +rk(Fσ∩E0,i−1/F

σ∩E0,i))
)
.

The p-defect of F is defined by

defpF := ndegE0
F − pE(F)

= degF − rkF

r
degE0 − pE(F).

Remark 5.2. In our recent work [28], the notion of p-defect is intro-
duced and is shown to play a central role in that paper. The details
of this concept and its significance will be explained in the subsequent
section of the paper.
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5.1.2. Stability conditions. Let p be a HN polygon as in Definition 2.3.
We define GenSht≤pr,λ to be the largest substack of GenShtr,λ such that

a geometric point E = (x,E, ϕ,L, l, u) of GenShtr,λ lies in GenSht≤pr,λ if
and only if for every subbundle F of E0, we have the inequality

ndegE0
F ≤ pE(F)

where we recall that ndegE0
F = degF − rkF

r
degE0. In this case, we

will say that the generalized shtuka (x,E, ϕ,L, l, u) is bounded by p.

We we also denote by GenSht≤pr,λ,r (resp. GenShtd,≤pr,λ ) the intersection of

GenSht≤pr,λ with GenShtr,λ,r (resp. GenShtdr,λ).

Proposition 5.3. The stack GenSht≤pr,λ is an open substack of GenShtr,λ.

Moreover, it contains Sht≤pr,λ as an open substack.

5.2. Compactifications and GIT.

Definition 5.4. Let d be an integer and let p be a HN polygon. We
will say that p is d-generic if for every integer 0 < k < r and for every
sequence of integers (r1, . . . , rk) such that 0 < r1 < · · · < rk ≤ r, the
number

k

r
d+ ∆p(r1) + · · ·+ ∆p(rk)

is not an integer.

In [27] the first author uses the Hilbert-Mumford criterion from GIT
to prove the following result (see [27, Théorème VII.3.3]):

Theorem 5.5. Let d be an integer and p be a d-generic, sufficiently
convex HN polygon. Suppose that q which is the cardinal of the base
finite field Fq is sufficiently big. Then the morphism

GenShtd,≤pr,λ −→ Xn

is proper.

The proof of this theorem regarding the properness of the mentioned
stack is known to be long and involves complicated calculations. The
interested reader can refer to [27] for a detailed explanation and the
complete proof of the theorem.

5.3. Relations with the works of Drinfeld and Lafforgue.
We work again with Drinfeld shtukas, i.e., I = {1, 2} and λ = (λ1, λ2)

where λ1 = (1, 0, . . . , 0) ∈ Zr and λ2 = (0, . . . , 0,−1) ∈ Zr. Let d be
an integer and p be a d-generic, sufficiently convex HN polygon. For all
0 < k < r we set

q(k) :=

⌊
p(k)− k

r
d

⌋
+
k

r
d,

where b.c denotes the floor function. In particular, q(k) < p(k) < q(k)+
1 as p is d-generic.
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In [27] it is also shown that the family of compactifications con-
structed by Lafforgue as presented in §4 lies in the family of compact-
ifications given in the previous section if the polygon p is well chosen.
More precisely, it is proved that (see [27, Théorème VI.1.1]):

Theorem 5.6. We keep the above notation. We suppose that {p(k)−
q(k)}0<k<r is a strictly decreasing sequence. Let E = (E ↪→ E′ ←↩ E′′ ⇐
Eσ, (L, l)) ∈ GenShtr,r(κ) be a generalized Drinfeld shtuka over an al-
gebraically closed field κ. Then the following conditions are equivalent:

(1) For every subbundle F of E, we have the inequality

degF − rkF

r
degE ≤ pE(F)

where we recall that pE(F) is given by

pE(F) =
k∑
i=1

(
∆p(ri−1 + 1) + · · ·+ ∆p(ri−1 + rk(Fσ ∩ Ei−1/F

σ ∩ Ei))
)
.

(2) E belongs to Sht
≤p
r,r (see §4.2.4).

Remark 5.7. It is important to note that stability conditions implies
that E verifies the list of conditions for iterated shtukas listed in Def-
inition 4.1. This implication follows from the specific choice of λ for
Drinfeld shtukas.

6. Langton semistable reduction for GLr-shtukas

In this section, we provide a concise overview of our recent work
where we present a proof of the previous theorem using the semistable
reduction technique inspired by Langton. Further, we improve Theorem
5.5 by removing the technical condition that q is sufficiently big.

Theorem 6.1. Let d be an integer and let p be a d-generic, sufficiently
convex HN polygon. Then the morphism

GenShtd,≤pr,λ −→ Xn

is proper.

