

Optical spectroscopy of Ho3+,Pr3+ co-doped YScO3 crystal

Chuang Yang, Jian Liu, Peng Chen, Qingsong Song, Jie Xu, Peng Liu, Yanyan Xue, Xiaodong Xu, Kheirreddine Lebbou, Ivan Buchvarov, et al.

▶ To cite this version:

Chuang Yang, Jian Liu, Peng Chen, Qingsong Song, Jie Xu, et al.. Optical spectroscopy of Ho3+,Pr3+ co-doped YScO3 crystal. Journal of Luminescence, 2023, 263, pp.120151. 10.1016/j.jlumin.2023.120151. hal-04390086

HAL Id: hal-04390086

https://hal.science/hal-04390086

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optical spectroscopy of Ho³⁺,Pr³⁺ co-doped YScO₃ crystal

Chuang Yang^a, Jian Liu^{a,*}, Peng Chen^a, Qingsong Song^b, Jie Xu^c, Peng Liu^a, Yanyan Xue^b, Xiaodong Xu^{a,*}, Kheirreddine Lebbou^c, Ivan Buchvarov^d, Jun Xu^b

- ^a Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
- ^b School of Physics Science and Engineering, Institute for Advanced Study, Tongji University, Shanghai 200092, China
- ^c Institut Lumière Matière, UMR5306 Université Lyon1-CNRS, Université de Lyon, Lyon 69622, Villeurbanne Cedex, France
- ^d Department of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Corresponding author:

Email address: 1910102@tongji.edu.cn (J. Liu)

xdxu79@jsnu.edu.cn (X. Xu)

Abstract: YScO₃ single crystal co-doped with Ho³⁺ and Pr³⁺ ions has been successfully grown by the Czochralski method. The absorption spectrum, fluorescence spectrum and fluorescence decay curve were measured at room temperature. The absorption cross section of Ho,Pr:YScO₃ at 649 nm and 1130 nm was calculated to be 0.93×10^{-20} cm² and 0.32×10^{-20} cm², respectively. Judd-Ofelt (J-O) theory was performed to evaluate the spontaneous emission probabilities and the radiative lifetimes. Ho,Pr:YScO₃ exhibited strong emission at 2040 nm and 2890 nm with a emission cross section of 0.80×10^{-21} cm² and 1.22×10^{-20} cm², respectively. The fluorescence lifetime of the Ho³⁺: 5I_6 and 5I_7 levels were calculated to be 0.31 ms and 5.89 ms, respectively. All the results indicate that the Ho,Pr:YScO₃ crystal could be a potential laser material for 2.9 μ m laser operation.

Keywords: Ho,Pr:YScO₃; 2.9 μm; Spectroscopic property

1. Introduction

Laser sources operating in the 3 μ m spectral range have attracted much interest due to their potential applications in biomedical treatments, remote atmosphere sensing and military defense [1-3]. The reason is that this region is overlapped by strong absorption bands of both water and CO_2 [4]. Moreover, laser around 3 μ m wavelength can be used as a pumping source for infrared optical parametric oscillators. Among various active ions (Er³+, Dy³+ ions, etc.) [5,6], Ho³+ ion is a promising candidate for 3 μ m laser owing to the ${}^5I_6 \rightarrow {}^5I_7$ transition. Unfortunately, the self-terminating transition (${}^5I_6 \rightarrow {}^5I_7$) of Ho³+ ions, namely, the upper energy level 5I_6 has a shorter lifetime than the lower energy level 5I_7 [7], extinguished the probability of population inversion for lasing at around the 3 μ m wavelength. Co-doping with Pr³+ ions is an effective way to depopulate the 5I_7 multiplet of Ho³+ for population inversion and practical laser operation [8-13]. Up to now, laser operations have been demonstrated in Ho,Pr:LiLuF4 [14,15], Ho,Pr:LiYF4 [16,17] and Ho,Pr:CaF2 [18].

