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Abstract: Particle-Resolved simulations (PR-DNS) have been conducted using a second order im-
plicit Viscous Penalty Method (VPM) to study the heat transfer between a set of particles and an
incompressible carrier fluid. A Lagrange extrapolation coupled to a Taylor interpolation of a high
order is utilized to the accurate estimate of heat transfer coefficients on an isolated sphere, a fixed
Faced-Centered Cubic array of spheres, and a random pack of spheres. The simulated heat transfer
coefficients are compared with success to various existing Nusselt laws of the literature.

Keywords: gas-solid flows; Particle-Resolved DNS; fictitious domain; Viscous Penalty Method; heat
transfer; assemblies of spheres

1. Introduction

Gas-solid flows are widely encountered in nature, for example in volcanic eruptions [1,2].
They also participate in heat transfers in many industrial processes such as petroleum refining,
blast furnaces, or chemical looping combustion [3–5]. Due to the scale disparity between
these applications and the particle size at the industrial scale, the CFD simulations of such
applications are based on statistical approaches where the average interphase transfer of
energy between the fluid and the particles needs to be modeled.

Theoretical and Experimental approaches have been widely employed to model these
unclosed terms with significant limitations. Indeed, theoretical results are limited to Stokes
flows or moderate Reynolds number regimes [6,7]. Also, experimental measurements
showed huge differences in Nusselt number at high volume fractions because of limited
optical access [8]. This motivates the community to consider and develop Particle-Resolved
Direct Numerical Simulations (PR-DNS), where all scales are resolved, to directly compute
the fluid-particle interaction and the associated heat transfer closure laws. In this regard,
The present work propose a method to extract heat transfer from PR-DNS carried out using
Viscous Penalty Method [9].

In the last two decades, several research teams have conducted numerical studies to
characterize, understand, and model the energy interphase exchange in gas-solid flows
for numerous configurations of particulate motions. Among them, we can cite Massol [10]
who studied heat transfers in a fixed array of monodisperse spheres using a body-fitted
three-dimensional PR-DNS (AVBP code [11]). This configuration will be studied in this
work and its results will be compared to ours. Deen et al. [12] and Tavassoli et al. [13]
used Immersed Boundary Methods (IBM) for three-dimensional PR-DNS with inflow and
outflow boundary conditions to compute the gas-solid Nusselt number that is successfully
compared with Gunn’s correlation [14]. Note that Gunn [14] proposed his correlation
based on experimental results. Tenneti et al. [15] utilized the so-called PUReIBM with
periodic boundary conditions and proposed a correlation from their results for various flow
configurations. Later, Deen et al. [16] proposed a correlation based on Tavassoli et al. [13]
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and Tenneti et al. [15] results. Tenneti et al. [15] simulations were carried out for a limited
range of Reynolds numbers and solid volume fractions. As a consequence, Sun [17] took
over this work and extended it to larger values of Reynolds numbers and solid volume
fractions, and proposed a correlation that fits their PR-DNS data.

Our contribution is to propose an accurate heat flux estimate for PR-DNS simulations
using Viscous Penalty Method (VPM) [9]. A previous work using VPM was conducted
using an indirect method to compute the heat transfer in an assembly of spheres [18]. In this
work, on the other hand, a direct approach is proposed to extract the heat flux between each
particle and the surrounding fluid. This is an extension of the developments conducted
to compute the hydrodynamic force in a previous study [19]. Furthermore, the proposed
method manages to avoid the flow contaminated by the VPM method [19] in the Eulerian
cells cut by the fluid/solid particle interface and therefore extracts the accurate heat flux
needed to compute the Nusselt number.

The article is structured as follows. A presentation of the models and numerical
methods is first proposed in Section 2. In Section 3, validations for flows interacting with
isolated spherical particles at various Reynolds numbers are discussed. Simulations of a
uniform flow past a Face-Centered cubic array of spheres are presented in the Section 4.
Section 5 is devoted to simulations and validations of flows through random arrangements
of monodispersed spheres. Finally, conclusions and perspectives are drawn.

