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Abstract: Graphene is a two-dimensional (2D) material with a single atomic crystal structure of carbon
that has the potential to create next-generation devices for photonic, optoelectronic, thermoelectric,
sensing, wearable electronics, etc., owing to its excellent electron mobility, large surface-to-volume
ratio, adjustable optics, and high mechanical strength. In contrast, owing to their light-induced
conformations, fast response, photochemical stability, and surface-relief structures, azobenzene (AZO)
polymers have been used as temperature sensors and photo-switchable molecules and are recognized
as excellent candidates for a new generation of light-controllable molecular electronics. They can
withstand trans-cis isomerization by conducting light irradiation or heating but have poor photon
lifetime and energy density and are prone to agglomeration even at mild doping levels, reducing
their optical sensitivity. Graphene derivatives, including graphene oxide (GO) and reduced graphene
oxide (RGO), are an excellent platform that, combined with AZO-based polymers, could generate
a new type of hybrid structure with interesting properties of ordered molecules. AZO derivatives
may modify the energy density, optical responsiveness, and photon storage capacity, potentially
preventing aggregation and strengthening the AZO complexes. They are potential candidates for
sensors, photocatalysts, photodetectors, photocurrent switching, and other optical applications. This
review aimed to provide an overview of the recent progress in graphene-related 2D materials (Gr2MS)
and AZO polymer AZO-GO/RGO hybrid structures and their synthesis and applications. The review
concludes with remarks based on the findings of this study.

Keywords: azobenzene; graphene oxide; synthesis; AZO-GO; AZO-RGO; applications

1. Introduction

Materials and nanostructures are the backbones of modern society [1]. Graphene oxide
has a distinct two-dimensional (2D) carbon structure and highly tunable electronic proper-
ties [2,3]. Owing to these properties, graphene has significant fabrication potential with
surface functionality [4]. Graphene-based nanomaterials demonstrate good antibacterial
properties; however, their interplane solid interactions tend to aggregate, limiting their
surface region and methods of activity [5]. Graphene is an excellent material for storing
and accepting electrons generated by photons. Because of its high specific surface area
and electrical conductivity, it can promote photo-induced charge separation and improve
interfacial charge transport while extending the lifetime of photogenerated electron/hole
pairs [6–8]. Graphene with a 2D structure consists of a hexagonal lattice structure with
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monolayer sp2 hybridization carbon atoms with significant catalytic performance in photo-
catalysis owing to its superior electron capturing and transport conductivity, large specific
surface area, and superior interaction with other catalyst particles [9]. It has outstanding
properties, including good thermal conductivity of approximately 5000 W m−1 K−1, 97.7%
transparency to visible light, large carrier mobility (200,000 cm2 V−1 s −1), large surface
area, ambipolar electric field effect, and quantum Hall effect at room temperature [10–12].
Graphene derivatives (GDs) have given rise to a new class of multifunctional nanomaterials
with distinct properties.

The GO and RGO are used as supporting platforms for biological binding processes
due to their ease of functionalization, non-covalent binding, and variable hydrophobic-
ity [13–15]. Biosensors based on various detection principles have been extensively studied
for graphene-based biomedical applications, including harnessing graphene’s unique elec-
tronic properties in different biosensors for detecting a diverse group of biomolecules,
including proteins, enzymes, and hormones [16–25]. Because graphene has a higher capac-
ity to adsorb biomolecules than typical Au or Ag surfaces, it has widely been employed as
a sensitivity enhancer in optical biosensors such as fiber-optic surface plasmon resonance
detectors [26]. Gas sensors are used in various applications, including security, food safety,
environmental monitoring, indoor air quality monitoring, and personal healthcare [27–30].
Two-dimensional (2D) nanostructured materials have received considerable attention over
the last decade due to their unique chemical and physical properties. Because of their large
surface-to-volume ratio, high surface sensitivity, and excellent semiconducting properties,
they show promising potential for use in gas-sensing devices. Theoretical studies [31,32]
showed that the adsorption of various gases onto graphene results in inconsistent dop-
ing states. The symbiotic effects of multiple components increase the sensitivity of pure
graphene to gas molecules when blended with other functional materials. Carbon-polymer
composite-based chemiresistors exhibit high stability, long lifetime, tunable selectivity,
reversibility, and reproducibility [33]. Semiconductors [34], carbon materials [35], and
organic/inorganic composites [36–38] have been used as sensing materials; however, they
work on different mechanisms and principles. The two-dimensional structures of GDs
provide an excellent platform for assembling AZO molecules in a close-packed order. More-
over, smart materials are being increasingly reported and used in various applications.
However, the azobenzenic family is the most widely used because it is simple to synthesize,
resistant to mechanical exposure, and has a good aging capacity under light illumination
for photoisomerization. Therefore, this review focused on the most recent advancements in
graphene-related 2D material (Gr2MS) and AZO hybrid structures and their applications.

