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General and Multi-Criteria Approach to Study the Admissibility and
Quality of a Driving Intention

Hugo POUSSEUR1 and Alessandro CORREA VICTORINO2

Abstract— Determining the admissibility and quality of driv-
ing intentions, generated by an automated intelligent vehicle
and by a human driver, is a sine qua none task in a human-
intelligent vehicle share navigation. Our paper proposes a
generic method to quantify driving intentions. These intentions
are defined by a sequence of velocities. This formulation
is based on metrics already discussed in the literature. It
proposes a way to use them to evaluate a state, making a
judgment, and to extend this evaluation to a sequence of states.
This quantification determines whether the intention is safely
achievable and defines a quality taking into account several
criteria (safety, comfort, context, energy consumption). It is thus
possible to compare and rank the intentions according to a set
of criteria. This article defines a proposed implementation that
has been tested on a driving simulator. For a given scenario,
we tested our solution on several intentions in order to show
the interest of our solution, and the possibility to compare the
intentions between them.

I. INTRODUCTION

With the evolution of autonomous cars, quantifying and
qualifying a system’s commands has become an increasingly
important task. This task allows either to evaluate a system
or to anticipate a problem. It makes it possible to quantify
and evaluate an order according to a given situation. This
quantification is based on a set of metrics [1] representing a
situation in a numerical way.

Our work [2] on shared navigation between the human
and the autonomous system motivates us to make this
quantification. In fact, in this shared task, the human and
the autonomous car drive at the same time and a fusion is
performed on these commands. This fusion is based in a
first step on the analysis of their intention [3], which means
what the entity wants to do. We define the intention [4] of
an entity as follows:

Ct,t+m = {(vt, wt), ..., (vt+m, wt+m)} (1)

This fusion needs to know the ”best” command. The idea
is to influence the command fusion towards the entity with
the best proposal. This notion of ”best” is not easy to define
because it is a subjective notion that depends on the point of
view, the criteria, and the way the intention is evaluated. In
our paper, we propose a generic method for estimating the
best intention, while ensuring that this intention is feasible.
Our paper introduces formulations as well as concepts to
achieve this quantification. We introduce two notions:
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• Admissibility: Defines, according to some criteria,
whether a command is feasible or not;

• Quality: Defines the quality of a command, between 0
and 1, according to some criteria;

Each of these criteria belongs to a category (e.g. safety,
comfort); Thus, the notion of best does not only depend
on a notion of safety, but also includes other notions such
as comfort, context, energy consumption. From these two
concepts, we can then define a score for each intention. This
score reflects both the feasibility of the intention and its
quality, that will qualify the navigation intention.

Generic approach proposal, section II by defining concepts
and formulation. Section III defines an implementation of
the generic approach. Approach is implemented in a driving
simulator in section IV. Section V discusses results.

II. GENERIC APPROACH

In this article we define the sequence X as follows:
Xt,t+l = {xt, ..., xt+l}, where xi represents a scalar.

A. Definitions: Intention, command, intention quality

As defined by the Eq. 1, an intention is defined by a
sequence of commands. The evaluation of the sequence of
commands is defined by the evaluation of the states resulting
from the application of these commands Eq. 2. By knowing
the sequence of commands, i.e. the intention, Ct, and the
current state, st,provided by sensors, the sequence of future
states can be deduced.

(Ct,t+m, st)
P−→ {ŝt+1, ..., ŝt+m} (2)

where si is the previewed state after the application of
the control input (vi, wi). Each state in this sequence can
be assessed and quantified. The quantization must be more
sensitive to a near state than to a far state. Let the quality
of a state, si, noted as quality(si), the quality of a control
sequence, Ct,t+m, on the current state, st:

Quality(Ct,t+m, st) =

1∑m
i γ(i)

m∑
i=1

γ(i) ∗ quality(st+i)
(3)

With γ : N+ → [0, 1], a decreasing function called discount
factor. This means that the quality of a late state has less
impact on the final result than a near state. The Fig. 1
shows the relation between discount function and states. This
approach is similar to the discount rate used in reinforcement
learning [5].