2. Numerical Methodology
2.1. Viscous Penalty Method

The motion equations of incompressible anisothermal two-phase flows, involving a
carrier fluid and a solid particle phase, are based on one-fluid model [20,21], as explained
in [9,22]. They are given by:

∇ · u = 0 (1)

ρ

(
∂u
∂t

+ (u · ∇)u
)
= −∇p + ρg +∇ ·

[
µ(∇u +∇tu)

]
+ Fm (2)

ρCv

(
∂T
∂t

+ u · ∇T
)
= ∇ ·

(
k f∇T

)
(3)

where Fm is a source term, u is the velocity, p the pressure, T the temperature, t the time, g
the gravity vector, ρ, µ, Cv and k f respectively the density, the viscosity, the specific heat and
the thermal conductivity of the equivalent fluid. Indeed, VPM belongs to the class of ficti-
tious domain methods [23,24], where a fixed mesh for the whole domain (fluid+particles)
is used to solve the dynamic of both phases (see Figure 1). Therefore, “equivalent fluid”
has the fluid or solid thermophysical properties in the Eulerian cell fully fluid or solid
respectively, and is a mix of both in the Eulerian mesh containing the fluid/particle in-
terface. In that sens, specific arithmetic

(
ρ = Cρs + (1− C)ρ f , Cv = C Cvs + (1− C) Cv f

)
,

harmonic

(
µ =

µsµ f

Cµ f + (1− C)µs
, k f =

k fs k f f

Ck f f
+ (1− C)k fs

)
laws are used to define them

according to a phase function C [22] (the quantities with the subscript s, f refers to those
in the solid, fluid respectively). As for the phase function C (also called Color function),
it is directly obtained by projecting the shape of the particles on the Eulerian mesh [9,19]
(As illustrated in Figure 1). Indeed, at each time iteration, this projection is conducted after

the particles positions are updated by solving
dxi
dt

= Vi, where Vi is the velocity of the
ith particle deduced from the Eulerian velocities inside the particle (xi being its position).
This procedure is called VOF-Lag approach in contrast with the classical VOF method [25]

where the equation
∂C
∂t

+ u · ∇C = 0 is solved to update the color function C.
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1

Particle-Resolved Direct Numerical Simulation
Viscous Penalty Method 

𝐶 = 1

𝐶 = 0

Figure 1. Projected phase function C on staggered grids. Pressure in black circles, the velocities as
arrows and viscosity in white circles [9].

The solid behavior in the zones occupied by the particles (where C = 1), is ensured
by imposing large values of viscosity in the Eulerian cells inside the particles. Indeed,
the strain tensor in (2) tends toward 0 when µ→ +∞ and based on the equivalence [9](
∀P ∈ Ωi,∇u +∇Tu = 0⇔ V(P) = Vi + OiP ∧ωi

)
a solid behaviour is, in this way, im-

posed in the zones inside the particles. Moreover, a specific model [26], based on a decom-
position of the viscous stress tensor is implemented to implicitly impose not only the solid
behavior (via the viscosity penalization) in the particles but also the coupling between fluid
and solid motion.

To satisfy the fluid and solid constraints along with the velocity and pressure coupling,
an augmented Lagrangian method is applied to (1), (2) as follows (Algorithm 1) [9]:

Algorithm 1 Augmented Lagrangian (AL) method [27]

for each iteration n do
u∗,0 = un and p∗,0 = pn

m = 0
while ||∇ · u∗,m|| > εAL do

m = m + 1

solve: ρ

(
u∗,m − u∗,0

∆t
+ u∗,m−1 · ∇u∗,m

)
−∇(r∇ · u∗,m) = −∇p∗,m−1 + ρg +∇ ·

[µ(∇u∗,m +∇Tu∗,m)]
p∗,m = p∗,m−1 − r∇ · u∗,m

end while
end for

The mass, momentum and energy equations are discretized using an implicit finite
volumes on structured staggered meshes (see Figure 1). The time derivative is approximated
with a first order Euler scheme while the inertial, viscous and augmented Lagrangian terms
are discretized with second-order centered schemes. All fluxes are written at time (n+ 1)∆t,
except the non-linear inertial term that is linearized with a second order Adams-Bashforth
scheme as follows

u · ∇u ≈
(

2un − un−1
)
· ∇un+1 (4)

The obtained linear system is solved with a BiCGSTAB II iterative solver [28], precondi-
tioned under a Modified and Incomplete LU approach [29] to speed-up the convergence of
the solver. All the code is working on massively parallel computers by using MPI [9].