Mixed sesquioxide YScO₃ crystallizes in a cubic C (bixbyite) structure, and its disordered structure comes from the random distribution of Sc³⁺ and Y³⁺ [19,20]. When doped with rare earth ions, it will lead to an inhomogeneous broadening of emission bands which is beneficial for tunable and ultrashort laser operation. Large-size YScO₃ crystals can be grown by the conventional Czochralski method using iridium crucibles due to the melting point below 2150 °C [21]. In 2021, YScO₃ crystals doped with Yb³⁺ and Er³⁺ have been grown by the Czochralski method and the laser operation of Yb:YScO₃ and Er:YScO₃ was demonstrated [22]. In 2022, Suzuki et al. reported a continuous-wave Tm:YScO₃ laser pumped by 780 nm laser diode, delivering as high as 0.5 W laser output at around 2100 nm with a slope efficiency of 45% [23].

In this work, Ho³⁺, Pr³⁺ co-doped YScO₃ crystal was grown by the Czochralski method for the first time. Room temperature spectroscopic properties including absorption, emission spectra, Judd–Ofelt analysis and fluorescence lifetime were discussed in detail.

2. Experimental

2.1. Crystal growth

Ho,Pr:YScO₃ crystal was grown by the Czochralski method. Raw materials of Ho₂O₃, Pr₆O₁₁, Sc₂O₃, Y₂O₃, Al₂O₃ with purity of 99.99% were weighed according to the formula (Ho_{0.005}Pr_{0.0005}Y_{0.4945}Sc_{0.4945})₂O₃ and then mixed together for 6 h. The mixture was cold pressed into the form of the block under 200 MPa, and then placed into an alumina crucible, heated up to 1200 °C and kept at this temperature for 20 h. The charge was then loaded into an iridium crucible for crystal growth. A YScO₃ crystal was used as the seed. The pulling rate was 1 mm/h, the rotation rate was 10-30 rpm and the growth atmosphere was nitrogen. Finally, the Ho,Pr:YScO₃ crystal was obtained. Fig. 1 shows the polished samples for spectroscopic and laser experiments. The crystals were greenish and no inclusions and bubbles were observed in the samples.

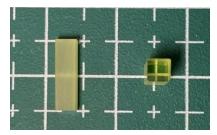


Fig. 1. Photograph of the polished Ho,Pr:YScO₃ crystal.

2.2. Spectral measurements

The Ho,Pr:YScO₃ crystal was cut and polished to the dimensions of $10 \times 10 \times 1$ mm³ for spectral measurements. The absorption spectrum was carried out on the spectrophotometer (Lambda 950, PerkinElmer UV-VIS-NIR) from 350-2200 nm with 1 nm as a footstep. The fluorescence spectrum and fluorescence decay curve were tested by Edinburgh Fluorescence Spectrophotometer (FLS1000) in the range of 1800-3200 nm under the excitation of 640 nm. All the measurements were performed at room temperature.

3. Results and discussion

3.1. Optical absorption spectrum

Fig.2 shows the room temperature absorption spectrum of Ho,Pr:YScO₃ crystal in the wavelength range of 350-2100 nm. Obviously there are six absorption bands centered at around 421 nm, 455 nm, 543 nm, 649 nm, 1130 nm and 1940 nm with the full width at half maximum (FWHM) of 9.9 nm, 3.6 nm, 7.6 nm, 16.7 nm, 16.4 nm and 13.2 nm, respectively. The absorption bands are ascribed to the transitions from the ground state ⁵I₈ to the different excited states: 5G_5 , ${}^5G_6 + {}^5F_1$, ${}^5S_2 + {}^5F_4$, 5F_5 , 5I_6 , and 5I_7 . The absorption coefficient and absorption cross section at 649 nm was calculated to be 0.63 cm⁻¹ and 0.93×10⁻²⁰ cm², respectively. The absorption peak at 1145 nm, corresponding to the ${}^{5}I_{8} \rightarrow {}^{5}F_{5}$ transition of Ho3+ ions, matches well with the emitting wavelength of well-developed 1150 nm Raman fiber laser. The absorption coefficient and absorption cross section was 0.20 cm⁻¹ and 0.27×10⁻²⁰ cm², with FWHM of 14.1 nm. The wide absorption band is mainly caused by the multisite characteristic of YScO₃, which ensures the steady absorption of the pumping light. Due to the low doping concentration of Pr³⁺ ions, the absorption band at around 1500 nm corresponding to the ${}^{3}H_{4} \rightarrow {}^{3}F_{3} + {}^{3}F_{4}$ transition of Pr^{3+} ions, could not be observed. While, the ${}^{3}{\rm H}_{4} \rightarrow {}^{3}{\rm F}_{3} + {}^{3}{\rm F}_{4}$ transition usually has the most intense absorption in ${\rm Pr}^{3+}$ -doped oxide crystals [24].