Fig. 1: Discount factor graphic.

B. Evaluator

In order to qualify the commands sequence, we need
to define how to qualify each state. As mentioned in the
section I, this quantification is done according to several
criteria. Our solution is to define an evaluator, evalk, for
each criterion k. An evaluator is defined as a composition of
two functions: a metric function, metrick(st), whose goal
is to quantify a situation, which we can compare to a feature
extraction function. The result of this function is analyzed by
an analyzer function whose goal is to judge this result from
a knowledge, defined by Θ, analyzerk|Θ(metrick(st), st).

evalk(st) =

analyzerk|Θ(metrick(st), st)
(4)

For each of these criteria, we can vary its influence on the
final result by assigning a weight wk. Thus, the quality of a
state is defined by

quality(st) =
∑
k

wk ∗ evalk(st) (5)

We need to standardize each quality between [0, 1]:

quality(st) =

1∑
k wk

∑
k

wk ∗ evalk(st) (6)

C. Quality Generic Formulation

Taking Eq. 3 in Eq. 6:

Quality(Ct, st) =

1∑m
i γ(i)

n∑
i=1

γ(i)∗
1∑
k wk

∑
k

wk ∗ analyzerk|Θ(metrick(st+i), st+i)︸ ︷︷ ︸
evalk︸ ︷︷ ︸

qualityt+i


(7)

D. Admissibility Generic Formulation

Similarly to quality, admissibility is defined by a set of
guardl that guarantee for each criterion a check that the
command is indeed admissible. Each guard is composed as
follows:

guard(si) = indicatorΘ(metric(si), si) (8)

Where the function indicator indicates whether the metric
of a state is admissible (= 1) or not (= 0). Thus, the
admissibility of a sequence of commands Ct, from a state
st, contains n criteria on a sequence of τ , unlike the quality,
the elements are multiplied together so that if one element
is inadmissible, the whole sequence is inadmissible.

Admissibility(Ct, st) =

τ∏
i=1


n∏

l=1

guardl(st+i)︸ ︷︷ ︸
admissibilityt+i

 (9)

=

τ∏
i=1

(
n∏

l=1

indicatorl|Θ(metricl(st+i), st+i)

)
(10)

E. Intention Score Generic Formulation

From the generic formulation of quality and admissibility,
the generic formulation of score, is defined as follows. In
this proposal, we add a hyperparameter ϵ, which allows to
modify the domain of definition of the quality [0, 1] → [ϵ, 1].
Thus, we can define the value of an intention as follows:

Score(Ct, sqst) = Admissibility(Ct, st)

×(ϵ+Quality(Ct, st) ∗ (1− ϵ))
(11)

So we distinguish between a good quality order that is not
feasible and a low quality order that is feasible, the Fig. 2
shows the interpretation of the score. The ϵ is a very small
positive quantity used to ensure that a quality of zero does
not result in a score of zero. In the rest of our work, this
difference is important, because it allows us to distinguish
a valid intention, but with a poor quality, from an invalid
intention.



Fig. 2: Score interpretation.

III. IMPLEMENTATION

A. State Definitions

We divide the current state st, into 2 substates, senvt

describing the current state of the environment and svehiclet

describing the current state of the vehicle.

st = {senvt , svehiclet } (12)

1) State Vehicle: The state of a vehicle is defined by the
dynamic state of the vehicle. So we define the state of a
vehicle as follows:

svehiclet =


v
w
v̇
ẇ
j


t

(linear velocity)
(angular velocity)
(linear acc)
(angular acc)
(jerk)

(13)

From the state definition, the next state defined by ŝvehiclet+1 ,
can be estimated by the following relation, including δt time
the interval time:

ŝvehiclet+1 =
1

δt

(
Asvehiclet +Bct

)
(14)

Where A ∈ M5×5 and B ∈ M2×5, and ct the command
applied on the state svehiclet .

