
HAL Id: hal-04390240
https://hal.science/hal-04390240

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Multi-Object Navigation with dynamically learned
neural implicit representations

Pierre Marza, Laetitia Matignon, Olivier Simonin, Christian Wolf

To cite this version:
Pierre Marza, Laetitia Matignon, Olivier Simonin, Christian Wolf. Multi-Object Navigation with dy-
namically learned neural implicit representations. ICCV 2023 - International Conference on Computer
Vision, Oct 2023, Paris, France. pp.1-21. �hal-04390240�

https://hal.science/hal-04390240
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Multi-Object Navigation with dynamically learned neural implicit representations

Pierre Marza 1 Laetitia Matignon2 Olivier Simonin1 Christian Wolf3
1INSA Lyon 2UCBL 3Naver Labs Europe

{pierre.marza, olivier.simonin}@insa-lyon.fr

laetitia.matignon@univ-lyon1.fr, christian.wolf@naverlabs.com
Project Page: https://pierremarza.github.io/projects/dynamic_implicit_representations/

Abstract

Understanding and mapping a new environment are core
abilities of any autonomously navigating agent. While classi-
cal robotics usually estimates maps in a stand-alone manner
with SLAM variants, which maintain a topological or met-
ric representation, end-to-end learning of navigation keeps
some form of memory in a neural network. Networks are
typically imbued with inductive biases, which can range
from vectorial representations to birds-eye metric tensors or
topological structures. In this work, we propose to structure
neural networks with two neural implicit representations,
which are learned dynamically during each episode and
map the content of the scene: (i) the Semantic Finder pre-
dicts the position of a previously seen queried object; (ii) the
Occupancy and Exploration Implicit Representation encap-
sulates information about explored area and obstacles, and
is queried with a novel global read mechanism which directly
maps from function space to a usable embedding space. Both
representations are leveraged by an agent trained with Re-
inforcement Learning (RL) and learned online during each
episode. We evaluate the agent on Multi-Object Navigation
and show the high impact of using neural implicit represen-
tations as a memory source.

1. Introduction
Autonomous navigation in complex unknown 3D environ-
ments from visual observations requires building a suit-
able representation of the environment, in particular when
the targeted navigation task requires high-level reasoning.
Whereas classical robotics builds these representations ex-
plicitly through reconstructions, possibly supported through
machine learning, end-to-end training learns them automat-
ically either from reward, by imitation learning or through
self-supervised objectives.

While spatial representations can emerge even in unstruc-
tured agents, as shown in the form of grid-cells in artificial
[16, 3] and biological agents [25], spatial inductive biases

fs xg

fo
θo

s fo
θo er

x

θs

Dec

(x, s)

1 2

3 4

Figure 1. We propose two implicit representations as inductive
biases for autonomous agents — both are learned online during
each episode. ➁ a semantic representation fs predicts positions
x from goals g given as semantic codes. We show Ground Truth
object positions (rectangles) and predictions (round; radius shows
uncertainty, unit-less, as an illustration). Blue and pink objects have
been observed, but not the yellow target. ➂ A structural represen-
tation fo predicts occupancy and exploration s from positions x;
we provide a global read which directly maps from function space
fo (represented by trainable weights θo) to a context embedding
e used by the agent. ➃ shows the reconstruction produced by a
decoder Dec during training. Orange=navigable, Green=Obstacles,
Blue=Unexplored. ➀ a ground-truth map is shown for reference,
simulating a fully explored scene.

can support learning actionable spatial representations and
decrease sample complexity. Popular inductive biases are
metric maps [44, 5, 26], topological maps [6, 12] and re-
cently, self-attention, adapting transformers [55] to sequen-
tial decision making and navigation [20, 18, 13, 47]. The
chosen representation should support robust estimation of
navigable space even in difficult conditions, mapping fea-

https://pierremarza.github.io/projects/dynamic_implicit_representations/


tures and objects of interest, as well as querying and reusing
this information at a later time. The representation should
be as detailed as required, span the full (observed) scene,
easy to query, and efficient to read and write to, in particular
when training is done in large-scale simulations.

Our work builds on neural fields and implicit represen-
tations, a category of models which represent the scene ge-
ometry, and eventually the semantics, by the weights of a
trained neural network [57]. They have the advantage of
avoiding the explicit choice of scene representation (e.g. vol-
ume, surface, point cloud etc.) and inherently benefit from
the generalization abilities of deep networks to interpolate
and complete unobserved information. Implicit represen-
tations have demonstrated impressive capabilities in novel
view synthesis [40, 51], and have potential as a competitive
representation for robotics [42, 32, 52, 1]. Their continu-
ous nature allows them to handle level of detail efficiently
through a budget given as the amount of trainable weights.
This allows to span large environments without the need of
discretizing the environment and handling growing maps.

We explore and study the potential of implicit represen-
tations as inductive biases for visual navigation. Similar to
recent work in implicit SLAM [52], our representations are
dynamically learned in each episode. Going beyond, we
exploit the representation dynamically in one of the most
challenging visual navigation tasks, Multi-Object Naviga-
tion [56]. We introduce two complementary representations,
namely a query-able Semantic Finder trained to predict the
scene coordinates of an object of interest specified as input,
and an Occupancy and Exploration Implicit Representation,
which maps 2D coordinates to occupancy information, see
Figure 1. We address the issue of the efficiency of query-
ing an implicit representation globally by introducing a new
global read mechanism, which directly maps from function
space, represented through its trainable parameters, to an
embedding summarizing the current status of occupancy and
exploration information, useful for navigation. Invariance
w.r.t. reparametrization of the queried network is favored
(but not enforced) through a transformer based solution. Our
method does not require previous rollouts on the scene for
pre-training or building a representation.

Our work targets a fundamental aspect of visual and se-
mantic navigation, the mapping of key objects of interest.
MultiON is currently one of the few benchmarks which eval-
uates it. As argued in previous literature [5, 56], only sequen-
tial tasks, where objects have to be found in a given order,
allow object level mapping to emerge directly from reward.
This follows from the observation that an agent trained to
find and retrieve a single object per episode (from reward) is
not required to map seen target objects, as observing them
directly leads to a reactive motion towards them.

Our contributions can be summarized as follows: (i) We
propose two implicit representations for semantic, occupancy

and exploration information, which are trained online during
each episode; (ii) We introduce a new global read procedure
which can extract summarizing context information directly
from the function itself; (iii) We show that the representa-
tions obtain performance gains compared to classical neural
agents; (iv) We evaluate and analyze key design choices, the
representation’s scaling laws and its capabilities of lifelong
learning.

2. Related Work
Visual Navigation — is a rich problem that involves

perception, mapping and decision making, with required
capacities being highly dependent on the specific task. A
summary of reasoning in navigation has been given in [2],
differentiating, for instance, between waypoint navigation
(Pointgoal) [2] or finding objects of semantic categories
(ObjectGoal) [2]. More recent tasks have been explicitely
designed to evaluate and encourage mapping objects of in-
terest during navigation itself [4, 56]. They are of sequential
nature and use external objects, which are not part of the
scanned 3D scenes but randomly placed. In this work we
address Multi-Object Navigation (MultiON) [56].

Mapping and Representations — Classical methods
often rely on SLAM [8, 34] which has been proposed in
different variants (2D or 3D metric, topological, eventually
with semantics) and observations (LIDAR, visual etc.). The
objective is to integrate observations and odometry estimates
over a trajectory and reconstruct the scene. Differentiable
variants have been proposed recently [28, 30]. Mapping
can also be discovered through interactions by a blind agent
[7]. Visual Navigation can also be framed as an end-to-end
learning problem, where representations are learned auto-
matically from different signals, in particular RL. Memory
can take the form of vectorial representations in recurrent
units [41, 27, 62], with hybrid variants including mapping
[12, 48, 17]. Recent work tends to augment agents with more
structured memories. Examples are spatial metric tensors,
which can contain occupancy [11], semantics [10] or be fully
latent, effectively corresponding to inductive biases of the
neural agents [44, 5, 26]. Other alternatives are topological
maps [6, 12] or self-attention and transformers [55] adapted
to navigation [20, 18, 13, 47].

Implicit representations — were initially targeting 3D
reconstruction [39, 45, 14]. The core idea is to replace
the need for discretizing 3D space into voxels [38], 3D
points [19] or meshes [23], by an implicit representation
of the 3D structure of the scene through the parameters of
a learned neural network. Recent work [40, 51] achieved
state-of-the-art performance on novel view synthesis with
neural implicit representations. The NeRF paper introduced
a differentiable volume rendering loss allowing to supervise
3D scene reconstruction from only 2D supervision [40]. For
a more detailed overview of recent advances in the rapidly



growing field, we refer the reader to [57].
Implicit representations in robotics — are a recent

phenomenon, used to represent density [1] or to perform vi-
suomotor control [33]. Related to goal-oriented navigation,
some work targets SLAM with neural implicit representa-
tions [52], follow-up adding semantics [59], learned from
sparse semantic annotations of the scene. [60] is also built
on top of [52] and allows a user to interactively provide
semantic annotation for the implicit representation to be
trained on in real time. [63] proposes a hierarchical implicit
representation of a scene to scale to larger environments
and obtain a more detailed reconstruction. [15] combines
feature-based SLAM and NeRF. Our work goes beyond im-
plicit SLAM and does not stop at reconstructing a scene. We
not only build implicit representations dynamically during
the episode, we also use them in a down-stream navigation
task without requiring any initial rollout for pre-training or
building a representation. We also combine two different im-
plicit representations targeting semantics vs. scene structure.