1.1. Graphene-Related 2D Material (Gr2Ms) Foundation to All Carbon Materials

Among different materials, carbon-based materials play an important role in civi-
lization [39]. Carbon, the most important element in the periodic table, is particularly
important. Diamond and graphite are the most well-known forms of carbon; however, it
has long been recognized that carbon can be found in nature in a variety of compounds,
including various types of amorphous carbon, organic molecules, and biomolecules [40,41].
The multiform nature of carbon is due to the peculiar characteristics of its unique electronic
structure, which forms different hybrids, namely sp1, sp2, and sp3 [39]. The different
orientations of the orbitals in these hybrids result in structures with vastly different proper-
ties [39]. Carbon has a wide spectrum of compounds and allotropic forms with different
structures in 0D, 1D, 2D, and 3D [42]. Carbon at the nanoscale with sp2 carbons (e.g.,
nanotubes, fullerenes, nanofibers, nanocones, nanodiamonds, graphene, and graphene
nanoribbons) with relatively large surface areas exhibits novel properties and is used in
different industrial sectors [42–47]. The functionalization of these carbon nanomaterials
affects different properties, such as their biocompatibility and toxicity toward the environ-
ment and living organisms [48–52]. Graphene is usually divided into a few layers, such as
single-wall, double-wall, and multi-wall carbon nanotubes, as shown in Figure 1. These
highly adaptable carbon backbones allow for easy functionalization and integration into
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a variety of applications [53]. Recent work [54] on the fabrication of 30-inch multilayer
graphene sheets and their transport in roll-to-roll fabrication shows that they can easily be
fabricated for large-scale use. The first mechanical extraction of graphene from graphite
using a simple Scotch tape approach is described in refs. [55,56]. Graphene is the basic
component of graphite, which consists of graphene layers stacked on top of each other with
an interlayer spacing of 3.34 angstroms [57]. CNTs were first discovered and described
in 1952 and then in 1976 [58]. In 1991, Iijima [59] was the first to report the formation of
multi-walled carbon nanotubes (MWCNTs) because of the random nature of arc evapora-
tion of C60 and other fullerenes. CNTs (carbon nanotubes) are small carbon tubes with
diameters measured in nanometers. Carbon nanotubes are single-walled carbon nanotubes
(SWCNTs) with dimensions in the manometer range. Single-wall carbon nanotubes are
carbon allotropes that fall between fullerene cages and flat graphene [59]. CNTs, with a
diameter of 1 nm and a length of a few nanometers to microns, are the most important
form of carbon. CNTs are configurationally equivalent to a 2D graphene sheet rolled into a
tube. As a result of oxidation, carboxyl groups are added to the surface of the CNT, which
are useful for further modification. This facilitates the covalent coupling of molecules
through the formation of amide and ester bonds. As a result, a wide range of functional
moieties was created. The van der Waals interactions between CNTs are reduced in the
presence of carboxyl groups, increasing the separation of the nanotubes. Suitable group
attachments increase the solubility in organic or aqueous solvents, with the possibility of
further modifications.
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1.2. AZO Dyes

Organic dyes are one of the biggest families in the synthetic organic domain. For ex-
ample, in the textile domain, the most common dyes can be classified in two ways: (i) based
on their application characteristics or (ii) based on their main chemical structure [60–62].
These structures can often be found in azobenzene dyes, as seen in these examples of most
used textile dyes (Figure 2). Antracenedione moieties are frequently found in non-azo dyes,
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while ionic or non-ionic compounds may be present in azo dyes. If these latter molecules
can be part of the most worldwide pollution, when strictly used, they can be fundamental
for many applications such as electronics or nanomotors.
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The azobenzene family is the photochromic molecule capable of changing shape and
polarity upon light irradiation. Azobenzene is a molecule able to change conformation from
trans to cis upon light (Figure 3) and reversibly under another wavelength or heat [63–65].
The variation of HLB (hydrophilic–lipophilic balance) and polarizability of the trans-to-cis
molecules are of great interest for the reached applications. Also, the ease of synthesis and
the physical capabilities of azobenzene and derivatives led authors to study functionalized
graphene oxide (GO) with azo benzenes (AZO). As a result, the functional synergy suggests
that incorporating the AZO chromophore into the graphene sheets significantly improves
photocurrent switching.
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2. General Review of Graphene-Based Materials and GO-AZO Syntheses

This section discusses existing graphene-based materials that can serve as the basis for
functionalization and GO syntheses available in the literature. Various functionalization
methods for graphene and the azobenzenic functionalization of GO are also discussed.