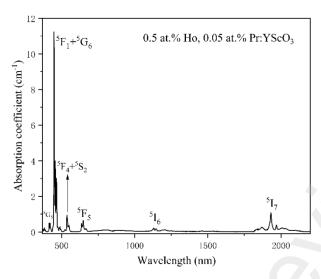


Fig. 2. The absorption spectrum of Ho,Pr:YScO₃ crystal

3.2. J-O analysis

The Judd-Ofelt (JO) theory [25,26] was used to analysis the absorption spectrum of Ho,Pr:YScO₃ crystal, and then the fluorescence branching ratios and radiative lifetimes of the excited multiplets can be evaluated. The reduced matrix elements used for absorption and emission transitions can be consulted in [27] and [28], respectively. The average wavelength of different transition, experimental and calculated line strength, and RMS deviation of Ho³⁺ ion in YScO₃ crystal are listed in Table 1. The value of rmsΔS is 1.638×10⁻²⁰ cm², which indicates a good agreement between the experimental and the calculated line strength.

Table 1. The average wavelength of different transition, experimental and calculated line strength, and RMS deviation of Ho³⁺ in YScO₃ crystal.

Excited state (from ⁵ I ₈)	$\frac{1}{\lambda}$ (nm)	$S_{mea} (10^{-20} cm^{-2})$	$S_{cal}(10^{-20} cm^{-2})$
(⁵ G, ³ G) ₅	419	1.89	3.06
${}^{5}G_{6} + {}^{5}F_{1}$	456	27.87	29.01
${}^{5}F_{4} + {}^{5}S_{2}$	540	3.35	4.20
⁵ F ₅	649	2.90	4.16
$^{5}\mathrm{I}_{6}$	1107	1.22	2.43
$^{5}\mathrm{I}_{7}$	1956	3.55	5.76
$rms\Delta S (10^{-20} cm^{-2})$		1.638	

The values of $\Omega_{2,4,6}$ were calculated to be 15.63×10^{-20} cm², 5.74×10^{-20} cm², 3.02×10^{-20} cm², respectively. Table 2 shows the J-O parameters of different Ho³+,Pr³+ co-doped crystals. Ω_2 is related to covalency in rare earth doped material. The value Ω_2 of Ho,Pr:YScO₃ is higher than that of Ho,Pr:LiLuF₄, Ho,Pr:LiYF₄, Ho,Pr:Sc₂O₃, Ho,Pr:Lu₂O₃ and Ho,Pr:CaGdAlO₄, indicating that the covalency of Ho,Pr:YScO₃ is larger than that of Ho,Pr:LiLuF₄, Ho,Pr:LiYF₄, Ho,Pr:Sc₂O₃, Ho,Pr:Lu₂O₃ and Ho,Pr:CaGdAlO₄. Ω_4 and Ω_6 are dependent on the host environment, and the ratio of Ω_4/Ω_6 is used to judge the spectroscopic quality. The value Ω_4/Ω_6 of Ho,Pr:YScO₃ is 1.90, suggesting that Ho,Pr:YScO₃ crystal is a promising medium for efficient laser operation around 2.9 μm.

Table 2. The J-O intensity parameters of different Ho³⁺, Pr³⁺ co-doped crystals.