Fluids 2022, 7, 15 4 of 15

Note that the particles in this work are motionless. Numerically, their velocity is set to
zero by imposing the velocity of the Eulerian cells near their centroids to zero by means of
a linear term, 1040u, added to the Equation (2), and the VPM propagates the zero velocity
in the whole solid medium. The particles temperature Ts being also constant, they are
however imposed in the whole solid medium by means of a linear term, 1040(T − Ts),
added to the Equation (3).

2.2. Heat Transfer Rate Computation

The goal of this work is to extract from the temperature field, solution of the energy
Equation (3), the Nusselt number given by:

Nu =
Hpd
k f

(5)

where d is the particle diameter and Hp is the heat transfer rate given by:

Hp =
Qp(

Ts − Tf

)
πd2

(6)

Here, Ts and Tf are the temperatures of the particle and the surrounding fluid respectively,
and Qp is the heat flux across the particle surface S. It is given by:

Qp =
∮

S
−k f ∇T · n dS (7)

The computation of the heat flux consists in discretizing S on a set of N elements
called Lagrangian mesh (linear segments in 2D and triangles in 3D, see Figure 2), such that:

Qp ≈
N

∑
l
−k f (∇T)l · nl ∆Sl (8)

where the ongoing normal to the lth element nl and its area ∆Sl are deduced from its
nodes coordinates. However, the temperature T being solved on the Eulerian mesh, the
temperature gradient (∇T)l is not known at the lth element center Cl . To deal with
this problem, we have implemented the same approach that the one we have used to
obtain the stress tensor σl components on the Lagrangian mesh in the hydrodynamic

force computation F ≈
N

∑
l

σl · nl∆Sl . This was detailed in [19]. In this previous work,

we have observed that the velocity and the pressure values were inaccurate in the cells
containing the interface. Therefore, we had to extrapolate the stress tensor from the area far
from the particle to the particle surface. After a numerical study of all the extrapolation
parameters, we have reached the conclusion that the third-order Lagrange extrapolation
(whose notations are illustrated in Figure 2) is the best compromise between accuracy
and computational cost [19]. Similarly, as for force coefficients, we have the temperature
gradient at the center of each Lagrangian mesh element as follows:

(∇T)(Cl) =
3

∑
i=1

(∇T)(Pi)Li(Cl) , where Li(Cl) =
3

∏
j 6=i

|Cl − Pj|
|Pi − Pj|

(9)
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Figure 2. Notations for the third order Lagrange extrapolation (left) and the third order Taylor
interpolation (right), used in heat flux computations.

Given that the temperature gradient is computed on the Eulerian mesh and that the
extrapolation points P1, P2 and P3 are constructed in the normal direction to the particle
surface (see Figure 2), the temperature gradient at these points are not known. Once again,
we relayed on the work [19] to interpolate the temperature gradient from the Eulerian mesh
to the extrapolation points Pk (k = 1, 2, 3) using the third-order Taylor interpolation:

f (Pk) = f (E) +
∂ f
∂xi

(E)((Cl)i − Ei) +
1
2

∂2 f
∂x2

i
(E)((Cl)i − Ei)

2

+
∂2 f

∂xi∂xj
(E)((Cl)i − Ei)((Cl)j − Ej) + O(||Cl − E||3)

(10)

where E is the nearest Eulerian point to Pk.
Another pertinent value to consider when studying the distribution of heat transfers

on the surface of the particle, is the local Nusselt number given in the spherical system (see
Figure 3) by:

Nuloc(θ) =
−∇T · n d(

Ts − Tf

) (11)

where for each Lagrangian mesh element center (Cl = (x, y, z)), the azimuthal angle θ, and
the polar angle β are given by:

θ = (π − arctan 2(
√

y2 + z2, x))
180
π

, β = arctan 2(z, y)
180
π

(12)

x

z

y

π − θ
β

U∞

Figure 3. Spherical coordinate system around a particle. The flow direction is represented by the
undisturbed velocity U∞.
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3. Convective Heat Transfer Forced by a Uniform Flow around a Stationary Sphere

The first case considered to validate heat transfer computation is the convection forced
by a uniform flow past a hot sphere, illustrated in Figure 4. The computational domain
lengths are Lx = 16d and Ly = Lz = 8d. The Eulerian mesh refinement is constant in a
box of extension [(2d, 3d, 3d); (6d, 5d, 5d)] centered around the particle position. Outside
this box, the Eulerian mesh is exponentially coarsen from the box to the boundaries of the
simulation domain. This case was previously used to validate the drag force computa-
tion [19]. In the simulations carried out for this case as well as for all the cases studied in
this work, we have imposed that the hydrodynamic boundary layer contains five Eulerian

cells. Therefore, in the box surrounding the particle, the minimum cell size is ∆x =
d

5
√

Re
.