2.1. Existing Graphene-Based Materials Available for Hybridization

Graphene oxide, which has better oxidative characteristics than graphene, or nanoporous
graphene (NPG) could be employed instead of graphene alone [66,67]. Because of its vast
specific surface area, high optical transmittance, and outstanding electrical characteristics,
graphene is frequently utilized as a catalyst and promoter. A mechanical exfoliation
process for single and multi-layer graphene was created from mineral graphites. However,
graphene is considered a zero-band gap semiconductor, indicating that its band structure is
linearly dispersed and the charge carriers act as massless. Dirac-fermions in a particular
k-point in the first Brillouin zone [68]. Because graphene has a zero-band gap, it absorbs
light in various spectra ranging from infrared to ultraviolet, allowing it to be used in
electro-optical systems/devices [69]. Because of the conduction and valence band overlap,
graphene behaves as a zero-gap semiconductor with large carrier mobility at ~106 ms−1

(relativistic speed) [70]. Graphene is considered a gapless material because the conduction
and valence band are symmetrical and meet at the same Dirac point [71]. Graphene is a
unique 2D material with one-atom-thick carbon atom layers, absorbing 2.3% of the total
incident light [72]. Because of its superior electrical characteristics, graphene may efficiently
increase charge separation and inhibit the recombination of excited carriers produced by
photocatalysts [73]. Graphene and modified graphene are introduced in several fields
of catalysis because of their excellent characteristics [74]. A schematic representation of
graphene-based materials is illustrated in Figure 4 [66].
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The functionalization of graphene and graphene derivatives has increased the number
of potential applications of graphene-based materials. Covalent functionalization, non-
covalent functionalization, substitutional doping of graphene, and hybridization with
nanoparticles, nanowires, and other materials have been classified as functionalization
modes based on the methods and materials used [75]. These various functionalization meth-
ods provide new ways to expand the current applications of graphene, such as bioimaging
and bandgap opening, for use in electronics [75]. Graphene field-effect transistor-based
biosensors have also emerged as promising tools for detecting a wide range of analytes.
However, the functionalization protocol displays a significant impact on their performance.
Palacio et al. [76] developed an ultrasensitive aptamer-based biosensor (aptasensor) capable
of detecting hepatitis C virus core protein using a controlled in-vacuum physical method
for the covalent functionalization of graphene. These devices are highly specific and robust
and can detect viral proteins at the attomolar level in human blood plasma protocol to
develop a covalent g-SGFET aptasensor, as shown in Figure 5 [76].
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(c) g-SGFET functioning scheme, and (d) real image and dimensions of the g-SGFET wire-bonded
to a printed circuit board (PCB) inserted into an electronic platform that can communicate with a
computer where the measured data are displayed [76].
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2.2. GO Synthesis

There are two approaches:top–down and bottom–up, to synthesize GO. In thetop–
down approach, physical methods such as mechanical/ball milling, sputtering, laser
ablation, etc., are used. In chemical methods, there are two approaches such as chemical
and green routes. It is necessary to define graphene composites before proceeding with the
analysis. Graphene composites are any graphene-based materials that have been changed
(grafting with reactive groups, functionalization with polymers, complexes with other
sources, etc.). The GO is the most well-known graphene composite material, produced via
the chemical exfoliation of graphite. Graphene has been severely oxidized and contains
a range of oxygen functions. Many theories [77,78] have been proposed in the past to
establish the precise chemical structure of GO. This is due to the material’s complexity
(including sample-to-sample variability) and its non-stoichiometric amorphous berthollide
atomic composition [79]. The three preparation methods for GO are (i) Brodies [80], (ii) Stau-
denmaier [81], and (iii) Hummer [82]. The most significant aspect of these methods is the
chemical exfoliation of graphite with an oxidizing agent in the presence of mineral acid.
Two methods (Brodies and Staudenmaiers) use a mixture of KClO4 and HNO3 to oxidize
graphite. Hummer’s approach combines graphite, potassium permanganate, and H2SO4 in
a solution. The conjugation of stacked graphene sheets is broken down into nanoscale sp2

graphitic domains surrounded by extremely disordered oxidized domains (sp3 C/C) and
carbon vacancy defects when graphite is oxidized [83]. The phenolic, hydroxyl, and epoxy
groups on the basal plane and the carboxylic acid groups on the margins cause the GO films
to peel off easily and form a persistent tan-colored monolayer suspension in water [84].