Analyzing the neural network function space — im-
plicit representations are instances of function spaces, which
are represented through their trainable parameters. Previous
work performed analyses by predicting accuracy from net-
work weights [54, 35, 36] or the generality gap between train
and test performance from hidden activations [29, 58]. A
direction pioneered by Hypernetworks [24] directly predict
the network weights. Recently, [61] generate the weights
of a CNN from support samples in the context of few-shot
learning. More related to our work, [43] learns to predict
the weights of an implicit representation based on external
factors in the context of spatio-temporal dynamics encoding.
In this work, we learn a direct mapping between an implicit
representation, represented by its weights, to an actionable
embedding summarizing the scene globally.

3. Navigating with implicit representations
We target the Multi-Object Navigation task [56], which
requires an agent to navigate in a photo realistic 3D environ-
ment from RGB-D observations ot and reach a sequence of
target objects (colored cylinders) in a particular order. Goal
categories gt are given at each time step t. In an RL set-
ting, the agent receives positive reward for each successfully
reached object as well as when the geodesic distance towards
the goal decreases, and a small negative reward for each step,
favoring short paths.

We follow and augment a base end-to-end architecture
used in many recent RL approaches, including [56, 37, 41],
with the RGB-D observation, class of the current target and
previous action as input to the agent. Temporal information
is aggregated with a GRU unit whose output is fed to actor
and critic heads. We equip this agent with two implicit rep-
resentations, trained to hold and map essential information
necessary for navigation: the positions of different objects of

interest, and occupancy / exploration information, as shown
in Figure 1,

fsfoThe goal of the Semantic Finder fs(.; θs) parameter-
ized by trainable weights θs is to predict the absolute
position of an object as x = [xx xy xz] = fs(q; θs)
specified through an input query vector q. Uncertainty
u is also estimated — see Section 3.1 for details. x is
then converted into coordinates relative to the agent
to be fed to the GRU. Compared to classical metric
representations [26, 44, 12, 5], querying the location
of an object can be done through a single forward pass.

fsfo The Occupancy and Exploration Representation
fo(.; θo) parameterized by trainable weights θo en-
codes information about free navigable space and ob-
stacles. It predicts occupancy s as a classification prob-
lem with three classes {Obstacle, Navigable, Unex-
plored}, as s = fo(ϕ; θo), where ϕ is a position feature
vector encoded from coordinates x — see Section 3.2
for details.

The Occupancy and Exploration Representation can in
principle be queried directly for a single position, but reading
out information over a large area directly this way would re-
quire multiple reads. We propose to compress this procedure
by providing a trainable global read operation r(.; θg), which
predicts an embedding e containing a global context about
what has already been explored, and positions of navigable
space. The prediction is done directly from the trainable
parameters of the implicit representation, as e = r(θo; θr).
Here θo is input to r, whereas θr are its parameters.

Given representations fs and fo, a single forward pass of
the agent at time step t and for a goal gt involves reading the
representations and providing the input to the policy. The
current RGB-D observation ot is also encoded by the convo-
lutional network c (different from the projection module p
used to generate samples for training the Semantic Finder).
Previous action at−1 and current goal gt are passed through
embedding layers, named L(.) in the following equations.
These different outputs are fed to the policy,

xt = fs(gt; θs,t), et = r(θo,t; θr), ct = c(ot; θc), (1)
ht = GRU(ht−1,xt, ut, et, L(at−1), L(gt), ct; θG), (2)
at = π(ht; θπ), (3)

where we added indices ·t to relevant variables to indicate
time. Please note that the trainable parameters θs,t and θo,t of
the two implicit representations are time dependent, as they
depend on the observed scene and are updated dynamically,
whereas the parameters of the policy π and the global reader
r are not. Here, GRU corresponds to the update equations
of a GRU network, where we omitted gates for ease of
notation. The notation at = π(.) predicting action at is



Mapping	=	training	
representations

Query

Global	read

fs

fo
θo

θs

p

Inverse	projectionSegmentation

x x∗L

s s∗L
e

x

Goal

RGB-D	
observation

gt
r

ot

htatht−1

Representation	perception	
(pre-trained)

Implicit
representations

Reactive	Perception	
(pre-trained)

c

at−1
ActionVectorial	memory

Figure 2. Navigating with implicit representations. Red connections indicate the training process of the two implicit representations
(=mapping), which is also done during agent deployment. Black connections show the forward pass of the agent. are discrete learned
embeddings (LUT). Policy training is not shown in this figure.

also a simplification, as we train the agent with PPO, an
actor-critic method — see Section 3.4.

Mapping means training! — The implicit representa-
tions fs and fo maintain a compact and actionable represen-
tation of the observed scene, and as such need to be updated
at each time step from the current observation ot. Given
their implicit nature and implementation as neural networks,
updates are gradient based and done with SGD. The implicit
representations are therefore trained from scratch at each
episode even after deployment.

Training a representation from observations obtained se-
quentially during an episode also raises a serious issue of
catastrophic forgetting [22], as places of the scene observed
early might be forgotten later in the episode [52, 59]. We
solve this by maintaining two replay buffers throughout the
episode, one for each representation. Training samples are
generated from each new observation and added to the re-
play buffers at each time step. Both representations are then
trained for a number of gradient steps (ns for the Semantic
Finder and no for the Exploration and Occupancy Represen-
tation). Details on the two representations and their training
are given in Sections 3.1 and 3.2. The global reader r is not
trained or finetuned online but rather trained once offline.

3.1. The Semantic Finder fs

While recent work on implicit representations for robotics
focused on signed distance functions [42, 32], occupancy
[52] or density, assuming light density approximates mass
density [1], the aim of this model is to localize an object

of interest within the scene, which can be seen as inverse
operation to classical work. From a query vector given as
input, the Semantic Finder predicts the position of the object,
which is particularly useful for an agent interacting with
an environment in the context of a goal conditioned task.
It is implemented as a 3-layer MLP with ReLu activations
in the intermediate layers and a sigmoid activation for the
output. Hidden layers have 512 neurons. The query vector q
corresponds to the 1-in-K encoding of the target object class,
which during navigation is directly determined by the object
goal gt provided by the task.

Mapping/Training — The implicit representation is
updated minimizing the L1 loss between the prediction xi =
fs(qi, θs) and the supervised coordinates x∗

i (we avoided the
term “ground-truth” here on purpose), Ls =

∑
i ∥x∗

i −xi∥1,
where the sum goes over the batch sampled from the scene
replay buffer. Coordinates x∗

i are normalized ∈ [0, 1].

The data pairs (x∗
i , qi) for training are created from each

observation ot during each time step, each data point cor-
responding to an observed point. Pixels in ot are inversely
projected into 3D coordinates in the scene using the depth
channel, the camera intrinsics, as well as agent’s coordinates
and heading that are assumed to be available, as in [56].
The query vector q corresponds to a 9-dimensional vector
encoding a distribution over object classes (8 target objects
and the “background” class). Let us recall that while the
training of the representation is supervised, this supervision
cannot use “ground-truth” information available only dur-
ing training. All supervision information is required to be



predicted from the data available to the agent even after de-
ployment. We predict object class information through a
semantic segmentation model p, which is applied to each
current RGB-D observation ot ∈ Rh×w×4, recovering the
output segmentation map mt ∈ Rk×l×9. The model has
been pre-trained on the segmentation of the different target
objects, i.e. coloured cylinders, and is not fine-tuned during
training of the agent itself.

Training data pairs (x∗
i , qi) are sampled from this output.

The supervised coordinates x∗
i are simply the mean 3D co-

ordinates of each feature map cell, after inverse projection.
The query vector qi is the distribution over semantic classes.
After the replay buffer is updated, a training batch must be
sampled to update the neural field. One fourth of the samples
in the batch of size b correspond to the b/4 last steps. The
rest are sampled from the previous steps in the replay buffer.
Uniform sampling is also performed among pairs collected
at a given time step.