		J 1	,	1 2	
Crystals	$\frac{\Omega_2}{(10^{-20}\mathrm{cm}^2)}$	Ω_4 (10 ⁻²⁰ cm ²)	$\Omega_6 \ (10^{-20}{ m cm}^2)$	Ω_4/Ω_6	Ref.
LiLuF ₄	3.25	4.45	3.81	1.17	[8]
$LiYF_4$	1.52	1.96	1.05	1.85	[9]
Sc_2O_3	6.56	1.67	0.52	3.21	[10]
Lu_2O_3	7.10	2.67	0.33	8.09	[11]
$CaGdAlO_4$	4.82	6.75	4.91	1.13	[12]
$YScO_3$	15.63	5.74	3.02	1.90	This work

Through the calculated intensity parameters, the calculated radiative transition rate, fluorescence branching ratio and radiative lifetimes of Ho³⁺ ions in YScO₃ crystal. were given in Table 3. We can see that the branching ratio of the ${}^5I_6 \rightarrow {}^5I_7$ transition is about 13.89%. The radiative lifetime of 5I_6 energy level was calculated to be 1.70 ms, which is lower than that of Ho:LaF₃ (18.99 ms [29]), Ho,Pr:Sc₂O₃ (6.20 ms [10]) and Ho,Pr:Lu₂O₃ (7.97 ms [11]).

Table 3. The calculated radiative transition rates, luminescence branching ratios, and radiative lifetimes of Ho³⁺ ions in YScO₃ crystal.

$J \rightarrow$	J'	λ	A_{ED}	A_{MD}	$A_{(J-J')}$	β	τ
		(nm)	(s ⁻¹)	(s ⁻¹)	(s ⁻¹)	(%)	(ms)
⁵ I ₇ →	$^5\mathrm{I}_8$	2044	211.719	36.0959	247.815	100	4.03
$^{5}I_{6} \rightarrow$	$^{5}\mathrm{I}_{8}$	1205	505.092	0	505.092	86.110	1.70
	$^5\mathrm{I}_7$	2913	59.757	21.7487	81.506	13.890	
$^{5}I_{5} \rightarrow$	$^5\mathrm{I}_8$	908	194.185	0	194.185	39.090	2.01
	$^5\mathrm{I}_7$	1660	267.465	0	267.465	53.840	
	$^{5}\mathrm{I}_{6}$	3901	24.472	10.6363	35.108	7.070	
$^{5}I_{4}$ \rightarrow	$^{5}\mathrm{I}_{8}$	752	28.804	0	28.804	9.221	3.20
	$^5\mathrm{I}_7$	1223	141.071	0	141.071	45.165	
	$^{5}\mathrm{I}_{6}$	2153	115.536	0	115.536	36.989	
	$^{5}I_{5}$	4578	21.528	5.4059	26.934	8.623	
${}^{5}F_{5} \rightarrow$	$^5\mathrm{I}_8$	648	6561.315	0	6561.315	75.347	0.11
	$^{5}\mathrm{I}_{7}$	947	1754.322	0	1754.322	20.145	
	$^{5}I_{6}$	1401	368.280	0	368.280	4.229	
	$^{5}I_{5}$	2387	23.927	0	23.927	0.274	
	$^{5}\mathrm{I}_{4}$	4658	0.203	0	0.203	0.002	
$^{5}S_{2} \rightarrow$	$^{5}\mathrm{I}_{8}$	537	4173.168	0	4173.168	52.037	0.12
	$^{5}\mathrm{I}_{7}$	727	3034.947	0	3034.947	37.844	
	⁵ I ₆	1001	548.799	0	548.799	6.843	
	$^{5}\mathrm{I}_{5}$	1354	131.288	0	131.288	1.637	
	$^{5}\mathrm{I}_{4}$	1950	129.063	0	129.063	1.609	
	⁵ F ₅	3134	2.270	0	2.270	0.028	

3.3. Fluorescence spectrum

Under 640 nm excitation, the fluorescence spectrum of Ho,Pr:YScO₃ was recorded. The stimulated emission cross section can be calculated from the measured fluorescence spectrum via the Füchtbanuer Ladenburg (F-L) formula:

$$\sigma_{\text{\tiny em}}(\lambda)_{JJ'} = rac{\lambda^5 A(J\text{''} o J ')}{8\pi c n^2} rac{I(\lambda)}{\int \lambda I(\lambda) d\lambda}$$