2.3. Functionalization of GR2Ms

Hummers and Offeman [82] developed a technique for producing GO that involved
strong chemical oxidation of graphite, followed by sonication for exfoliation of the obtained
GO. GO is very hydrophilic due to the distribution of epoxide and hydroxyl groups on the
basal planes and the positioning of carbonyl and carboxyl groups at the edges. Because
the GO structure contains oxygen-rich functional groups, it is easily exfoliated in water
and distributed into single-layer sheets, becoming stable in this manner. GO (or graphite
oxide in some cases) is one of the most promising graphene derivatives. According to
Wang et al. [85], the main routes of GO production are chemical oxidation and exfoliation
of graphite using the Brodie, Staudenmaier, or Hummers method or some variations in
these methods. Brodie observed that only graphitizable carbons with graphitic structural
regions could be formed by the oxidizing combination (KClO4 with fuming HNO3) [86].
The formation of GO was then described by Staudenmaier when heating graphite with
H2SO4, HNO3, and KClO4 [87]. Later, Hummers and Offeman [82] developed a simple
method to prepare GO using H2SO4 and KMnO4. There are two ways to prepare RGO:
chemical reduction and annealing at a high temperature. The most effective thermal
annealing method [88] is thermal deoxygenation of GO (see Figure 6), which is assisted by
temperature elevation and eliminates O-based moieties such as OH [89,90]. However, this
process is energy-intensive, and the degree of oxidation is difficult to control. Chemical
reduction requires reducing agents such as metal hydrides, hydrazine, hydroiodic acid,
and a narrow temperature range, and targeting these functional groups is difficult. The
superior properties of nanofiltration membranes based on RGO over GO have led to
several studies. Graphene, with a π-rich electronic structure, has a two-dimensional
honeycomb lattice of sp2 hybridized carbon atoms. Graphene can easily be converted to
GO and RGO. G is hydrophobic, whereas GO is hydrophilic. As a result, GO is easily
dispersible in water. GO contains aliphatic (sp3) and aromatic (sp2) domains, increasing
surface interactions. A range of approaches for surface modification of graphene has been
developed in response to the increased interest in employing graphene as a reinforcing
filler in polymer matrices to construct multifunctional materials. The filler-matrix bonding
interaction considerably impacts the final composite properties. Most dispersion processes
result in non-covalent composites in which the polymer matrix and filler connect via
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relatively weak dispersion forces. To enhance stronger interfacial interaction, researchers
are increasingly focusing on creating covalent connections between graphene-based filler
and the supporting polymer. Graphene becomes best functionalized via sp2 stacking
complexation or by inserting particular moieties on edge or basal planes (Figure 6) due to
the abundance of sp2-conjugated carbons [91].
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Figure 6. (A) Functionalization possibilities for graphene: (a) edge functionalization, (b) basal plane
functionalization, (c) non-covalent adsorption on the basal plane, (d) asymmetrical functionalization
of the basal plane, and (e) self-assembling of functionalized graphene sheets, and (B) Chemical
structure of GO [91].

2.4. AZO-Functionalization of Gr2Ms GO

AZO chromophore has received extensive research as a molecular solar thermal storage
material because of its ability to absorb light in the ultraviolet-visible range and release
heat based on reversible isomerization [92]. AZO pre-formed molecules can bond on GO
due to an amide linkage (Figure 7). This can lead to strong and stable bonded compounds.
Indeed, after treating GO with thionyl chloride, the carboxyl groups are transformed
into reactive acyl chloride moieties, and an aniline-based AZO can lead to a hybridized
material with a nitro function [93], a nude AZO [94] or a dimethyl-AZO [95,96]. So, this
way of functionalization supports electron-donating or electron-withdrawing elements.
Diazonium salt can also directly bond the GO to form the AZO moiety in situ (Figure 7),
leading after isomerization to a weak C-H···π non-bonding interaction [97]. However, pre-
formed AZO diazonium salt can be bonded to GO thanks to the good leaving properties of
this function [98]. GO can undergo a Si-O-C bond from 4-(3-Triethoxysilylpropyl-ureido)
AZO, even if the FT-IR characterization shows a mixture of the hydrolysis of the Si-OEt
groups to Si-OH and further condensation to the Si-O-Si polysilsesquioxane networks of
AZO-GO hybrids [99].
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Electrostatic interactions between GOscis, a negatively charged material (carboxylate
groups) on basal planes and edges (Figure 8), and the azobenzenic ammonium salt occur
during the synthesis of cationic AZOs. This led to an interesting azobenzene-surfactant-
modified graphene hybrid [100].
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Li et al. [101] described a method for producing functionalized graphene using non-
covalent stacking interactions. BP2T molecules are used for non-covalent functionalization,
and the resulting graphene has superior ammonia-sensing capacities, with a sensitivity
three times greater than that of pristine graphene, which is in good agreement with the
binding energies derived from the Langmuir isotherm model. These findings provide direct
evidence of gas species interactions with graphene functional groups, and the non-covalent
approach can be used in various gas detection applications. Shangguan et al. [102] demon-
strated the synthesis of AZO-functionalized GNRs utilizing a variety of spectroscopic
characterizations. The GNR-AZOs are extremely soluble in common organic solvents, al-
lowing for simple spin coating of films with uniform morphology. The UV-vis-NIR spectra
of GNR-AZOs can be modulated quickly and reversibly by alternating UV and visible light
irradiation. After at least ten irradiation cycles, such modulation can be repeated with-
out obvious attenuation of the absorption intensity, indicating the photo-fatigue-resistant
capability of GNR-AZOs.