Estimating uncertainty — is an essential component, as
querying yet unseen objects will lead to wrong predictions,
which the agent needs to recognize as such, and discard. The
estimation of uncertainty in neural networks is an open prob-
lem, which has been previously addressed through different
means, including drop out as a Bayesian approximation [21],
variational information bottlenecks [50], density estimation
[31], and others. In this work, we approximate a density
estimate in the scene replay buffer by calculating the min-
imum Euclidean distance between the input query and all
embeddings in the replay buffer at the current time step. The
method is simple and efficient and does not require explicitly
fitting a model to estimate the marginal distribution p(q), in
particular as the uncertainty representation is latent, can be
un-normalized as not required to be a probability.

3.2. Occupancy and Exploration Implicit Represen-
tation fo

Unlike fs, the occupancy representation fo is closer to clas-
sical implicit representations in robotics, e.g. [52, 42, 32, 1],
which map spatial coordinates to variables encoding infor-
mation on navigable area like occupancy or signed distances.
Different to previous work, our representation also includes
exploration information, which changes over time during the
episode. Once explored, a position changes its class, which
makes our neural field dynamic. Another difference with
fs is that the latter deals with 3D coordinates while fo is a
topdown 2D representation. Inspired by [57, 53], the model
uses Fourier features ϕ extracted from the 2D coordinates x
previously normalized ∈ [0, 1],

ϕ = (cos(x20), sin(x20), ..., cos(x2
p
4 ), sin(x2

p
4 )). (4)

The network fo is a 3-layer MLP with ReLu intermediate ac-
tivations and a softmax function at the output layer. Hidden

layers have 512 neurons, and p = 40.
Mapping/Training — The implicit representation is

updated minimizing the Cross Entropy loss between the
prediction s of the neural field and the supervised label
s∗ of three classes {Obstacle, Navigable, Unexplored}, as
Lo = −∑3

c=1 s
∗
c log sc. As for the Semantic Finder, train-

ing data pairs (s∗, s) are created through inverse perspective
projection of the pixels of the observation ot into 3D scene
coordinates. Thresholding the z (height) coordinate decides
between Navigable and Obstacle classes. Points with a z
coordinate higher than a certain threshold are discarded. The
replay buffer is balanced between both classes, and only
samples of the last 1000 steps are kept. Samples of the
Unexplored class are not stored.

The replay buffer is sampled similarly to the one for
the Semantic Finder. However, additional samples for the
Unexplored class are created by sampling uniformly inside
the scene, for speed reasons simply ignoring conflicts with
explored areas and treating them as noisy labels.

3.3. Global Occupancy Read r — handling
reparametrization invariance

The global Occupancy reader r allows to query the occu-
pancy information of the scene globally, beyond point-wise
information, and as such is a trainable mapping from the
space of functions fo(.; .) to an embedding space e. In partic-
ular, two functions fo and f ′

o s.t. fo(x) = f ′
o(x) ∀x should

be mapped to identical or close embeddings. However, as
the occupancy networks fo are implemented as MLPs, any
given instance fo(.; θo) parameterized by trainable weights
θo can be reparametrized by any permutation of hidden units,
which leads to permutations of the rows and columns, re-
spectively, of two weight matrices, its own and the one of
the preceding layer. This reparameterization keeps the repre-
sented functions identical, although their representations as
weight vectors are different.

To favor learning a global occupancy reader which is
invariant w.r.t these transformations, we implement it as a
transformer model with self-attention [55] — this, however,
does not enforce full invariance. The model takes as input
a sequence of tokens (w1, ..., wN ), where wi ∈ Ra is a
learned linear embedding of the incoming weights of one
neuron within the implicit representation fo, and N is the
number of neurons of fo. Each token is summed with a posi-
tional encoding in the form of Fourier features. An additional
“CLS” token with learned embedding is concatenated to the
input sequence. The reader is composed of 4 self-attention
layers, with 8 attention heads. The output representation
of the “CLS” token is used as the global embedding of the
implicit representation.

Training — The global reader r is trained with full
supervision from a dataset of 25k trajectories composed of
MLP weights θo,i and absolute maps Mi, i..1..25k. Each



map is a metric tensor providing occupancy information
extracted from the corresponding implicit representation, i.e.
Mi(xy,xx) = fo(x, θo,i). The dataset also contains an ego-
centric version M′

i of each map, which is centered on the
agent and oriented depending on its current heading. The
reader r is trained in an Encoder-Decoder fashion, where r
plays the role of the encoder,

ei = r(θo,i), M̂i = Dec(ei, pi), (5)

where pi is the agent pose (position and heading), necessary
to decode ego-centric information. We minimize a cross
entropy loss on the prediction of ego-centric maps,

Lg = −∑
i

∑
k

∑
l

∑3
c=1 M

′∗
i,c(k, l) logM

′
i,c(k, l) (6)

Directly training this prediction proved to be difficult.
We propose a procedure involving several steps, detailed in
section 3.5. After the training phase, the reader g is used in
the perception + mapping module of the agent as given in
equation (1), and kept frozen during agent RL training.

3.4. Training the Agent

The agent is trained with RL, more precisely Proximal Pol-
icy Optimization (PPO) [49]. The inner training loops of
the implicit representations are supervised (red arrows in
Figure 2) and occur at each time step in the forward pass,
whereas the RL-based outer training loop of the agent oc-
cur after N acting steps (black arrows in Figure 2). As
the perception module used to generate training data from
RGBD-observations for the Semantic Finder fs is indepen-
dent of the visual encoder c in the agent (see Figure 2), and
as its query qt is fixed to the navigation goal gt, there is no
need to track the weights θs at each time step in order to
backpropagate the PPO loss (outer training). This is a key
design choice of our method.

Training assumptions — We do not rely on the ex-
istence of global GT maps for occupancy, as fo() and r()
were trained on observation data from agent trajectories only.
However, similar to [37, 46], we exploit object positions
in simulation, during training only; Moreover, we require
pixel-wise segmentation masks during training. We believe
that this does not change requirements, as the goal is to fully
exploit 3D photo-realistic simulators as a data source and
see how far the field can go with this. Generalization require-
ments are unchanged: we require our agent to be able to
generalize to new unseen scenes. Generalization to unseen
object categories is not targeted, and in MultiON task setup
not possible for any agent, as object positions and labels are
required for reward calculation.

3.5. Training the global reader

The proposed training procedure for the global reader r (per-
formed before training the agent) can be split into 3 phases.

The architecture for the convolutional decoder Dec() is kept
the same in all of them. The hyperparameters of its different
layers are detailed in the Supplementary Material. It is com-
posed of 6 transpose convolution layers along with batch
norm layers and ReLU activations, except for the last layer
with a softmax activation. Figure 3 provides an overview of
the 3 steps involved in the training of the global reader.

Fully convolutional autoencoder — The first step is to
train a fully convolutional autoencoder on the set of ab-
solute maps Mi, i..1..25k. Only the decoder weights
are kept.

Global reader training on absolute maps — The second
step consists in training the global reader to output
embeddings fed to the frozen decoder from the previous
step. The objective is to reconstruct absolute maps from
the weights of the implicit representation. The global
reader weights are kept after this training phase.

Global reader finetuning on egocentric maps — The
global reader, whose weights are initialized from the
weights obtained in the previous step, is now trained
along with the same decoder from the first step (also
used in the second step) on the set of egocentric maps
M′

i, i..1..25k. Both global reader and decoder are
finetuned. The output of the global reader is not
directly fed to the decoder, but is passed through linear
layers in order to fuse information about first the
position of the agent, and then its heading because this
time the right operations of shift and rotation must be
applied in order to reconstruct egocentric maps.

Integrating the pre-trained global reader into the agent
— After this pre-training in 3 steps, the weights of the
global reader are frozen and not updated during the RL
training. However, a linear layer is learnt to project
the 576-dim embedding from the global reader into a
256-dim representation fed to the GRU. This linear
layer is trained from reward signals.

4. Experiments

MultiON task — we target the 3-ON version of the
MultiON task [56], where the agent deals with sequences
of 3 objects, each belonging to one of 8 classes (cylinders
of different colors). At each step, the observation ot is an
RGB-D image of size 256×256×4 and the target class is a
one-in-K (K=8) vector. The action space is discrete: {Move
forward 0.25m, Turn left 30◦, Turn right 30◦, Found}. An
episode is considered successful if the agent finds all of the
targets before the time limit (2, 500 environment steps), and
chooses the Found action for each one at a distance closer to



Forward	pass

Training	supervision1

2

Convolutional autoencoder on absolute maps

Global reader on absolute maps

Weights	init

3 Global reader on egocentric maps

p

Global	occupancy	reader


Convolutional	decoder


Convolutional	encoder


Linear	layers


Frozen	weights


Absolute	point	coordinates


Egocentric	point	coordinates

Implicit	representation	(occupancy)


p Agent	pose


ℒ

ℒ

ℒ
Figure 3. Training the Global Reader in 3 steps: ➀ training a convolutional auto-encoder on absolute maps; ➁ extension to inputs equal to
weights θo = the gobal reader; ➂ extention to predicting ego-centric maps, better suited to navigation problems.