2) State Environment: The state of the environment is
defined by an occupancy grid. As explained in the previous
sections, we need to predict the future state, i.e. the future
occupancy grid in this case. At first, we assume the environ-
ment of the car as static, so making a prediction of the future
grid is like making a projection of the speed in trajectory and
repositioning the position of the car on the occupancy grid.

senvt = [gridocct , (x, y, θ)gt ] (15)

The vector (x, y, θ)gt defines the position and the orientation
of the vehicle on the occupation grid. We assume this occu-
pancy grid is static, from the commands sequence combined
to interval time δt, we can estimate the new position of the
vehicle in the initial occupancy grid (gridocct ). The vehicle
position can be estimated.xy

θ

g

t

(vt,wt)−−−−→
δt

xy
θ

g

t+1

(16)

Fig. 3: Determine the distance to the obstacle by applying
the command, ct, as a constant to the current state, st.

Thus we define the prediction of the next state, ŝenvt+1, as
follows:

ŝenvt+1 = [gridocct , (x, y, θ)gt+1] (17)

B. Quality

As previously defined, we have to define the quality and
admissibility functions by criteria. In this article, we defined
4 quality criteria divided into 3 categories:

• safety: collision on path evaluator;
• context: speed limit evaluator;
• comfort: lateral acceleration evaluator, jerk evaluator;
As previously defined, the quality is defined on a sequence

of commands, to realize our tests we applied the calculation
of the quality on the first 20 elements, m = 20, indeed our
data are recorded at 10hz, so our sequence is analyzed on 2
seconds. In previous work, the prediction of commands were
good up to 2 seconds [3], explaining the choice of this value.

1) Collision On Path (COP): This evaluator evaluates if
the desired drive does not collide with an obstacle, which is
in its way.

a) Metric: This metric defines for a state st the distance
dt between the vehicle and the nearby obstacle, considering
that the vehicle runs at the constant speed defined by ct.
This distance is computed by projecting the trajectory of
the vehicle, running at speed ct, on the occupation grid
gridocct . Figure 3 shows how to define the obstacle distance
by projecting the path estimated from command.

metricCOP (st) = distanceobstacle (18)

b) Analyzer: In order to evaluate the distance to ob-
stacle, a reference distance need to be defined. Based on
the reaction time, sreact = 1.0s [6], and on the maximum
deceleration, decmax = 3.3m/s2 [6] and the current velocity,



Fig. 4: Left figure represents a metric from vehicle state,
based on this metric the right function analyzes the result
and appropriate a judgement between 0 and 1. This analyzer
is defined by 2 parameters: rampe, shift.

vt ∈ st, the reference distance can be defined as:

ssafe =
vt

decmax

dsafe(vt) = vt ∗ (ssafe + sreact)

− decmax ∗ ssafe ∗ (ssafe + 1)

2
d(st) = dsafe(vt)

Based on this estimation, the analyzer function is build in
taking account this reference:

analyzerCOP |Θ(metricCOP (st), st)

=
1

1 + e(−θrampe∗metricCOP (st)−d(st))

(19)

Where θrampe is a hyperparameter impacting the slope
degrees.

2) Lateral Acceleration (LA): This evaluator takes into
account the comfort of driving. Figure 4, illustrates the metric
and the analyzer used by this function.

a) Metric: From the linear velocity and the angular ve-
locity, the lateral acceleration of the vehicle can be deduced
by:

metricLA(st) = vt ∗ wt (20)

In order to understand the relation between metric and
analyzer, we defined a candidate example (refer to Fig. 4)
defined by (wt = 0.5, vt = 2) then lateral acceleration
at = (vt ∗wt) = 1.0m/s2, based on this metric the result of
the analyzer is 0.61.

b) Analyzer: In order to compare the lateral accelera-
tion defined by the previous metric, a reference value need to
be set, let the most acceptable acceleration, aref = 0.3g =
2.943m/s2 [7].

analyzerLA|Θ(metricLA(st), st)

=
1

1 + e(metricLA(st)∗θrampe−aref )

(21)

3) Speed Limit (SL): Depending on the context in which
the vehicle is operating, this evaluator assesses compliance
with the speed limit.