3. Applications of AZO-Functionalized GO
Sensors for Depollution

Most AZO-functionalized GO is mainly described for energy storage; very few inves-
tigations used the capability of AZO-GO for pollutant sensing and removal. The pesticide
residues and metabolites in food, water, and soil are major issues. Fenitrothion (FT) (O, O-
dimethyl O-(4-nitro-m-tolyl) phosphorothioate) and modifying graphite pencil electrodes
with AZO-GO displays excellent performance for the detection of these pollutants [103].
The lowest LOD (lowest detection limit) for FT can be obtained with RGO/DPA/PGE
electrode using square wave voltammetry (SWV, 3.48 nM), while PANI/CGE gives a LOD
of 7.20 nM with adsorptive stripping voltammetry (AdSV), and the other references go up to
0.8 µM including SWV. The PGE (pencil graphite electrode) was immersed in a solution con-
taining the AZO-DPA dye (poly(E))-1-(4-((4-(phenylamino)phenyl)diazenyl)phenyl)ethanone),
and DPA was electropolymerized over PGE surface. The graphene modification was then
applied over the DPA-modified PGE by electro-polymerization in GO solution with var-
ious cycles. The determination of FT was performed on a real sample of tomato spiked
with different FT concentrations. The recovery of the measured samples ranged between
96.4% and 106.9%, indicating that the proposed method can effectively be applied to
determine FT in tomato samples. Another example concerns the use of metal-organic
framework-functionalized GO nanocomposites and the reversible detection of high ex-
plosives [104]. After preparing the RGO, the AZO moiety was covalently bonded to the
GO to form the diazonium salt (as leaving group) under sonication (Figure 9). This AZO-
functionalized graphene reacted with a 4,4-stilbene dicarboxylic acid and zinc nitrate to
form the sensor. The detection of the explosive vapors (TNT and DNT) was performed by
fluorescence quenching.



Nanomaterials 2023, 13, 846 11 of 25Nanomaterials 2023, 13, x FOR PEER REVIEW 12 of 26 
 

 

 
Figure 9. Covalent bonding of AZO on GO [104]. 

The removal of bacteria from water is also of great interest, as the WHO declared in 
2017 that ESKAPEE bacteria pose a serious public health problem [105]. In this regard, 
GO/RGO hybrids formed with Schiff bases of AZO pyridinium salt and chromene seg-
ments were caused by π-π interactions between GO/RGO and chromene part ligands in 
addition to electrostatic interactions. As shown in Figure 10, the functionalized material 
provokes the destruction of the bacterial cell wall and the discharge of Escherichia coli 
and Staphylococcus aureus cell content [106]. 

 
Figure 10. (a) SEM images of E. coli after incubation with saline solution for 2 h without graphene-
based materials, (b) E. coli cells after incubation with GO-L2 dispersion (40 µg/mL) for 2 h, (c) S. 
aureus after incubation with saline solution for 2 h without graphene-based materials, and (d) S. 
aureus cells after incubation with GO-L2 dispersion (40 µg/mL) for 2 h [106]. 