We sketch some ideas of the proof. Details and proofs will be given
in [28]. The key concept used in our proof is the notion of the p-defect
of a subbundle, as defined in Definition 5.1. Notably, even for stacks
of Drinfeld shtukas, our proof offers a more direct and conceptual ap-
proach compared to the works of Lafforgue [13, 14]. Additionally, the
semistable reduction method allows us to immediately extend our re-
sults to construct compactifications of stacks of shtukas for division
algebras or D-shtukas, thus addressing a problem previously investi-
gated by Lafforgue [13], Lau [19, 20], and Ngo Bao-Chau [26].
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6.1. Setup.
Let A be a discrete valuation ring (DVR) whose quotient field is

denoted by K and whose residue field is κ which is supposed to be
algebraically closed. Let π be a uniformizer and v the valuation of A.

We consider the regular surface X ⊗A. Denote by AX the local ring
in X ⊗ A of the generic point of the special fiber X ⊗ κ. It is a DVR.
The quotient field KAX

of AX is the function field of the generic fiber
X ⊗ K and the residue field κAX

of AX is the function field of the
special fiber X ⊗ κ. The element π is still a uniformizer of AX . Denote

by ÂX (resp. K̂AX
, κ̂AX

) be the completion of AX (resp. KAX
, κAX

).
To prove the result we check the valuative criterion for properness.

We will sketch a proof of the existence part in a particular case, where
the K-point lies in the open stratum. Let E = (x,E, ϕ,L, l, u) be a

shtuka in Shtd,≤pr,,λ over SpecK and we want to extend it and get a

generalized shtuka in GenShtd,≤pr,,λ over SpecOK′ after we replace K
with a finite extension K ′.

6.2. Step 1: Extend a shtuka on the generic fiber.

6.2.1. Lattice and extension of vector bundles. Since X⊗A is a regular
surface, the following result is well-known (see for example [18, §3,
Proposition 6]):

Proposition 6.2. The functor which to every vector bundle on X ⊗A
associates its restriction E on the generic fiber X ⊗ K and its fiber
M on SpecAX , is an equivalence of categories between the category of
vector bundles of rank r on X ⊗ A and that of pairs (E,M) where

i) E is a vector bundle of rank r on the generic curve X ⊗K,
ii) M is an AX-lattice in the generic fiber V of E, which is a vector

space of dimension r over KAX
.

The above functor admits a quasi-inverse functor denoted by

(E,M) 7→ E(M).

We denote by EM the induced vector bundle on the special fiber X⊗κ
whose generic fiber is V M = M/πM .

6.2.2. Iterated lattices. Recall that E = (x,E, ϕ,L, l, u) be a shtuka in

Shtd,≤pr,,λ over SpecK. Let V be the generic fiber of E0. It is a vector space
of dimension r over the field KAX

. Then the morphism ϕ appearing in

E induces an isomorphism ϕ : V σ ∼−→ V viewed as a semilinear map

ϕ : V −→ V . We define V̂ := V ⊗KAX
K̂AX

and denote by ϕ̂ the

induced semilinear map ϕ̂ : V̂ −→ V̂ . Then the map M 7→M ⊗AX
ÂX

is a bijection between AX-lattices in V and ÂX-lattices in V̂ .

Definition 6.3. Let M be an AX-lattice in V which is stable by ϕ.
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a) We say that M is a non-degenerated lattice (with respect to ϕ) if
AXϕ(M) = M . Otherwise, we say that M is degenerated.

b) We say that M is an admissible lattice if the reduction map

ϕ : M/πM −→M/πM

is not nilpotent.
c) We say that M is an iterated lattice if there exist non-negative

integers d1, d2, . . . , dr−1 such that, if for every 1 ≤ i ≤ r, we set

us =
( ∏

1≤i<s

πdi(s−i)
)−(q−1) ∧s ϕ,

then each us induces a well-define map

us : ∧sM −→ ∧sM
and moreover the reduction us : ∧sV M −→ ∧sV M is not nilpotent.

We define the type r of the iterated lattice M the sequence of indices
(r1, . . . , rk−1) such that 0 < r1 < · · · < rk−1 < r and that for every
1 ≤ i < k, ri ∈ r if and only if dri ≥ 1. We put r0 = 0 and rk = r.

Drinfeld showed that among the set of lattices in V which are sta-
ble by ϕ, there is a unique maximal one. Further, if a lattice is non-
degenerated, then it is maximal. By [8] (see also [13, §2, Part a)]), after
some finite extension of K, the new maximal lattice is admissible. Then
we deduce that after some finite extension of K, there exists an iterated
lattice in V (see [13, §2, Proposition 4]).

6.2.3. Extension of shtukas. We observe (see [13, §2, Part b)]) that to
extend a shtuka E over K to a generalized shtuka (resp. a shtuka) over
A is equivalent to choose an iterated lattice M (resp. a non-degenerated
lattice) of V . By the previous discussion there is at most one non-
degenerated lattice. Thus we get

Proposition 6.4. The stack Shtr,λ is separated.