a) Metric: This metric exploits the current speed of the
vehicle.

metricSL(st) = |vt| (22)

b) Analyzer: The speed of the vehicle should be closed
to the θtarget limit speed. The analyzer exploits hyperpa-
rameters θtarget the limit speed and θσ the tolerance. This
analyzer is a normalized Gaussian, centered on the speed
limit, defined by the context.

analyzerSL|Θ(metricSL(st), st) = e(
1
2∗(

metricSL(st)−θtarget
θσ

)2)

(23)
4) Jerk (J): The jerk represents the variation of the

acceleration, this data illustrates abrupt changes of gait. We
use this information to determine if the ride is comfortable
or not.

a) Metric: Our analysis requires using only the current
jerk information of the vehicle state.

metricJ(st) = |jt| (24)

b) Analyzer: The analyzer compares the actual jerk
to a reference, θref = 9.9m/s3 [8]. This reference value
makes it possible to define from which value the driving is
uncomfortable.

analyzerJ|Θ(metricJ(st), st)

=
1

1 + e(metricJ (st)∗θrampe−θref )

(25)

C. Admissibility

Similar to the evaluators, for the admissibility part we
have to define the guards composed of metric and indicator.
Like for the quality, we need to define the sequence time
analyzed by the guard, we choose to use 10 first elements,
the sequence is recorded at 10hz, then the sequence analyzed
is 1.0 second refer to the time reaction of the human [6].

1) TTC On Path (TOP):
a) Metric: This indicator exploits the metric

metricCOP , defined above (III-B.1.a), and deduces
from the current speed the time to collision.

metricTOP (st) =
metricCOP (st)

|vt|+ ϵ
(26)

Where ϵ is a small quantity avoiding dividing by 0, when
the linear velocity is 0.



Fig. 5: Scenario support and intentions tested.

b) Indicator: From a reference time, θcritic time, we
can determine the admissible or not admissible times and
thus define according to this criterion the admissible inten-
tions.

indicatorTOP |Θ(st) = metricTOP (st) > θcritic time

(27)
The θcritic time can be adapted the context [7]. In our

implementation, the θcritic time is fixed at 1.0 seconds.
2) Collision Around (CA):

a) Metric: For a given state st this metric defined the
closest obstacle to the vehicle position, around the vehicle.
This metric exploits the occupancy grid and find the closest
obstacle to the vehicle.

metricCA(st) = distanceobstacle (28)

b) Indicator: Similar to the previous indicator, from a
reference distance, θcritic distance, we can filter admissible
intentions.

indicatorCA|Θ(st) = metricCA(st) > θcritic distance

(29)

IV. RESULTS

The implementation defined in the previous section was
written in Python. Our solution has been tested in the
SCANeR studio simulator, which allows us to realize not
admissible intention data. We tested our solution on the same
scenario but with 3 different intentions to show the efficiency
of our solution to compare 3 intentions, as presented in
Fig. 5. In this scenario, the vehicle is driving on 3 lanes,
obstacles are placed on 3 lanes. The first intention drives
and hits the obstacle, the second avoids the obstacles with a
high lateral acceleration and the last avoids the obstacle but
with a low lateral acceleration.

evaluator weight
collision on path 0.4
speed limit 0.2
lateral acceleration 0.2
jerk 0.2

TABLE I: Evaluator weights table.

Fig. 6: Occupancy grid with intention trajectory (intention
1).

A. Intention 1: Hit Obstacle

In the first intention, the vehicle is moving and hits the
obstacle. Figure 6 shows the projection predicted states of the
intention on the current occupation grid. In the case where an
order is admissible, we can directly conclude that the score
of this intention is 0. So we must first make sure that it is
valid. In this situation a guard is not validate, that shows
the Fig. 7, because the vehicle is too close of the obstacle
and doesn’t have the time to decelerate before hitting the
obstacle. So in this situation the final quality and score are
0.