A variety of photo energy conversion or storage devices may be made using photo-
induced variations in microstructures, electrical characteristics, steric effects, and optical 
response of AZO moieties. AZO moieties functionalized with GO/RGO may reflect, pro-
long, and boost the optically controlled conductance, absorption, catalytic behaviour, and 
electrostatic response of the composite’s constituents. AZO-GO composites have many 
advantages: high quantum yields, charge transfer in nanoseconds at the interface, energy 
storage in chemical bonds, electrochemical catalytic activity, the regulated electrostatic 
environment surrounding carbon-conjugated structures, and ultrafast isomerization in a 
few picoseconds (10–12 s) [107]. Table 1 presents some important applications for AZO-
GO composites that rely on their unique characteristics. 

Figure 9. Covalent bonding of AZO on GO [104].

The removal of bacteria from water is also of great interest, as the WHO declared in
2017 that ESKAPEE bacteria pose a serious public health problem [105]. In this regard,
GO/RGO hybrids formed with Schiff bases of AZO pyridinium salt and chromene seg-
ments were caused by π-π interactions between GO/RGO and chromene part ligands in
addition to electrostatic interactions. As shown in Figure 10, the functionalized material
provokes the destruction of the bacterial cell wall and the discharge of Escherichia coli and
Staphylococcus aureus cell content [106].
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Figure 10. (a) SEM images of E. coli after incubation with saline solution for 2 h without graphene-
based materials, (b) E. coli cells after incubation with GO-L2 dispersion (40 µg/mL) for 2 h, (c) S. aureus
after incubation with saline solution for 2 h without graphene-based materials, and (d) S. aureus cells
after incubation with GO-L2 dispersion (40 µg/mL) for 2 h [106].

A variety of photo energy conversion or storage devices may be made using photo-
induced variations in microstructures, electrical characteristics, steric effects, and optical
response of AZO moieties. AZO moieties functionalized with GO/RGO may reflect,
prolong, and boost the optically controlled conductance, absorption, catalytic behaviour,
and electrostatic response of the composite’s constituents. AZO-GO composites have many
advantages: high quantum yields, charge transfer in nanoseconds at the interface, energy
storage in chemical bonds, electrochemical catalytic activity, the regulated electrostatic
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environment surrounding carbon-conjugated structures, and ultrafast isomerization in a
few picoseconds (10–12 s) [107]. Table 1 presents some important applications for AZO-GO
composites that rely on their unique characteristics.

Table 1. Synthesis, properties, and applications of AZO-grafted GO composites.

Materials Syntheses Properties Applications References

RGO-AZO Diazotization

Enhance thermal storage and trans reversion by
H-bonds via para- or ortho-replacement of
AZO; RGO-para-AZO has a high thermal

storage density of 269.8 kJ kg−1.

Solar thermal storage [108]

AZO-GO Covalent
functionalization

Reversible photoisomerization at 300–400 nm,
good thermal stability, and high energy density

of 240 Wh kg−1.
Solar thermal storage [97]

PCL-RGO-AZO In situ ring-opening
polymerization

High conductivity, conductivity rises by UV
irradiation and recovers by visible light

irradiation.

Photo switches and
reversible optical

storage
[109]

RGO-bis-AZO Covalent grafting
High energy and maximum power densities of

about 80 Wh kg−1 and 2230 W kg−1,
respectively.

Solar thermal storage [110]

AZO-RGO Covalent grafting
The high energy density of 138 Wh kg−1, a
52-day long storage lifespan, and 50-cycle

cycling stability at 520 nm.
Solar thermal storage [111]

AZO-surfactant-
modified-GO

Electrostatic
interactions

Light-induced reversible photoresponsivity
assembly and disassembly.

Photoresponsive
supercapacitors [100]

AZO-RGO-GCE Exfoliation and
restacking

Excellent stability and anti-interference
capability.

Determination of
ascorbic acid,

dopamine, and uric
acid

[112]

AZO-GO Amide linkage Reversible photoisomerization. Optic and photonic
devices [93]

AZO-GO-PU Covalent grafting of
the amide linkage

Improved thermal properties and high-water
repellence.

Anti-biofouling, fluid
transportation,

sensors,
self-cleanings,

super-hydrophobic
valves, battery,

and fuel cell

[94]

PANI-RGO-AZO

Covalent grafting,
functionalization,

and aniline
polymerization

A specific capacitance of 328 F g−1, 80%
capacitance retention after 1500 continuous

charge-discharge cycles, and high
electrochemical performance.

Supercapacitors [95]

PANI-GO-AZO Diazotization

High reversibility and specific capacitance
retention after 500 cycles, with a capacitance of

478.3 F g−1. Excellent photosensitive
electrochemical properties under UV

irradiation and capacitance change rate of
52.57%.