Notation 6.5. Let M be an iterated lattice of V . We will denote the
corresponding generalized shtuka over A by E(M) and its restriction
to the special fiber X × κ by EM . We consider the generalized shtuka
E(M) over A and the generalized shtuka EM over the residue field κ.
Then r is the type of EM , and we get

i) a strictly decreasing filtration V
M

= V
M

0 ) V
M

1 ) · · · ) V
M

k−1 )
V
M

k = 0 by subspaces of V
M

= (V M)σ of codimension r1,...,rk−1,
ii) a strictly increasing filtration 0 ( V M

1 ( · · · ( V M
k−1 ( V M

k = V M

by subspaces of V M of dimension r1,...,rk−1,
iii) these filtrations are equipped with isomorphisms between succes-

sive quotients

vi : V
M

i−1/V
M

i
∼−→ V M

i /V M
i−1.

6.3. Step 2: Find a modification of a generalized shtuka.
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6.3.1. Modified lattices. Let M be a lattice of V and W a subspace of
V M . Following Langton [18] we define the new lattice M ′ of V by

M ′ := ker(M � V M � V M/W )

and we write M ′ = ModW (M).
We denote by W ′ the subspace of V M ′ given by W ′ = ker(V M ′ −→

W ). Then we have two short exact sequences (see [18, §4]):

0 −→ EM
′

0,W ′ −→ EM
′

0 −→ EM0,W −→ 0

0 −→ EM0,W −→ EM0 −→ EM
′

0,W ′ −→ 0.

6.3.2. Modified iterated lattices. We suppose further that M is an iter-
ated lattice in V . Let W be a subspace of V M and M ′ = ModW (M). In
general, this modified lattice M ′ is not necessarily an iterated lattice.

We now present an important class of subspaces of V M such that the
corresponding modified lattice is always an iterated one. Letting W a
subspace of V M , we say that W is very good if there exists i such that

V M
i−1 ( W ⊂ V M

i and the isomorphism vi : V
M

i−1/V
M

i
∼−→ V M

i /V M
i−1

induces an isomorphism W σ ∩ V M

i−1
∼−→ W/V M

i−1.

Lemma 6.6. Let W be a very good subspace of V M . Then the modified
lattice M ′ := ModW (M) is an iterated lattice of V .

6.3.3. Defect and modification. For the rest of this section we are in
the situation of Notation 6.5. Recall that the notion of p-defect for
subbundles of EM0 is given as in Definition 5.1. We define

defpM := max
F
{defpF}

where F runs through the set of subbundles of EM0 . Observe that

defpM ≥ 0 and defpM = 0 if and only if EM lies in GenShtd,≤pr,λ (κ).

In [28] we prove

Proposition 6.7. There exists a unique subbundle Fmax of EM0 such
that defpFmax is maximal.

Suppose that EM does not belong to GenShtd,≤pr,λ (κ), i.e., defpM > 0.

Let W be the generic fiber of Fmax. It is a proper subspace of V M . Then
we show that M ′ := ModW (M) is still an iterated lattice of V . Actually,
one needs to replace K by a finite extension, but we will ignore this
subtlety. We will call E(M ′) the modification of the generalized shtuka
E(M).

6.4. Step 3: Show that the modified shtuka is less stable.
We can prove that the modified shtuka EM ′ has smaller p-defect than

EM . More precisely,
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Proposition 6.8. a) We keep the above notation. Then we always have
an inequality

defpM
′ ≤ defpM.

b) Suppose that defpM
′ = defpM . Let F′ be the unique subbundle of

EM
′

0 of maximal p-defect, then the morphism EM
′

0 −→ EM0 induces an
isomorphism F′

∼−→ F.

To conclude, we must show that after a finite number of modifica-
tions, the modified shtuka has strictly smaller p-defect. The idea of the
proof is as follows. Suppose that this is not the case. Then Proposition
6.8 implies that the transformation ModW can be repeated infinitely.

For every integer n ≥ 0, we define M (n) := ModnW (M). Denote by

F(n) be the unique subbundle of EM
(n)

0 of maximal p-defect. In partic-
ular, we have

defpF
(n) = defpM

(n) = defpM > 0.

Further, the morphism EM
(n)

0 −→ EM
(n−1)

0 induces an isomorphism
F(n) ∼−→ F(n−1) for all n ≥ 1. Repeating the argument of [13, §2, Propo-
sition 14] (see also [18, Lemma 2]), we see that there exists a subbundle
FK of E0 over the generic fiber X ×K such that rkFK = rkF(n) and
degFK = degF(n). Thus we obtain

ndegE0
FK − p(rkFK) = defpF

(n) = defpM > 0,

which contradicts the fact that E belongs to Shtd,≤pr,λ (K).
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