0− 30 30− 50 50− 70 — Val — — Test —
S O S O S O Success Progress SPL PPL Success Progress SPL PPL

µ
− − − − − − 33.2± 1.2 49.0± 1.1 21.2± 0.5 31.6± 1.2 42.3± 1.5 56.7± 0.9 28.1± 1.0 37.8± 1.8

− − ✓ − ✓ − 37.8± 1.6 52.3± 0.9 26.35± 1.5 36.5± 0.8 47.0± 1.7 60.5± 1.6 34.5± 0.8 44.2± 1.0

− − ✓ − ✓ ✓ 38.5± 4.6 52.5± 4.8 28.2± 2.1 38.3± 1.7 46.7 ± 3.0 60.1 ± 3.1 35.1 ± 1.4 44.8 ± 1.0

↑
− − − − − − 32.1 47.7 21.6 32.6 41.0 55.9 28.9 39.0
− − ✓ − ✓ − 38.1 51.9 27.3 37.1 48.6 61.5 35.2 44.2
− − ✓ − ✓ ✓ 43.1 56.8 30.5 40.1 49.7 63.4 36.4 45.9

Table 1. Impact of the implicit representations: navigation performance on MultiON val and MultiON test. S=fs activated, O=fo activated
in the corresponding training period (see text). Top/µ: means over 3 runs; Bottom/↑: best validation seeds over 3 runs.

1.5m. Calling Found incorrectly terminates episode as a fail-
ure. An access to perfect odometry information (localization
and heading) was assumed in [56] as the standard protocol.

Dataset and metrics — The agent is trained on the Mat-
terport3d [9] dataset. We followed the standard train/val/test
split over scenes (denoted MultiON train, MultiON val, Mul-
tiON test): 61 training, 11 validation and 18 test scenes.
The train, val and test splits are respectively composed of
50, 000, 12, 500 and 12, 500 episodes per scene. Reported
results on the val and test sets (Tables 1 and 2) were com-
puted on a subset of 1, 000 randomly sampled episodes. We
report standard metrics as used in the navigation literature
(and in [56]): Success: percentage of successful episodes
— all objects are reached respecting order, time; Progress:
percentage of objects successfully found (respecting order,

time); SPL: Success weighted by Path Length, extending the
original SPL metric [2] to MultiON; PPL: Progress weighted
By Path Length (the official MultiON challenge metric).

Global reader dataset — The Global reader r was
trained on a dataset of 25k trajectories obtained from roll-
outs performed by a baseline agent [37]. 95% was used for
training and the rest for validation. On these trajectories
we first trained the occupancy representation fo “in-situ”,
i.e. as if it were deployed on the agent, and we recorded
training samples i for training the reader r: pairs of network
weights θo,i and associated maps Mi obtained by iteratively
querying the implicit representation. Ego-centric maps were
generated from the absolute ones and both were cropped
around their center.

Perception module dataset — The perception module



Agent ρ α γ Success Progress SPL PPL AUX ORC
(a) OracleMap† [56] − ✓ 50.4± 3.5 60.5± 3.1 40.7± 2.2 48.8± 1.9 − ✓
(b) OracleEgoMap† [56] − ✓ 32.8± 5.2 47.7± 5.2 26.1± 4.5 37.6± 4.7 − ✓
(c) NoMap† [56] − ✓ 16.7± 3.6 33.7± 3.3 13.1± 2.4 26.0± 1.7 − −
(d) ProjNMap† [26] − ✓ 25.9± 1.1 43.4± 1.0 18.3± 0.6 30.9± 0.7 − −
(e) NoMap ✓ − 42.3± 1.5 56.7± 0.9 28.1± 1.0 37.8± 1.8 − −
(f) ProjNMap [26] ✓ − 39.7± 2.3 55.4± 1.4 28.7± 1.1 40.1± 1.9 − −
(g) Implicit (Ours) w/ curriculum w/ pre-train ✓ − − 46.7± 3.0 60.1± 3.1 35.1± 1.4 44.8± 1.0 − −
(h) ProjNMap + AUX [37] N/A ✓ N/A 57.7 ± 3.7 70.2 ± 2.7 37.5 ± 2.0 45.9 ± 1.9 ✓ −
(i) Implicit (Ours) w/o curriculum w/ pre-train + AUX ✓ ✓ ✓ 58.3± 0.8 69.4± 1.1 43.8± 1.0 52.1± 1.6 ✓ −
(j) Implicit (Ours) w/o curriculum w/o pre-train − ✓ ✓ 54.8± 3.6 68.0± 3.4 41.7± 1.9 51.3± 1.6 − −
(k) Implicit (Ours) w/o curriculum w/o pre-train + AUX − ✓ ✓ 57.9± 2.0 69.5± 0.6 43.3± 2.2 51.9± 3.7 ✓ −

Table 2. Comparison with SOTA methods on MultiON test. †=performance taken from [37]. “AUX” = auxiliary losses using privileged
information [37]. “ORC”=non-comparable, uses oracle information. ρ = pre-training of input encoders from [37]. α = finetuning of input
encoders with RL. γ = implicit representations are accessible to the agent since the beginning of RL training (w/o curriculum).

Uncertainty Success Progress SPL PPL
− 35.4± 3.0 49.7± 3.3 29.4± 2.0 40.9± 2.4

✓ 43.4± 3.1 58.0± 3.0 35.1± 0.8 46.4± 1.0

Table 3. Uncertainty: comparing training w/ semantic input only,
no occupancy, from the beg. of training, w/ and w/o uncertainty.

p was trained to segment the different target objects. The
generated dataset is composed of 132k pairs of RGB-D
observations and segmentation masks. Samples for 4 scenes
were kept as a validation set.

Training details — We use the reward function given
in [56] for RL/PPO training (see supplementary material),
and train all agents for 70M steps as in [37]. For all agents
in Table 1 and some in Table 2 (w/ pre-train: ✓ in ρ column),
the encoders (visual encoder c, as well as goal and previous
action embedding layers, see Figure 2) are pre-trained with
a baseline, which corresponds to the ProjNeuralMap agent
trained with auxiliary losses [37]. This is done to faster train-
ing, as it will be shown later (in Table 2) that the same final
performance can be reached without this initial pre-training
of encoders. Training and evaluation hyper-parameters, as
well as architecture details have been taken from [56]. All
reported quantitative results are obtained after 3 training runs
for each model.

Impact of the implicit representations — Table 1
shows the impact of the two implicit representations on
navigation (top: means over 3 runs; bottom: best validation
seeds over 3 runs). To keep compute requirements limited
and decrease sample complexity, in these ablations we do
not train the full agent from scratch, in particular since the
early stages of training are spent on learning basic interac-
tions. We decompose training into three phases: 0−30M
steps (no implicit representations, i.e. all entries to the agent
related to fs and fo are set to 0); 30M−50M steps (training
includes the Semantic Finder fs) and finally 50M−70M
steps (full model). This 3-steps approach is used to train all
agents in Table 1, and will be denoted as curriculum (See

Table 2, w/ curriculum: − in γ column). All metrics on
both val and test sets are improved, with the biggest impact
provided by the Semantic Finder, which was expected. We
conjecture that mapping object positions is a more difficult
task, which is less easily delegated to the vectorial GRU
representation, than occupancy. We also see an impact of
the occupancy representation, which not only confirms the
choice of the implicit representation fo itself, but also its
global read through r(θo). Training curves are given in the
supplementary material.

Uncertainty — has an impact on agent performance, as
we show in the ablation in Table 3. Indeed, when training
an agent with the semantic input since the beginning of
training (w/o curriculum) and no occupancy input (as the
uncertainty is only related to semantic information), feeding
the agent with the computed uncertainty about the output of
the Semantic Finder brings a boost in performance.

Comparison with previous SOTA methods — is done
in Table 2. The performance entries of these baselines are
taken from [37], which describes the winning entry of the
CVPR 2021 MultiON competition. Our method outperforms
the different competing representations, even when they ben-
efit from the same pre-training scheme and are thus com-
pletely comparable. NoMap with pre-training corresponds to
the first row of Table 1. The difference between (g) and (i) is
the use of the auxiliary tasks in [37], but also that the implicit
representations are available to the agent during the whole
training period for (i), i.e. no decomposition into 3 phases as
in the ablations in Table 1 (w/o curriculum). Moreover, com-
pared to (g), in (i) the weights of the pre-trained encoders
are finetuned. We see that the gains of our representations
are complementary to the auxiliary losses in [37]. (j) and (k)
confirm this finding, showing that most of the gain compared
with (h) comes from the implicit representations, with the
auxiliary losses bringing an additional boost. (j) and (k) also
show that, even though pre-training can help speed up RL
training, similar test performance is achieved without it.