This mesh refinement ensures that the hydrodynamic boundary layer contains a sufficient
number of extrapolation points to be accurate on force calculations at the particle surface.
We have also chosen a Prandtl number Pr = 0.72, which means that the thermal boundary
layer is larger than the hydrodynamic boundary layer. In this way, we ensure that enough
extrapolation points are available in the thermal boundary layer as well (see Figure 2). The

time step is given by ∆t = 0.5 min

(
∆x
U∞

,
∆x2

k f /Cv

)
.

Figure 4. Streamlines and temperature field in a slice for a uniform flow past a sphere at Re = 100.
The bottom figure is a zoom on the particle.

3.1. Effect of the Extrapolation Distance (δ)

One of the extrapolation parameters studied in the hydrodynamic force computation
work [19] was the distance δ between the Lagrangian mesh and the first extrapolation point
P1 (see Figure 2). Indeed, during that study [19], inaccurate pressure and velocity values
were observed in the cells cut by the interface, therefore we had to extrapolate the stress
tensor from the fluid area far from the particle to the surface. As illustrated in (Figure 5 left),
the accurate drag force is reached at δ = ∆x.
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Figure 5. Drag force relative error to Schiller and Naumann [30] correlation (left) and Nusselt number
relative error to Ranz&Marshall [31] correlation (right), as a function of the distance δ at Re = 100.

The temperature being a function of the velocity (Equation (3)), inaccurate values
of the temperature gradient values are also expected in the Eulerian cells containing the
interface. Thus, we have conducted the same study for the Nusselt number computation
to locate the extrapolation area. But unlike the drag force (Figure 5 left), the Nusselt
number computation does not seem to depend on the distance δ (Figure 5 right). Facing
this unexpected result, we have compared the distribution of the local Nusselt number to
Massol [10] results at Re = 100 where the flow is symmetric with respect to its direction, as
illustrated in (Figure 4 right). The local Nusselt number computed for δ = 0 does not reflect
the flow symmetry as illustrated in (Figure 6a), and the error between our result (Nuloc) and

Massol’s (NulocMassol) given by
∑N

i=1 |(Nuloc)i − (NulocMassol)i|
∑N

i=1 |(NulocMassol)i|
is about 25%. This error

decreases as the distance δ increases until being lower than 10% for δ ≥ 1 (Figure 6c). It is
worth noting that for this distance, the local Nusselt number distribution more accurately
reflects the expected symmetry of the flow as it satisfies almost the same distribution for all
the polar angle (β) plans (Figure 6b). So, as for the hydrodynamic force computation [19]
and in the rest of this work, the extrapolation distance will always be δ = 1.

(a) (b)

0 50 100 150

�10

0

10

20

✓

N
u

lo
c

0 50 100 150

�10

0

10

20

✓

N
u

lo
c

(c)

0 0.5 1 1.5 2
0

10

20

30

δ
∆x

E
rr
or

[%
]

Figure 6. Local Nusselt coefficient for a uniform flow past an isolated sphere at Re = 100, as function
of the azimuthal angle θ, for all points on the particle surface (for all β plans) at (a) δ = 0 and (b) δ = 1:
( ) present work, ( ) Massol [10]. (c) is local Nusselt number relative error to Massol’s result [10] as
function of the extrapolation distance δ.
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3.2. Result on the Nusselt Coefficient

The numerical parameters of the heat transfer on the particle surface being set up, the
global Nusselt number for a uniform flow past a hot sphere at different Reynolds number
(Re = 10, 20, 40, 60 , 80, 100, 150, 200, 250, 290) is computed using the presented method and
compared to the following correlations:

• Ranz and Marshall [31]:

Nu = 2. + 0.6 Re0.5Pr
1
3 (13)

• Feng and Michaelides [32]:

Nu = 0.992 + (RePr)
1
3 + 0.1 Re

2
3 Pr

1
3 (14)

• Whitaker [33]:

Nu = 2. +
(

0.4 Re0.5 + 0.06 Re
2
3

)
Pr0.4 (15)

Figure 7 provides the comparisons of our results to literature references. It can be
observed that our simulated Nusselt values belong to the same value ensemble as literature
works for all considered Reynolds numbers. If we go into more detail, the Nusselt numbers
simulated with VPM show a better agreement with Feng and Michaelides and Whitaker
correlations than with Ranz and Marshall.