Where $A(J' \to J'')$ stands for the radiative transition rates, $I(\lambda)$ is the emission intensity at the wavelength λ , c is the speed of light, n stands for the refractive index. The spectra of the stimulated emission cross section for the ${}^5I_7 \to {}^5I_8$ and ${}^5I_6 \to {}^5I_7$ transitions are presented in Fig. 4. The peak emission cross sections at 2040 nm and 2890 nm were calculated to be 0.80×10^{-20} cm² and 1.22×10^{-20} cm², with a FWHM of 187.0 nm and 197.4 nm, respectively. The value of emission cross section at 2890 nm is lower than that of Ho,Pr:LiLuF₄ (1.91×10^{-20} cm² at 2944 nm [8]) and Ho,Pr:CaGdAlO₄ (2.38×10^{-20} cm² at 2860 nm [12]), but higher than that of Ho,Pr:LiLiF₄ (0.68×10^{-20} cm² at 2950 nm [9]), Ho,Pr:Sc₂O₃ (0.54×10^{-20} cm² at 2864 nm [10]), Ho,Pr:Lu₂O₃ (0.42×10^{-20} cm² at 2893 nm [11]) and Ho,Pr:CaF₂ (1.04×10^{-20} cm² at 2851 nm [18]). The FWHMs are larger than those of Ho,Pr:Sc₂O₃ (159.0 nm at 2110 nm, 144.6 nm at 2864 nm [10]), which displays the Ho,Pr:YScO₃ crystal may be used as a gain medium for tunable and ultrashort pulse lasers.

Fig. 4. Emission cross section around (a) 2 μm and (b) 3 μm of the Ho,Pr:YScO₃ crystal.

3.4. Fluorescence lifetime

Fig. 5 depicts the fluorescence decay curves of the ⁵I₆ and ⁵I₇ multiplets of Ho,Pr:YScO₃ crystal under excitation at 640 nm. The measured decay curves show a single exponential decaying behavior. The fluorescence lifetime of the ⁵I₆ and ⁵I₇ levels was fitted to be 0.31 ms and 5.89 ms, leading to a fluorescence quantum efficiency of 7.6% and 54.2%, respectively. The fluorescence of ⁵I₆ multiplet is much higher than that of Ho,Pr:CaGdAlO₄ (0.194 ms [12]), but lower than that of Ho,Pr:LiLuF₄ (1.47 ms [8]), Ho,Pr:Sc₂O₃ (1.64 ms [10]), Ho,Pr:Lu₂O₃ (0.55 ms [11]) and Ho,Pr:CaF₂ (2.73 ms [18]). It is noticed that the fluorescence lifetime of the ⁵I₆ state is much shorter than that of ⁵I₇ state in Ho,Pr:YScO₃ crystal, which can cause the 2.9 μm laser transition to self-terminate. Unfortunately, we have not obtained the laser output around 2.9 μm from Ho,Pr:YScO₃ crystal. Pr³⁺ ion has been proved to be an effective deactivation ion for ⁵I₇ level of Ho³⁺ ion, population inversion and practical laser

operation could be realized by optimizing the concentration of Ho³⁺ and Pr³⁺ ions in YScO₃ crystal.

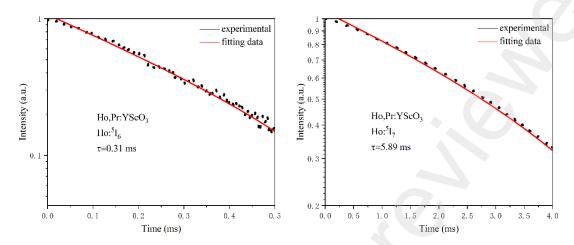


Fig. 5. Fluorescence decay curves of the ⁵I₆ and ⁵I₇ multiplets of Ho,Pr:YScO₃ crystal.