Figure 4. Capacity of the semantic representation: we report mean distance prediction
error (normalized ∈ [0, 1]) as a function of the number of stored objects. Replay buffers
are composed of dummy queries: (a) one-hot queries with same dimension as number of
objects; (b) random query with dimension 9; (c) random query with same dimension as
number of objects.

Figure 5. Lifelong learning of the semantic
repr. fs: we report mean error in meters,
test set, 600 episodes, as a function of the
number of time steps since the object was
first seen in the episode (t=0). The error falls
immediately and stays low over the episode.

Reconstruction performance of the Global Reader r
— although the task of reconstructing egocentric maps from
occupancy functions fo (represented by θo) is only used as a
proxy task to train the Global reader r, we see it is a reliable
proxy for the quality of extracting the global latent vector e
fed to the agent.

Accuracy Jaccard Index
83.4 56.5

Table 4. Performance of the
global reader r: We report
accuracy and Jaccard index.

In Table 4 we report recon-
struction performance mea-
sured as accuracy and mean
Jaccard Index on the valida-
tion split of the dataset used
to train the reader. We judge
that an accuracy of 83.4% is
surprisingly high, given that

the global reader needs to reconstruct the content of the rep-
resentation directly from its parameters θo, that each implicit
representation has been initialized randomly, and that the
reader is required to be invariant w.r.t. to reparameteriza-
tion (see Section 4). The task is even made harder as neural
weights can be considered as an absolute representation of
the env. and the reader must combine it with information
about the agent pose to reconstruct an egocentric map.

Capacity of the Semantic Finder — Unlike all other
results presented in this paper, this experiment is performed
independently of the official MultiON benchmark. We con-
struct a synthetic dataset to evaluate the capacity of the
Semantic Finder. More details about the generated data can
be found in the supplementary material. As the granularity
of the implicit representations is handled through the budget
in terms of trainable parameters, we evaluate the capacity
of the Semantic Finder fs to store large numbers of objects
in Figure 4: In (a), we can see that increasing the number
of objects up to 1000 does not increase error with sufficient
gradient updates. However, since inputs are 1-in-K, increas-
ing the number of objects also increases capacity. In (c), we
see that this does not hold for random objects (not 1-in-K),
whose less structured storage requires more capacity. In (b),
we keep the input dimension fixed for random objects, which

further increases error.
Evaluating catastrophic forgetting — we evaluate the

capacity of the Semantic Finder fs to hold the learned infor-
mation over the full length of the sequence in spite of the fact
that it is continuously trained. Figure 5 shows the evolution
of the mean error in distance for the predicted position of
queried target objects as a function of time. The error quickly
goes below 1.5m once the object has been seen the first time
(t=0 in the plot), which is distance threshold required by the
MultiON task, and stays there, providing evidence that the
model does not suffer from catastrophic forgetting.

Runtime performance — inspite of requiring to conti-
nously train the representations, we achieve 45 fps during
parallelized RL training, including the environment steps
(simulator rendering), forward passes, representation train-
ing and RL training on a single V100 GPU. The average
time of one agent forward pass, including updates of implicit
representations is 20ms on a V100 GPU, which is equivalent
to 50 fps, enough for real-time performance.

5. Conclusion

We introduce two implicit representations to map semantic,
occupancy and exploration information. The first estimates
the position of an object of interest from a vector query,
while the second encapsulates information about occupancy
and explored area in the current environment. We also in-
troduce a global read directly from the trainable weights of
this representation. Our experiments show that both implicit
representations have a positive impact on the navigation per-
formance of the agent. We also studied the scaling laws of
the semantic representation and its behavior in the targeted
lifelong learning problem. Future work will target differenti-
ating through the implicit representations all the way back
to the perception modules.

Acknowledgement — We thank ANR for support
through AI-chair grant “Remember” (ANR-20-CHIA-0018).



References
[1] Michal Adamkiewicz, Timothy Chen, Adam Caccavale,

Rachel Gardner, Preston Culbertson, Jeannette Bohg, and
Mac Schwager. Vision-only robot navigation in a neural radi-
ance world. IEEE Robotics and Automation Letters, 2022. 2,
3, 4, 5

[2] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana
Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,
and Amir Roshan Zamir. On evaluation of embodied naviga-
tion agents. arXiv preprint, 2018. 2, 7

[3] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P.
Mirowski, A. Pritzel, M.J. Chadwick, T. Degris, J. Modayil,
G. Wayne, H. Soyer, F. Viola, B. Zhang, R. Goroshin, N.
Rabinowitz, R. Pascanu, C. Beattie, S. Petersen, A. Sadik, S.
Gaffney, H. King, K. Kavukcuoglu, D. Hassabis, R. Hadsell,
and D. Kumaran. Vector-based navigation using grid-like
representations in artificial agents. Nature, 557, 2018. 1

[4] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and
Christian Wolf. Deep reinforcement learning on a budget:
3d control and reasoning without a supercomputer. In ICPR,
2020. 2

[5] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and
Christian Wolf. Egomap: Projective mapping and structured
egocentric memory for deep RL. In ECML-PKDD, 2020. 1,
2, 3

[6] Edward Beeching, Jilles Dibangoye, Olivier Simonin, and
Christian Wolf. Learning to plan with uncertain topological
maps. In ECCV, 2020. 1, 2

[7] G. Bono, L. Antsfeld, A. Sadek, G. Monaci, and C.
Wolf. Learning with a Mole: Transferable latent spa-
tial representations for navigation without reconstruction.
arXiv:2306.03857, 2023. 2

[8] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien
Glaser. Simultaneous localization and mapping: A survey of
current trends in autonomous driving. IEEE Transactions on
Intelligent Vehicles, 2017. 2

[9] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niebner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. In I.C. on 3D Vision, 2018. 7

[10] Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta,
and Ruslan Salakhutdinov. Object goal navigation using
goal-oriented semantic exploration. In In Neural Information
Processing Systems, 2020. 2

[11] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Ab-
hinav Gupta, and Ruslan Salakhutdinov. Learning to explore
using active neural slam. In ICLR, 2020. 2

[12] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural topological slam for visual
navigation. In CVPR, 2020. 1, 2, 3

[13] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi,
Cordelia Schmid, and Ivan Laptev. Think Global, Act Lo-
cal: Dual-scale Graph Transformer for Vision-and-Language
Navigation. 2022. 1, 2

[14] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019. 2

[15] Chi-Ming Chung, Yang-Che Tseng, Ya-Ching Hsu, Xiang-
Qian Shi, Yun-Hung Hua, Jia-Fong Yeh, Wen-Chin Chen,
Yi-Ting Chen, and Winston H Hsu. Orbeez-slam: A real-time
monocular visual slam with orb features and nerf-realized
mapping. In ICRA, 2023. 3

[16] C.J. Cueva and X.-X. Wei. Emergence of grid-like representa-
tions by training recurrent neural networks to perform spatial
localization. In ICLR, 2018. 1

[17] S. Dey, A. Sadek, G. Monaci, B. Chidlovskii, and C. Wolf.
Learning whom to trust in navigation: dynamically switching
between classical and neural planning. In IROS, 2023. 2

[18] Heming Du, Xin Yu, and Liang Zheng. VTNet: Visual Trans-
former Network for Object Goal Navigation. In ICLR, 2021.
1, 2

[19] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In CVPR, 2017. 2

[20] Kuan Fang, Alexander Toshev, Li Fei-Fei, and Silvio Savarese.
Scene memory transformer for embodied agents in long-
horizon tasks. In CVPR, 2019. 1, 2

[21] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep learn-
ing. In ICML, 2014. 5

[22] Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,
and Yoshua Bengio. An empirical investigation of catas-
trophic forgetting in gradient-based neural networks. In ICLR,
2014. 4

[23] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C
Russell, and Mathieu Aubry. A papier-mâché approach to
learning 3d surface generation. In CVPR, 2018. 2

[24] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
arXiv preprint arXiv:1609.09106, 2016. 3

[25] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt
Moser, and Edvard Moser. Microstructure of a spatial map in
the entorhinal cortex. Nature, 436:801–6, 09 2005. 1

[26] João F. Henriques and Andrea Vedaldi. Mapnet: An allo-
centric spatial memory for mapping environments. In CVPR,
2018. 1, 2, 3, 8

[27] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-
necki, Tom Schaul, Joel Z. Leibo, David Silver, and Koray
Kavukcuoglu. Reinforcement learning with unsupervised
auxiliary tasks. In ICLR, 2017. 2

[28] Krishna Murthy Jatavallabhula, Soroush Saryazdi, Ganesh
Iyer, and Liam Paull. gradSLAM: Automagically differen-
tiable SLAM. In ICRA, 2020. 2

[29] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy
Bengio. Predicting the generalization gap in deep networks
with margin distributions. arXiv preprint arXiv:1810.00113,
2018. 3

[30] Peter Karkus, Shaojun Cai, and David Hsu. Differentiable
SLAM-net: Learning Particle SLAM for Visual Navigation.
In CVPR, 2021. 2