0 50 100 150 200 250 300

4

6

8

10

Re

N
u

Figure 7. Nusselt coefficient for the uniform flow past a hot sphere at different Reynolds numbers:
( ) Ranz and Marshall [31], ( ) Feng and Michaelides [32], ( ) Whitaker [33], ( ) present work.

4. Face-Centered Cubic Periodic Arrangement of Spheres

The second case studied in this work is a uniform flow past a Face-Centered Cubic
(FCC) array of hot spheres which consists in a cube where three spheres are placed on the
faces centers, and one sphere is located on the vertices with periodic boundary conditions,
as illustrated in Figure 8. The domain length L is deduced from the solid volume fraction

αd: L =

(
2
3

π

αd

)1/3
d. Given a Reynolds number Re =

ρdud
µ

, a desired mean fluid velocity

〈u f 〉 = ud is enforced via the source term

Fm = −ρ
〈u f 〉 − ud

∆t
+

∑
Np
i FD

i
Vf

(16)

inserted in the momentum conservation Equation (2). FD
i is the drag force computed

over the ith particle using the method described in [19] and Vf is the volume occupied
by the fluid. Fm is thus adjusted until the stationary state is reached when 〈u f 〉 = ud.
As for the uniform flow past an isolated sphere, the grid resolution is fixed by imposing
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five Cartesian cells in the boundary layer: ∆x =
d

5
√

Re
, and the time step is given by

∆t = 0.5 min

(
∆x
U∞

,
∆x2

k f /Cv

)
.

Figure 8. Streamlines and temperature field for a steady flow along the x-axis of a Face-Centered
Cubic array of spheres at Re = 50, αd = 0.15 (left), and at Re = 300, αd = 0.15 (right).

This case was previously used to validate the hydrodynamic force computation [19].
In that previous work [19], the hydrodynamic force was computed when the steady-state
of the flow was reached. This steady state obtained in an isothermal context is used in
the present simulations as the initial condition for the momentum equation ‘Equation (2)’.
In addition, the initial temperature conditions for the energy equation ‘Equation (3)’ are
Ts = 1, Tf = 0.5, respectively the sphere and the fluid temperature. In this problem, the
fluid heats up until its temperature < T > f (averaged on the fluid domain) reaches the
sphere temperature (see Figure 9 left). In the meantime and after an initialization time
of the temperature gradient around the spheres, a balance is reached between the heat
flux and the difference between the fluid and the particle temperature. This results in the
apparition of a plateau in the global Nusselt coefficient temporal evolution as illustrated
in Figure 9 right. Therefore, the Nusselt number for a uniform flow past a FCC array of
spheres is the value at this stabilized state.

Note that the global and local Nusselt coefficients for a uniform flow past an array of
Np particles are an average of those computed on each sphere such as:

〈Nu〉 = 1
Np

Np

∑
i

Nui 〈Nuloc〉 =
1

Np

Np

∑
i
(Nuloc)i (17)

where Np = 4 for a FCC array.
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Figure 9. Left: Time evolution of fluid temperature for a uniform flow past a Face-Centered Cubic
array of spheres at Re = 50 and ( ) αd = 0.05, ( ) αd = 0.1, ( ) αd = 0.15, ( ) αd = 0.3, ( ) αd = 0.4, ( )
αd = 0.5, ( ) αd = 0.6. Right: Time evolution of the averaged Nusselt coefficient for a uniform flow
past a Face-Centered Cubic array of spheres at Re = 50 and αd = 0.4.