4. Conclusion

In summary, Ho,Pr:YScO₃ crystal has been successfully grown by the Czochralski method. Room temperature absorption spectrum, fluorescence spectrum and fluorescence decay curve were measured and analyzed. The peak absorption cross section of Ho,Pr:YScO₃ at 649 nm and 1130 nm was calculated to be 0.93×10^{-20} cm² and 0.32×10^{-20} cm², with a FWHM of 16.7 nm and 16.4 nm, respectively. The intensity parameters Ω_2 , Ω_4 and Ω_6 were obtained to be 15.63×10^{-20} cm², 5.74×10^{-20} cm², 3.02×10^{-20} cm², respectively. The calculated emission cross sections is 0.80×10^{-20} cm² at 2040 nm and 1.22×10^{-20} cm² at 2890 nm, with a FWHM of 187.0 nm and 197.4 nm, respectively. The fluorescence lifetimes of the 5I_6 and 5I_7 levels were measured to be 0.31 ms and 5.89 ms. All the results indicate that Ho,Pr:YScO₃ crystal could be a potential laser material for mid-infrared lasers.

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (No. 62205247,). Ivan Buchvarov acknowledges funding by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, (No. BG-RRP-2.004-0008-C01).

Reference

- [1] A. Godard, Infrared (2-12 μ m) solid-state laser sources: a review, C. R. Phys., 8 (2007) 1100-1128.
- [2] H. Nie, F. Wang, J. Liu, K. Yang, B. Zhang, J. He, Rare-earth ions-doped midinfrared (2.7-3 µm) bulk lasers: a review, Chin. Opt. Lett., 19 (2021) 091407.
- [3] D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, 20 W passively cooled single-mode all-fiber laser at 2.8 µm, Opt. Lett., 36 (2011) 1104–1106.
- [4] W. Ma, L. Su, X. Xu, J. Wang, D. Jiang, L. Zheng, X. Fan, C. Li, J. Liu, J. Xu, Effect of erbium concentration on spectroscopic properties and 2.79 µm laser performance of Er:CaF₂

- crystals, Opt. Mater. Express, 6 (2016) 409-415.
- [5] L. Basyrova, P. Loiko, J.L. Doualan, A. Benayad, a. Braud, C. Labbe, P. Camy, Er:KY₃F₁₀ laser at 2.80 μm, Opt. Lett., 46 (2021) 5739-5742.
- [6] M.R. Majewski, S.D. Jackson, Tunable dysprosium laser, Opt. Lett. 41 (2016) 4496-4498
- [7] D. Hu, J. Dong, J. Tian, W. Wang, Q. Wang, Y. Xue, X. Xu, J. Xu, Crystal growth, spectral properties and Judd-Ofelt analysis of Ho:GdScO₃ crystal, J. Lumin., 238 (2021) 118243.
- [8] P. Zhang, Y. Hang, L. Zhang, Deactivation effects of the lowest excited state of Ho³⁺ at 2.9 µm emission introduced by Pr³⁺ ions in LiLuF₄ crystal, Opt. Lett., 37 (2012) 5241-5243.
- [9] J. Peng, H. Xia, P. Wang, H. Hu, L. Tang, Y. Zhang, H. Jiang, B. Chen, Optical Spectra and gain properties of Ho³⁺/Pr³⁺ co-doped LiYF₄ crystal, J. Mater. Sci. Technol., 9 (2014) 910–916.
- [10] J. Dong, H. Zhao, X. Cao, W. Wang, X. Xu, F. Wu, P. Luo, Q. Wang, Y. Xue, J. Xu, Crystal growth and spectroscopic analysis of Ho,Pr:Sc₂O₃ crystal for 2.9 µm mid-IR laser, Opt. Mater. Express, 11 (2021) 2539-2546.
- [11] J. Li, J. Dong, X. Cao, Q. Song, X. Xu, Y. Xue, H. Tang, Q. Wang, J. Xu, Crystal growth and spectroscopic analysis of Ho,Pr:Lu₂O₃ crystal for 2.9 µm mid-IR laser, Opt. Mater. Express, 13 (2023) 368-376.
- [12] S. Li, Y. Yang, S. Zhang, T. Yan, N. Ye, Y. Hang, Enhanced 2.86 μm emission from a Ho,Pr:CaGdAlO₄ crystal, J. Lumin., 228 (2020) 117620,
- [13] Y. Qiao, D. Sun, H. Zhang, J. Luo, C. Quan, L. Hu, Z. Han, K. Dong, Y. Chen, M. Cheng, Growth, structure and spectroscopy of Ho,Pr:LuYSGG mixed crystals for 2.9 µm emission, J. Lumin., 253 (2023) 119463,
- [14] H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, J. He, Diode-end-pumped Ho, Pr:LiLuF₄ bulk laser at 2.95 µm, Opt. Lett., 42 (2017) 699–702.
- [15] M. Fan, T. Li, G. Li, S. Zhao, K. Yang, S. Zhang, B. Zhang, J. Xu, C. Krankel, Passively Q-switched Ho,Pr:LiLuF₄ laser with graphitic carbon nitride nanosheet film, Opt. Express, 25 (2017) 12796–12803.
- [16] H. Nie, H. Xia, B. Shi, J. Hu, B. Zhang, K. Yang, J. He, High-efficiency watt-level continuous-wave 2.9 µm Ho,Pr:YLF laser, Opt. Lett., 43 (2018) 6109-6112.
- [17] H. Nie, B. Shi, H. Xia, J. Xu, B. Zhang, K. Yang, J. He, High-repetition-rate kHz electro-optically Q-switched Ho,Pr:YLF 2.9 µm bulk laser, Opt. Express, 26 (2019) 33671-33677.
- [18] Y. Wang, J. Liu, X. Feng, Z. Zhang, Y. Wang, Z. Zhang, F. Ma, J. Liu, L. Su, \sim 2.9 µm continuous-wavelength laser operation of fiber-pumped Ho,Pr:CaF₂ single crystals, Opt. Mater., 135 (2023) 113329.
- [19] B.M. Tissue, N.J. Cockroft, L. Lu, D.C. Nguyen, W.M. Yen, Comparison of the spectra and dynamics of Er^{3+} : $Y_{2-x}Sc_xO3$ (x=0,1,2), J. Lumin., 48&49 (1991) 477-480.
- [20] J. Li, W. Hou, Y. Xue, Q. Wang, Q. Song, F. Wang, H. Yu, J. Liu, X. Xu, J. Xu, H. Tang, A new near-infrared broadband laser crystal: Cr³⁺ doped YScO₃, J. Lumin. 257 (2023) 119710
- [21] C. Kränkel, A. Uvarova, E. Haurat, L. Hülshoff, M. Brützam, C. Guguschev, S. Kalusniak, and D. Klimm, Czochralski growth of mixed cubic sesquioxide crystals in the ternary system Lu₂O₃-Sc₂O₃-Y₂O₃, Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater.,