[31] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker.
Normalizing flows: An introduction and review of current
methods. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43(11), 2021. 5



[32] Xueting Li, Shalini De Mello, Xiaolong Wang, Ming-Hsuan
Yang, Jan Kautz, and Sifei Liu. Learning Continuous Envi-
ronment Fields via Implicit Functions. In ICLR, 2022. 2, 4,
5

[33] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal,
and Antonio Torralba. 3d neural scene representations for
visuomotor control. In CoRL, 2022. 3

[34] Iker Lluvia, Elena Lazkano, and Ander Ansuategi. Ac-
tive Mapping and Robot Exploration: A Survey. Sensors,
21(7):2445, 2021. 2

[35] Charles H Martin and Michael W Mahoney. Heavy-tailed
universality predicts trends in test accuracies for very large
pre-trained deep neural networks. In SDM, 2020. 3

[36] Charles H Martin, Tongsu Serena Peng, and Michael W Ma-
honey. Predicting trends in the quality of state-of-the-art
neural networks without access to training or testing data.
Nature Communications, 2021. 3

[37] Pierre Marza, Laetitia Matignon, Olivier Simonin, and Chris-
tian Wolf. Teaching agents how to map: Spatial reasoning for
multi-object navigation. In IROS, 2022. 3, 6, 7, 8

[38] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convo-
lutional neural network for real-time object recognition. In
IROS, 2015. 2

[39] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In CVPR, 2019.
2

[40] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 2

[41] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,
Andy Ballard, Andrea Banino, Misha Denil, Ross Goroshin,
Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and
Raia Hadsell. Learning to navigate in complex environments.
In ICLR, 2017. 2, 3

[42] Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar,
David Novotny, Michael Zollhoefer, and Mustafa Mukadam.
iSDF: Real-Time Neural Signed Distance Fields for Robot
Perception. 2022. arXiv: 2204.02296. 2, 4, 5

[43] Shaowu Pan, Steven L Brunton, and J Nathan Kutz. Neu-
ral implicit flow: a mesh-agnostic dimensionality reduc-
tion paradigm of spatio-temporal data. arXiv preprint
arXiv:2204.03216, 2022. 3

[44] Emilio Parisotto and Ruslan Salakhutdinov. Neural map:
Structured memory for deep reinforcement learning. In ICLR,
2018. 1, 2, 3

[45] Jeong Joon Park, Peter Florence, Julian Straub, Richard New-
combe, and Steven Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In CVPR,
2019. 2

[46] A. Pashevich, C. Schmid, and C. Sun. Episodic transformer
for vision-and-language navigation. In ICCV, 2021. 6

[47] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron, Mai
Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springen-
berg, Tom Eccles, Jake Bruce, Ali Razavi, Ashley Edwards,

Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. A Generalist Agent.
arXiv:2205.06175, 2022. 1, 2

[48] A. Sadek, G. Bono, B. Chidlovskii, A. Baskurt, and C. Wolf.
Multi-Object Navigation in real environments using hybrid
policies. In ICRA, 2023. 2

[49] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint, 2017. 6

[50] Dhruv Shah, Benjamin Eysenbach, Nicholas Rhinehart, and
Sergey Levine. Rapid Exploration for Open-World Naviga-
tion with Latent Goal Models. In CORL, 2021. 5

[51] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. NeurIPS, 2020. 2

[52] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison.
imap: Implicit mapping and positioning in real-time. In ICCV,
2021. 2, 3, 4, 5

[53] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional
domains. NeurIPS, 2020. 5

[54] Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier
Bousquet, and Ilya Tolstikhin. Predicting neural network
accuracy from weights. arXiv preprint arXiv:2002.11448,
2020. 3

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,
2, 5

[56] Saim Wani, Shivansh Patel, Unnat Jain, Angel X. Chang,
and Manolis Savva. Multion: Benchmarking semantic map
memory using multi-object navigation. In NeurIPS, 2020. 2,
3, 4, 6, 7, 8

[57] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin,
Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual
computing and beyond. arXiv preprint arXiv:2111.11426,
2021. 2, 3, 5

[58] Scott Yak, Javier Gonzalvo, and Hanna Mazzawi. Towards
task and architecture-independent generalization gap predic-
tors. arXiv preprint arXiv:1906.01550, 2019. 3

[59] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and An-
drew J Davison. In-place scene labelling and understanding
with implicit scene representation. In ICCV, 2021. 3, 4

[60] Shuaifeng Zhi, Edgar Sucar, Andre Mouton, Iain Haughton,
Tristan Laidlow, and Andrew J Davison. ilabel: Interactive
neural scene labelling. arXiv preprint arXiv:2111.14637,
2021. 3

[61] Andrey Zhmoginov, Mark Sandler, and Max Vladymy-
rov. Hypertransformer: Model generation for supervised
and semi-supervised few-shot learning. arXiv preprint
arXiv:2201.04182, 2022. 3

[62] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven
visual navigation in indoor scenes using deep reinforcement
learning. In ICRA, 2017. 2



[63] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun
Bao, Zhaopeng Cui, Martin R Oswald, and Marc Pollefeys.
Nice-slam: Neural implicit scalable encoding for slam. CVPR,
2022. 3



Appendix

A. Training stability and curves
Figure 6 shows the training curves of the 3 different agents we
compared in Table 1 of the main paper: the recurrent baseline
agent (blue), with the Semantic Finder (orange) and with both
implicit representations (green). Left, (a), we see the evolution
of the training reward as a mean and standard deviation over 3
runs. Right, (b) shows PPL, the main metric chosen for ranking the
agents in the MultiON learderboard, which we show for different
checkpoints during training and evaluated on the validation set.
As can be seen, training is quite stable over runs, and adding the
two representations provides a boost in performance (as already
reported in Table 1 in the main paper).

B. Visualization of the agent behavior

B.1. Successful episode
Figure 7 provides an example for an episode rollout from the
minival set of the MultiON CVPR 2021 Challenge. The agent
is equipped with both implicit representations. For each line, from
left to right, we first see the RGB-D egocentric view of the agent,
then a topdown map with the three goals (white, pink and yellow
squares) and their estimated location by the Semantic Finder (white,
pink and yellow dots, with a shaded region to denote uncertainty).
The radius illustrating uncertainty is unit-less and only given for
visualization purposes - is not available to the agent in this particu-
lar form. The third illustration shows the implicit map obtained by
querying the Occupancy and Exploration Implicit Representation,
and on the right, there is the reconstructed output when feeding the
embedding of the global reader to the convolutional decoder it was
trained with. The last element is a curve showing the evolution of
the uncertainty estimation of the Semantic Finder on the currently
provided target object.

In this episode, the agent starts with the white object within its
field of view, but the first target to reach is the pink cylinder (Row 1).
As we can see, the estimation of goal positions from the Semantic
Finder are wrong, which is expected as the episode has not yet
started. However, the associated uncertainty is high, allowing the
agent to discard this information. The agent then explores until it
observes the pink object (Row 2). At that point, the uncertainty
about the object to find drops. The estimate of the position of the
pink object will be updated as training samples will be added to
the semantic replay buffer. Also note that at that point the estimate
of the position of the white object from the Semantic Finder is
accurate as the object has already been seen previously. The agent
then goes towards the pink target object and calls the found action
(Row 3). Estimation of the positions of pink and white objects are
accurate. The next target to find is the white object. The uncertainty
about the current target is low as the white object has already been
observed. The agent backtracks (Row 4) and goes towards the
white object to call the found action (Row 5). The next goal is the
yellow cylinder. At that point, the uncertainty about the current
target increases as the yellow cylinder has not yet been within the
agent’s field of view. The agent explores (Row 6) and when the
target is within its field of view (Row 7) the uncertainty related to

the target to find drops. The agent goes towards the yellow object
and calls the found action (Row 8). At the end of the episode, the
Semantic Finder is able to localize the 3 objects, and the associated
uncertainties are low. All objects have been successfully found, so
this episode is considered as a success.

B.2. Failure case
Figure 8 shows an example of unsuccessful episode. The agent and
the setup are the same as described in the previous subsection. The
agent can see the white target at the beginning of the episode, but it
is far and largely occluded.The first target to find is the blue cylinder.
It thus explores the scene until seeing the object. The uncertainty
thus drops, the prediction of the target position on the map is now
correct. It is interesting to see that the prediction of the location
of the white target is also pretty accurate even though it was hard
to detect at the beginning of the episode. The agent reaches the
blue target and calls the Found action. The next target to find is the
white object. The uncertainty is not 0 but relatively small as the
agent has already seen the white target before. It goes towards the
object, and when it is within its field of view, the uncertainty drops
to 0 and the location prediction on the map is accurate. The agent
calls the Found action. It has thus succeeded in finding the first
two objects that were quite close to its initial position. However, as
shown in the last 3 rows, the agent does not succeed in exploring
the environment enough and never finds the last target which is the
green cylinder. After a few steps, it calls the Found action at the
wrong location.