Photoresponsive
supercapacitor [113]

GO-AZO Covalent grafting

Rapid trans-cis photoisomerization and
increased reversible photoswitching with fast
response time <500 ms and a high on/off ratio

of 8.

Photoswitching [96]

AZO-GO-PVA Covalent grafting Mimic the reversible grabbing-release motions
of a claw upon UV/visible irradiation. Smart devices [99]
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Table 1. Cont.

Materials Syntheses Properties Applications References

AAZO-GO-PEG Covalent grafting
High absorbance under visible light

illumination, high latent heat of 84.5 J g−1, and
photothermal conversion efficiency of 91%.

Solar thermal storage [114]

AZO-RGO Covalent grafting

High solar thermal energy storage density of
112 Wh kg−1 with 32-day prolonged storage.

Outstanding cycling stability for 50 visible
light-irradiated cycles, suggesting more than

4.5 years of use.

Solar thermal storage [115]

RGO-bisAZO-2 Covalent grafting

High power density (2517 W kg−1), high
energy density (131 Wh kg−1), good cycling

performance (50 cycles), and prolonged half-life
(37 days).

Photothermal fuels [116]

tri-AZO-RGO Covalent grafting

High power density (3036.9 W kg−1), high
energy density (150.3 Wh kg−1), and extended
half-life (1250 h). Film releases 23.6–69.7% of

stored heat, raising the temperature by 2–7 ◦C.

Photothermal energy [117]

AZO-RGO-GNP Electrostatic
interactions

Photochemical behavior du to Gemini
AZO-surfactant stabilizers and electrochemical

performance governed by light irradiation.

Optic and
photonic devices [118]

AZO-GO Esterification
reaction

Good photosensitive electrochemical properties
(high energy and maximum power

densities of 47 Wh Kg−1 and 156.6 W Kg−1,
respectively).

Solar thermal fuels
and energy storage

devices
[119]

PVK-AZO-GO
Amidation reaction

and covalent
grafting

A ternary electrical switching and nonvolatile
WORM (write-once-read-many-times) memory

performance, with
low switching threshold voltages of −1.53

(ON1) and −2.50 V (ON2) and an OFF: ON1:
ON2 current ratio of 1: 101.6:104.5.

Multilevel memory
devices [120]

AFGO-AZO-PI Covalent polyimide Improved response time (i.e., 0.5 ms) with
transmission loss of 0.167 dB/cm. Photoswitches [121]

PolyAZO
(Bismarck brown

Y)-RGO

Non-covalent
π-π stacking

Good repeatability in chemiresistor response
per regeneration cycle and resistance is

sensitive to O2 concentration.

Chemiresistor for
mitochondrial
consumption

[122]

AZO
nanocluster-RGO,

AZO
nanocluster-GO

Non-covalent
π-π stacking and

direct
immobilization

RGO-AZO nanocluster functions as n-type
while GO p-type.

p-type diode and
n-type diode [123]

AZO-BNB-t8-
RGO

Non-covalent
π-π stacking

Improved linear optical absorption, high
nonlinear optical absorption, and saturable

absorption coefficient.

Nonlinear optical
material [124]

AZO-RGO Covalent and
non-covalent

Phototunable conductance with light-induced
AZO trans-cis isomerization. Non-covalent

functionalization provides better
photoconductance tuning than the covalent
counterpart, which may constrain the AZO

photo-isomerization activity.

Molecular electronics [125]

RGO-AZO: reduced graphene oxide-azobenzene, PCL: poly(ε-caprolactone), GCE: glassy carbon electrode, PU:
polyurethane, PANI: polyaniline, PVA: poly(vinyl alcohol), AAZO: amino AZO, PEG: polyethylene glycol, GNP:
gold nanoparticle, PVK: poly(N-vinyl carbazole), AFGO: amino functionalized GO, and PI: polyimide.
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4. Applications of AZO-Gr2Ms Hybrids
4.1. Photoswitches