4.1. Flow Analysis

Using the local Nusselt coefficient distribution presented in Figure 10, two regimes can
be observed, i.e., attached (illustrated in Figure 8 left) and separated (Figure 8 right) flows,
that govern the uniform flow past a FCC array of spheres, depending on the Reynolds
number and the solid volume fraction αd:

4.1.1. Attached Flows

For low Reynolds numbers, the local Nusselt number is having the same behavior as
for an isolated sphere (see Figure 10 left). The increase of its value is due to the presence of
the other spheres (blocking effect) that speed up the flow and therefore flatten the boundary
layer which increases the temperature gradient. We can also observe that the presence
of surrounding particles breaks the symmetry of the flow. Indeed, (Figure 10 left) shows
two distinct distributions of the local Nusselt number for two different plans (β = 0) and
(β = 45), and these results are in good agreement with Massol body fitted simulations [10].

4.1.2. Separated Flows Downstream of the Spheres

By increasing the Reynolds number, a separated flow appears downstream of the
spheres together with a fountain effect upstream of the spheres (see Figure 8 right). These
phenomena can be observed also in the local Nusselt number distribution (Figure 10 right).
Indeed, the higher value of the Nusselt number is no more at the upstream stagnation point
θ = 0, due to the fountain effect that induces a low heat flux. With increasing θ, i.e., leaving
the fountain zone, the Nusselt number increases as the boundary layer shrinks due to the
fluid acceleration in this zone. It then decreases until the separation point, where the fluid
temperature is the highest. Finally, the Nusselt increases again in the recirculating zone
behind the sphere.

0 50 100 150

5

10

θ

N
u
lo
c

0 20 40 60 80 100 120 140 160 180

10

20

30

θ

N
u
lo
c

Figure 10. Left: Local nusselt number for a uniform flow past an isolated sphere at Re = 50 ( ) and
for a uniform flow past a FCC array of spheres at Re = 50, αd = 0.15: β = 0 (( ) Massol [10], ( )
present work ) and β = 45 (( ) Massol [10], ( ) present work ). Right: Local Nusselt number for a
uniform flow past a FCC array of spheres at Re = 300, αd = 0.15: β = 0 ( ), β = 22.5 ( ), β = 45 ( ).
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4.2. Global Nusselt Coefficient

The Nusselt number of a uniform flow past an FCC array of spheres normalized by the
isolated sphere Nusselt number (given by Ranz and Marshall [31]) Nus = 2. + 0.6 Re0.5Pr

1
3 ,

noted
〈Nu〉
Nus

, is compared to existing literature results. This comparison, illustrated in

Figure 11, shows a nice match with Massol [10] results at different Reynolds number and
for a large range of solid volume fraction (0.05 ≤ αd ≤ 0.6). A good agreement is also
observed with Gun [14] correlation for low solid volume fractions (αd ≤ 0.15), which
means that for this range of αd, the FCC configuration is a good approximation of a uniform
flow past a random assembly of spheres.

(a) (b)
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u
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Figure 11. Global Nusselt coefficient for a uniform flow past a FCC, normalized by Ranz and
Marshall [31] Nusselt coefficient for a uniform flow past an isolated sphere. Evolution as a function
of the solid volume fraction αd at Reynolds numbers (a) Re = 10, (b) Re = 50, (c) Re = 100: ( )
Gunn [14], ( ) Massol [10], ( ) present work.

This study shows the strong dependence of the global Nusselt number to the solid
volume fraction and Reynolds number. Indeed, increasing the solid volume fraction
increases the blocking effect which reduces the thickness of the thermal boundary layer
and at the same time, increases the temperature gradient and consequently the Nusselt
number. This effect accentuate significantly with the solid volume fraction. Indeed, Nusselt
number for a sphere in FCC configuration can be five times higher than for an isolated
sphere for high particle concentrations. Moreover, the Nusselt number of a sphere in an
FFC arrangement seems to diverge from the Gunn correlation [14] for large solid volume
fraction. Therefore, the FCC configuration is not a suitable approximation for a uniform
flow past a random assembly of spheres at dense regime.