C. Perception modules
Two different modules are used in this work. The first one, respon-
sible for representation perception, extracts representations from
the RGB-D observation to populate the training replay buffer of
the Semantic Finder. The second one, tackling reactive perception,
encodes the observation into a vector fed to the GRU. This represen-
tation of the observation is thus more directly used in the decision
making process — the name Reactive is certainly not 100% accu-
rate, since the output of this module is still used to update agent
memory, but this concerns only the hidden GRU memory and not
the main implicit representations.

Reactive perception We use the encoder module in [51] (ref from
the main paper), which encodes visual observations at each
step. Table 5 (Enc) presents the hyperparameters of the
convolutional layers in this visual encoder. Is is composed
of 3 convolutional layers follower by a linear layer. ReLU
activations are used. The embedding produced by this visual
encoder is fed to the GRU module. In our work, the reactive
perception module has been pre-trained with auxiliary losses,
which corresponds to the method in [34] (ref from the main
paper). It is then frozen and not updated during RL training.

Representation perception The goal of the representation percep-
tion module is to extract vectors to be added to the Semantic
Finder training replay buffer. The backbone encoder is the
same as the reactive perception module (see Enc in Table 5)
also pre-trained from the agent in [34] (ref from the main
paper). This network is augmented with a segmentation head
and is fine-tuned end-to-end on the task of segmenting Mul-
tiON target objects. Table 5 (Seg) details the architecture



(a) (b)

Figure 6. Training stability: (a) Evolution of the collected reward on training episodes for the 3 models presented in Table 1 in the main
paper. (b) Evolution of PPL, the official ranking metrics in the MultiON Challenge leaderboard, on val episodes for model checkpoints from
the last 10M training frames.

Model layer id type in channels out channels kernel size stride in padding out padding

Dec

0 TransposeConv2D 64 32 3 2 0 0
1 TransposeConv2D 32 32 3 2 0 0
2 TransposeConv2D 32 16 3 2 0 0
3 TransposeConv2D 16 8 3 2 0 0
4 TransposeConv2D 8 8 3 2 0 0
5 TransposeConv2D 8 3 3 2 0 1

Enc
0 Conv2D 4 32 8 4 0 −
1 Conv2D 32 64 4 2 0 −
2 Conv2D 64 32 3 1 0 −

Seg
0 Conv2D 32 32 5 1 2 −
1 Conv2D 32 32 5 1 2 −
2 Conv2D 32 9 3 1 1 −

Table 5. Convolutional layers: hyperparameter values in the different presented CNN architectures. Dec is the CNN decoder trained with
the global reader, Enc is the visual encoder used in both the representation and reactive perceptions, Seg is the segmentation head combined
with Enc in the representation perception module c.

of the segmentation head. It is composed of 3 convolutional
layers with ReLU activations, except for the last layer where
a softmax activation is applied. After this training phase, the
weights of the representation perception module are frozen
and not updated during RL training.

D. Algorithmitic description of an agent for-
ward pass

Algorithm 1 gives a high-level overview of the different steps hap-
pening after receiving the current observation from the environment
to take the most suitable action.

D.1. Lines 1 − 5 — Adding training samples to the
semantic replay buffer

The segmentation map mt is obtained by passing the RGB-D ob-
servation ot through the representation perception module, i.e. a

segmentation model pre-trained to segment the target objects (Line
2). An inverse projection operation, denoted invProj() is used to
project pixels from ot into their 3D coordinates nt using the depth
channel of ot and the known camera intrinsics K (Line 3). A mean-
pooling operation, denoted meanPooling() is then applied to nt

in order to obtain the mean 3D coordinates of all pixels in each cell
of the segmentation map mt (Line 4). Finally, pairs of softmax
distribution over classes from mt and mean 3D coordinates are
added to the training replay buffer of the Semantic Finder. This is
implemented as the addSemSamples() in the algorithm (Line 5).

D.2. Lines 6 − 8 — Adding training samples to the
occupancy replay buffer

The 3D coordinates of projected pixels in nt are compared with
threshold values along their vertical y coordinate to be either la-
belled as navigable space or obstacle. Only 3D points with their
vertical coordinate below than another threshold value are kept.



Algorithm 1: Different steps necessary to update
implicit representations at each agent step.

Input :Observation ot, camera intrinsics K, goal
gt, replay buffers rs and ro, weights θs,t,
θo,t

1 // Adding training samples to the
semantic replay buffer

2 mt = p(ot)
3 nt = invProj(ot,K)
4 kt = meanPooling(nt)
5 rs = addSemSamples(rs,mt, kt)
6 // Adding training samples to the

occupancy replay buffer
7 lt = labelOccPos(nt)
8 ro = addOccSamples(ro, nt, lt)
9 // Updating the Semantic Finder

10 for i← 0 to ns − 1 do
11 bs = getSemBatch(rs)
12 θs,t = SGD(bs, θs,t)
13 end for
14 // Updating the Occupancy and

Exploration Implicit
Representation

15 loss = 0
16 j = 0
17 while loss > thresh and j < no do
18 bo = getOccBatch(ro)
19 loss = eval(bo, θo,t)
20 θo,t = SGD(bo, θo,t)
21 j = j + 1

22 end while

These comparisons are done in the labelOccPos() function (Line
7). Pairs of label and 3D coordinates are then sampled in order to
keep the balance between the two classes and added to the training
replay buffer of the Occupancy and Exploration Implicit Represen-
tation. This is the addOccSamples() function (Line 8).

D.3. Lines 9− 13 — Updating the Semantic Finder
Two operations are repeated ns times. First a batch of training
examples bs is sampled (getSemBatch(), line 11). Then, the
SGD() function encapsulates the forward pass of fs on the sam-
pled batch, the L1 loss computation, gradient computation and
finally backpropagation. In this work, we fixed ns = 1.

D.4. Lines 14 − 22 — Updating the Occupancy and
Exploration Implicit Representation

The implicit representation is iteratively updated for a maximum of
no steps while the error of the model (loss, initialized to 0 in line
15) is higher than a threshold. Same as for the Semantic Finder, a
training batch bo is first sampled (getOccBatch(), line 18). The
model is then evaluated on samples from bo (Line 19). The SGD()
function is then applied to update the implicit representation. In

this work, we chose no = 20 and thresh = 0.3.

E. Capacity of the Semantic Finder
This section provides further details about the study conducted to
evaluate the impact of number of objects and the nature of their
representation on the capacity of the Semantic Finder to memorize
their position, and is complementary to the paragraph “Capacity of
the Semantic Finder” in Section 4 and Figure 3 of the main paper.

To be flexible in the amount of objects we can use, we perform
these experiments independently of the official MultiON bench-
mark. We consider three new scenarios, and for each one, a dataset
is generated and used to train the Semantic Finder. All datasets are
made of (query, position) pairs with positions being uniformly sam-
pled between arbitrary scene bounds (between 0 and 1 along each
axis). For each dataset, we also create variants varying the sample
size. To reduce the amount of hyper-parameters (e.g. batch size),
we ressort to gradient descent as opposed to stochastic gradient
descent, i.e. each gradient step is computed over the whole dataset.
The considered metrics is the mean L1 error on the prediction of
positions as a function of the number of objects to memorize. The
difference between the three scenarios is in the nature of queries
associated with positions, and each scenario corresponds to a sub
figure of Figure 3 in the main paper.

In Figure 3a, for a given size of the dataset, i.e. for given
number of objects, each query is a 1-in-K encoded vector of the
object category, which means that the query dimensions grows
with growing numbers of objects. This evaluates the representation
in situations where objects are identified by a unique class index.
Provided a sufficient number of gradient steps, we can see that the
error stays low even with an increasing number of objects. We
conjecture that the good performance of this setting is due to the
growth in, both, query size and thus capacity of the model (as the
query is the input to the model) as the number of objects grows.

In Figure 3b, the query vectors have a fixed dimension of 9,
equivalent to the dimension in the MultiON benchmark. Queries
are not 1-in-K encoded, but composed of randomly sampled values.
Even though more gradient steps are helpful, the conclusion here is
that increasing the number of objects has a negative impact on the
mean error of the model. Unlike in (a), the number of parameters
does not increase here with number of objects as queries have a
fixed size. This is thus an illustration of the challenge to memorize
an increasingly high number of objects with a fixed model capacity.

Figure 3c is a combination of (a) and (b) with query size in-
creasing with number of objects and queries composed of random
values (no one-hot vectors). The increase in model capacity with
more objects seems again to be beneficial provided enough gradient
steps. However, its is clear that the positions associated with ran-
dom queries are more difficult to memorize than for one-hot queries.
This emphasizes the importance of the chosen query representation
when building query-able semantic implicit representations.