- 77 (2021) 550-558.
- [22] L. Hülshoff, A. Uvarova, C. Guguschev, S. Kalusniak, H. Tanaka, D. Klimm, and C. Kränkel, Czochralski growth and laser operation of Er- and Yb-doped mixed sesquioxide crystals, presented at the Advanced Solid State Lasers, ATh1A.2, Washington, DC United States 2021.
- [23] A. Suzuki, S. Kalusniak, H. Tanaka, Spectroscopy and 2.1 μm laser operation of Czochralski-grown Tm³⁺:YScO₃ crystals, Opt. Express, 30 (2022) 42762-42771.
- [24] S. Zhou, Y. Pan, J. Liu, Q. Song, J. Xu, D. Li, P. Liu, X. Xu, B. Xu, J. Xu, I. Buchvarov, K. Lebbou, Diode-pumped continuous-wave a- and c-cut Pr:Sr_{0.5}La_{0.5}Mg_{0.5}Al_{11.5}O₁₉ (Pr:ASL) visible lasers at 645 and 726 nm, J. Alloys Compd., 792 (2019) 1200-1205.
- [25] B.R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev., 127 (1962) 750-761.
- [26] G.S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37 (19 62) 511-520.
- [27] W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide Aquo ions. I. Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, and Tm³⁺, J. Cen. Phys., 49 (1968) 4424-4442.
- [28] M.J. Weber, B.H. Matsinger, V.L. Donlan, Optical transition probabilities for trivalent Holmium in LaF₃ and YAlO₃, J. Chem. Phys., 57 (1972) 562–567.
- [29] J.Q. Hong, L.H. Zhang, P.X. Zhang, M. Xu, Y. Hang, Ho:LaF₃ single crystal as potential material for 2 μm and 2.9 μm lasers, Infrared Phys. Techn., 76 (2016) 636-640.