5. Finite Size Random Arrangement of Spheres

In order to assess the ability of the presented method to deal with more complex
particulate flows, the last case studied in this work is a uniform flow past a random as-
sembly of fixed hot spheres of diameter d (illustrated in Figure 12). The computational
domain lengths are Lx = 9d and Ly = Lz = 5d. Given a solid volume fraction αd, the
particles are randomly distributed in the sub-domain [(2d, 0, 0); (7d, 5d, 5d)]. The assembly
of spheres is filled by generating one sphere after an other. The position of the new sphere is
randomly generated and a very straightforward overlap test is conducted with the already
generated spheres. If no overlap is detected, the new particle is added to the assembly,
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otherwise, the sphere is rejected and a new sphere is generated in the same manner. The
procedure is repeated until the desired solid volume fraction is reached. Furthermore, a
cold fluid flows through the channel in the x-direction (streamwise), by imposing at the

inlet a temperature T∞ and a velocity U∞x deduced from Reynolds number Re =
U∞d

ν
.

Periodic boundary conditions are imposed in crosswise directions. The Np spheres are
maintained at a constant temperature Ts, the number of spheres is deduced from the solid

volume fraction by Np =
6
π

(
Ly

d

)3
αd. As for the two previous cases, the grid resolution

and the time step are given by: ∆x =
d

5
√

Re
, ∆t = 0.5 min

(
∆x
U∞

,
∆x2

k f /Cv

)
.

Figure 12. Streamlines and temperature field of a steady flow along the x-axis of a random array of
spheres at Re = 100 and αd = 0.1.

A fixed bed Nusselt number is considered here. It is defined as an average of individual
particle Nusselt numbers:

〈Nu〉 = 1
Np

Np

∑
i

(Qp)i(
Ts − (〈T〉 f )i

)
πd2

(18)

where (Qp)i is the ith sphere heat flux given by ‘Equation (8)’. Estimating the local average
temperature of the fluid (〈T〉 f )i is not straightforward. As suggested by Deen et al. [12], a
good estimate is given by:

(〈T〉 f )i =

∫∫∫
(1− C) T gi(r)∫∫∫
(1− C) gi(r)

(19)

where T and C are the temperature field and color function respectively, and gi(r) is the
filter that covers the fluid volume in a 4d length box containing the ith sphere, both having
the same center. It is given by:

gi(r) = exp
(−2r

d

)
, 0 < r < 2d (20)

Simulations of uniform flow past a random assembly of hot spheres were performed
for low solid volume fractions αd = 0.05, 0.1 at different Reynolds numbers Re = 10, 50, 100.
Their results are compared to the following correlations:

• Gun [14]:

Nu =
(

7− 10(1− αd) + 5(1− αd)
2
)(

1 + 0.7Re0.2Pr
1
3

)
+
(

1.33− 2.4(1− αd) + 1.2(1− αd)
2
)

Re0.7Pr
1
3
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• Deen et al. [16]:

Nu =
(

7− 10(1− αd) + 5(1− αd)
2
)(

1 + 0.17Re0.2Pr
1
3

)
+
(

1.33− 2.31(1− αd) + 1.16(1− αd)
2
)

Re0.7Pr
1
3

• Sun et al. [17]:

Nu =

(
−0.46 + 1.77(1− αd) + 0.69(1− αd)

2
)

(1− αd)
3

+
(

1.37− 2.4(1− αd) + 1.2(1− αd)
2
)

Re0.7Pr
1
3

Figure 13 shows that our results are in the same range of values than the results given
in the literature, which is very encouraging as first results of real particle flow arrangements.
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Figure 13. Nusselt coefficient for a uniform flow past a random arrangement of hot spheres as a
function of the solid volume fraction αd at vatious Reynolds numbers (a) Re = 10, (b) Re = 50,
(c) Re = 100: ( ) Gunn [14], ( ) Deen et al. [16], ( ) Sun et al. [17] and ( ) present work.

6. Conclusions

In the framework of a finite-size particle approach, an accurate procedure for the
calculation of heat transfer coefficients for motions around fixed particles has been proposed
based on third order Lagrange extrapolation coupled to third order Taylor interpolation
methods. This method is an extension of the techniques proposed for hydrodynamic
force estimates published in [19]. The procedure allowing the estimate of heat transfer
coefficients at a particle surface has been validated with success on fixed isolated spheres,
FCC and random arrangements of spheres. Comparisons have been presented to reference
Nusselt correlations of the literature.

Future works will be devoted to applying our heat transfer calculation method to ar-
rangements of ellipsoidal particles and extracting correlation laws for these configurations.
Moreover, a more extensive study of heat transfer in a fluidized bed is now possible.
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