F. Agent training details
All agents evaluated in this work are trained with Proximal Pol-
icy Optimization (PPO) [44], following settings from previous
work [51, 34]. We provide a formulation of the reward function
and the PPO hyper-parameters in the next sub-sections. Reward



Optimizer Adam
Adam eps 1e-5

Learning rate 2.5e-4
Linear learning rate decay ✓

Number of epochs 2
Number of parallel envs 16 or 4
Number of mini batches 4 or 1

Env. steps per update 128
Clipping ratio 0.2

Linear clip decay ✓
Value loss coefficient 0.5
Entropy coefficient 0.01
Max Grad Norm 0.2

GAE ✓
GAE-λ 0.95

Discount factor 0.99
Reward window size 50

Table 6. PPO hyper-parameters: Values for hyper-parameters
used when training all agents in this work.

function — — The reward function at time-step t is composed of
three terms,

Rt = 1
reached
t ·Rgoal +Rcloser +Rtime-penalty (7)

where 1reached
t is the indicator function that equals 1 if the Found

action was called at time t while being close enough to the target,
and 0 otherwise. Rcloser is a reward shaping term taking as value
the decrease in geodesic distance to the next goal compared to
previous timestep. Finally, Rtime-penalty is a negative slack reward to
encourage taken paths to be as short as possible.

PPO hyper-parameters — Table 6 presents the PPO hyper-
parameter values used to train all agents in this work.

G. Amount of compute
Table 7 shows the compute resources used to train, validate and test
the different models involved in results presented in Table 1 and 2
in the main paper.

H. Limitations of the work
The proposed approach has the following limitations

• Slower RL training compared to baseline agents. Even if
reaching an average of 45 fps with 2 implicit representations
updated with backpropagation at each agent step is already
quite satisfying, we are still far from the 150 fps when training
ProjNeuralMap or 200 fps for NoMap.

• The Semantic Finder can not deal with several instances of
the same object type. This is not a problem when considering
the MultiON task, but will be addressed in future work.

• The Semantic Finder only provides the position of an object
of interest. Thus, it does not provide the agent with any
information about how to reach the given target. Outputting
a geodesic distance, and even a shortest path to the object
would be interesting as future work.

• The current formulation of the uncertainty necessitates access
to the full replay buffer of the episode. Future work will target
estimating the uncertainty directly from the weights of the
implicit representation.

I. Leveraging environment regularities and se-
mantic priors in implicit representations

In this work, the weights of neural implicit representations are
initialized from scratch at the beginning of each new episode and
optimized in real time as the agent interacts with the environment.
This is done in the same way as an explicit map would be updated on
the fly during navigation. Training efficiency and the quality of the
learnt representations are thus two important factors. Leveraging
the knowledge about scene layout and semantic priors that was
gained by each implicit representation to speed up the training of
others and improving the quality of the provided mapping is thus a
relevant future direction. Meta-learning better weight initializations,
as was done in previous work (Sitzmann et al. MetaSDF: Meta-
learning Signed Distance Functions, NeurIPS 2020), or having a
common backbone followed by randomly initialized layers for new
episodes are two promising directions.

J. Importance of Fourier features
Figure 9 compares the top-down map obtained after querying the
Occupancy and Exploration Implicit Representation trained with
and without Fourier features. On each plot, the left and right maps
respectively show the impact of using and not using Fourier features.
Without the latter, no detail about the environment layout can be
reconstructed. This corroborates findings also reported in other
literature on implicit representations and coordinate networks, e.g.
(Mildenhall et al., NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis, ECCV 2020)

K. Importance of Occupancy and Exploration
information

In an instance based post-hoc analysis, we attempt to visualize the
way how the implicit Occupancy and Exploration Representation
is used by the agent with two different examples.

K.1. Occupancy information
Figure 10 shows an example episode from the MultiON 2021 chal-
lenge minival set targeted by two different agent variants.

Without the Occupancy and Exploration Representation
— the agent fails to find a target that was already observed in the
past: at the beginning of the episode, the agent observes the white
cylinder, while the current target is the pink object. The agent thus
explores the environment, finds it and properly calls the Found
action. The next target is then the white object. As can be seen,
the Semantic Finder properly locates the target, since it had been
previously observed. However, the agent fails to backtrack, first
entering a room without finding a path to the goal and then going
in the wrong direction. It finally calls the Found action while not
being close to the white target.

The full agent — also having access to the Occupancy and
Exploration Implicit Representation succeeds in reaching the white



Type 0− 70 30− 70 50− 70 S O Nb episodes Nb GPUs GPU GPU time Nb runs Tot. GPU time

Train ✓ − − 1 V100 5d 3 15d
✓ ✓ − 1 V100 4.5d 3 13.5d

✓ ✓ ✓ 1 V100 4d 3 12d

Val 1000 1 Titan X 4h 90(9 ∗ 10) 15d

Test 1000 1 Titan X 4h 9 1.1d

Table 7. Amount of compute: GPU days for runs involved in Tables 1 and 2 in the main paper.

target (after finding the pink target, not shown on the Figure).
Moreover, in visualizations of, both, the implicit representation fo
and the reconstruction from the latent representation extracted by
the Global Reader r, we can see the path to the goal (visualized
as a red arrow) marked as explored area. All the information for
the agent to correctly navigate towards the white object is thus
contained in the implicit map and its global summary vector.

This analysis cannot corroborate that the agent indeed used
the representation as explained; however, we can at least provide
evidence that the (successful) full agent had access to information,
which was crucial to solve a task, on which the baseline agent
failed.

K.2. Exploration information
Figure 11 shows another example episode taken from the MultiON
2021 challenge minival set.

Without the Occupancy and Exploration Representation —
the agent fails to explore the scene to find a target: the first target
object is black. To this end, the agent must explore the environment.
It starts to explore but misses a part of the scene (containing the
black target), which is never explored for the rest of the episode. It
finally calls the Found action far away from the black target.

The full agent — also having access to the Occupancy and
Exploration Implicit Representation succeeds in finding the black
target. It successfully explores the part of the scene that contains
the object. In visualizations of, both, the implicit representation
fo and the reconstruction from the latent vector extracted by the
Global Reader r, we can see that the area to observe (visualized
by a red shape) is at the frontier between explored and unexplored
parts of the scene. This information can thus guide the agent to
move towards the unexplored area.



Target: 

Target: 

Target: 

Target: 

Target: 

Target: 

Target: 

Target: 

Pink object seen: Drop in uncertainty 

about current target

White object to find: Uncertainty still 
low as white object already seen

Yellow object to find: High uncertainty as 
never seen before

Yellow object seen: Drop in uncertainty 

about current target

Figure 7. Agent rollout on an example successful episode from the MultiON CVPR 2021 Challenge minival set. From left to right:
RGB-D ego view, topdown map (viz only) with targets (squares) and their estimated location by the Semantic Finder (dots, shaded region
for uncertainty), map from the Occupancy and Exploration Implicit Representation, reconstructed egomap from the global reader and CNN
Decoder trained end-to-end, uncertainty of the Semantic Finder on the currently selected target.



Target: 

Target: 

Blue object seen: Drop in uncertainty 

about current targetTarget: 

Target: 

Uncertainty relatively low as white 
object seen briefly at the beginning

Target: 

Target: 

Target: 
Uncertainty is still high: object has 

not been found

End of episode: target object has not 
been foundTarget: 

Figure 8. Agent rollout on an example unsuccessful episode from the MultiON CVPR 2021 Challenge minival set. From left to right:
RGB-D ego view, topdown map (viz only) with targets (squares) and their estimated location by the Semantic Finder (dots, shaded region
for uncertainty), map from the Occupancy and Exploration Implicit Representation, reconstructed egomap from the global reader and CNN
Decoder trained end-to-end, uncertainty of the Semantic Finder on the currently selected target.



Figure 9. Comparison of top-down maps obtained by querying the Occupancy and Exploration Implicit Representation trained with (left)
and without (right) Fourier features.



Without Global 
ReaderTarget: 

Target: 

Target: 

Target: 

With Global Reader
Target: 

Figure 10. Importance of occupancy information: Episode exam-
ple from the MultiON 2021 challenge minival set where an agent
without the proposed Occupancy and Exploration Implicit Repre-
sentation fails to find the white target. Another agent equipped
with the representation containing occupancy information finds the
target. Some information about the path to reach it (indicated with
the red arrow) is indeed contained in the map. The green cone
corresponds to the agent’s position.

Without Global 
ReaderTarget: 

With Global Reader

Target: 

Target: 

Target: 

Target: 

Target: 

Figure 11. Importance of exploration information: Episode ex-
ample from the MultiON 2021 challenge minival set where an agent
without the proposed Occupancy and Exploration Implicit Repre-
sentation fails to find the black target. Another agent equipped
with the representation containing occupancy information finds the
target. Some information about the area to explore (indicated with
the red shape) is indeed contained in the map. The green cone
corresponds to the agent’s position.