B. Intention 2: Avoid Obstacle With High Lateral Accelera-
tion

In the first intention the driver avoids the obstacle but
makes an abrupt lane change. Like the previous intention, the
Fig. 8 shows the occupancy grid combined with the trajectory
of the vehicle estimated from the intention. The following

Fig. 7: Guard results (intention 1).



Fig. 8: Occupancy grid with intention trajectory (intention
2).

Fig. 9: Vehicle velocities (intention 2).

Fig. 9 shows the speeds of the vehicle in future states. In
this case, compared to the previous one, all the guards are
good, which means the intention is admissible.

The Fig. 12 shows the result per evaluator. Unlike the
lateral acceleration, the other evaluations are goods. We can
see that poor acceleration affects the final quality. The final
score is equal to 0.746.

C. Intention 3: Avoid Obstacle With Good Quality

In this case, the intention must be good, instead of inten-
tion 02, the lane change is made earlier than the previous one.
Then, the steering wheel angle is small, which does not result
in a high angular velocity and therefore the resulting lateral
acceleration is not very important. Figures 13, 14 show the
states of the intention 03. In this case the admissibility
is validated, like Fig. 15. The following Fig. 16 shows the
quality per criterion and the global quality. The global quality

Fig. 10: Guard results (intention 2).

Fig. 11: Vehicle velocities (intention 2).

Fig. 12: Quality results (intention 2).

Fig. 13: Occupancy grid with intention trajectory (intention
3).

Fig. 14: Vehicle velocities (intention 3).



Fig. 15: Guard results (intention 3).

Fig. 16: Quality results (intention 3).

is close to 1 (0.971), which means perfect quality. The
intention score is 0.971.

D. Comparison

From previous studies, we can summarise and compare
the quantification of each intention with Tab. II.

V. DISCUSS

These evaluations of these different intentions highlight
the interest of our formulation and its effectiveness.

The first test (Sec. IV-A) highlights the need to define
admissibility, as it allows an intention that involves a risk
for the users of the vehicle to cancel the quality. This
case highlights the importance of distinguishing between
admissibility and quality.

The second test (Sec. IV-B) illustrates an admissible case
where one of the criteria is not met. Contrary to the previous
case, this command does not represent a danger but an incon-
venience, this command is possible. The quality according to

intention admissibility quality score
intention 1 0 - 0
intention 2 1 0,744 0,746
intention 3 1 0,971 0,971

TABLE II: Summarize tests.

the lateral acceleration, illustrates the inconvenience of this
intention.

The last test (Sec. IV-C) shows that our formulation can be
used to highlight a good intention. In this case, the intention
is risk-free and respects the other criteria, and this respect of
the criteria is reflected in the quality of this intention, which
is good (0.971).

With this quantification, we can rank these different inten-
tions and choose the best one that is considered feasible and
of better quality according to the criteria we have defined.
Based on the Tab. II, its 3 intentions can be ranked as follows:
the best intention is ’intention 3’, followed by ’intention 2’
and ’intention 1’ is considered the worst, as it is not feasible.

It is important to note that our approach is to define ana-
lyzers that rely on knowledge. The definition of analyzers is
not trivial and potentially involves a set of hyperparameters,
which adds constraints to the implementation of this method.

VI. CONCLUSION

In our approach, we set up a generic formulation that
allows to assign a score to an intention that reflects both
the feasibility (defined by the admissibility) and the quality
of the intention. Our implementation and case study show
that our formulation allows us to perform this quantification
task and to rank multiple intentions for the same situation.
Furthermore, our implementation highlights the importance
of distinguishing between admissibility and quality.

In our next work, we intend to integrate this quantification
of intentions in more complex situations, integrate new
criteria such as the energy consumption of the car. We then
plan to integrate this quantification into our fusion of the
shared navigation between the human and the autonomous
system. This quantification will make it possible to influence
the resulting command towards the intention with a better
score, thus guaranteeing better driving.

For now, we have applied our solution in a case where
the environment is static to facilitate the prediction of the
next state. A next approach, we will be able to perform state
estimation in a dynamic environment using prediction models
[9] of the surrounding cars.
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