Photoswitches are molecules that alter structurally when exposed to light irradiation.
Depending on the light irradiated wavelength, AZO can stay in two different isomeric
forms, such as trans and cis. Its typical isomerization characteristics, including a moderate
change in dipole moment, a low photobleaching rate, and a substantial conformational
change, make it an excellent choice for the coupling counterpart in light-driven molecular
switches. For instance, Kizhisseri et al. [125] found that the combination of AZO and
RGO displays phototunable conductance owing to AZO’s light-induced trans-cis isomer-
ization. The non-covalent and covalent functionalization affect the photoconductance
characteristics of RGO. Hybrids also exhibit an increased current when exposed to UV
light due to the AZO’s trans-cis isomerization. The current of RGO-AZOC2-C (covalent)
dwindles substantially after extended UV irradiation because of the steric effect, which
limits AZOC2’s photoisomerization capability. In another study, Zhang et al. [96] found
that GO-AZO film exhibits excellent reversible photoswitching with a fast response time
of <500 ms, a high on/off ratio of 8, and about 800% on/off ratio of photocurrent sub-
jected to UV irradiation to dark. Figure 11 depicts the characteristics of the GO-AZO and
pristine AZO under light illumination. Intra-molecular donor-acceptor design with rapid
charge transfers makes GO-AZO switch highly sensitive. Depending on the graphene
work function of 4.5 eV, the position of the GO conduction band is 4.45 eV. When exposed
to UV light, photon penetrates the hybrid material, allowing photoexcited singlet AZO
moiety to transfer charge to the GO conduction band, subsequently to the ITO (indium
tin oxide) electrode (work function of 4.7 eV). The recombination of nearby electrons and
holes immediately reduces the photocurrent after turning off the light, indicating that no
hole aggregate occurred in AZO or along the GO-AZO interface. Rapid charge transfer in
intra-molecular donor-acceptor arrangement increases photocurrent, making it suitable for
UV-modulated photocurrent conversion devices. The photoswitching behavior of AZO
derivatives such as 5,6-dihydrodibenzo diazocine was reported [126]. They found that blue
light at 370–400 nm can transfer cis to trans with more than 90% efficiency, while green
light at 480–550 nm can switch trans back to cis with approximately 100% efficiency. A
photoconversion yield of more than 90% is not possible with AZO. However, the trans
isomer has higher n-π* absorption than the cis isomer.

4.2. Solar Thermal Storage

One of the key difficulties is developing multifunctional materials to harness solar
energy as a sustainable resource. Solar thermal fuels have the potential to store solar energy
in chemical bonds or structures and then release that energy as heat. AZO derivatives have
a high potential for solar energy storage owing to their reversible isomerization, high light
absorption, and thermal reversion regulated by steric structure and functional group. Feng
et al. [108] developed solar thermal storage using the RGO-AZO hybrid and found that
Ortho- or para-AZO substitution increases thermal storage (H) and cis-to-trans thermal
barrier (Ea). RGO-cis-ortho-AZO remains thermally stabilized for a prolonged half-life
(5400 h) through intramolecular hydrogen bonds, substantially longer than RGO-para-AZO
(116 h). The RGO-para-AZO has a thermal storage capacity of 269.8 kJ kg−1 with a single
intermolecular hydrogen bond, while RGO-ortho-AZO has a thermal storage capacity
of 149.6 kJ kg−1 (44.55% less) with several inter- and intra-molecular hydrogen-bonds of
AZO. The AZO-GO hybrid has the potential to use as energy storage material with the
good thermal stability of cis-hybrid and substantial energy density of around 240 Wh kg−1

because of the lightweight structure and significant grafting density of AZO moieties, as
stated by Pang et al. [97]. They demonstrate how the C-H . . . π bonding interacts between
AZO and GO in the cis-isomer and decreases the heat shield of π-π* transition, resulting
in the outstanding cis-hybrid’s thermal stability. Thus, apart from traditional H-bonds,
the weak non-bonding (i.e., C-H . . . π) interaction plays an essential role in regulating the
kinetic and thermodynamic parameters of the AZO-GO. Chromophore RGO-bis-AZO is
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a photo-isomerizable for high energy density, thermally-stable energy storage material,
as demonstrated by Feng et al. [110]. Due to substantial steric hindrance, cis-isomer has
a half-life of 1320 h in the dark and is thermally stable, and blue light and heat enhance
the reversion followed by solar heat release. The RGO-bis-AZO offers excellent 50-cycle
cycling stability with high energy and maximum power densities of 80 Wh kg−1 and
2230 Wkg−1, respectively. Optimizing molecular interactions with high-density, adjustable
RGO-bis-AZO storage allows for the creation of solar-heat conversion materials. Luo
et al. [111] reported that AZO-RGO has a considerable energy density of 138 Wh kg−1

due to steric hindrance, intermolecular H-bonds, extended storage lifespan (52 days),
and an outstanding cycling performance for 50 visible light-irradiated cycles at 520 nm,
making substituted AZO-based graphene a stable, high-energy, and recyclable molecular
solar thermal storage material. Figure 12A,B illustrate photo-induced isomerization-based
AZO-RGO molecular solar thermal storage material and cis-to-trans transition of AZO-GO,
respectively. Thus, it can be inferred that high-performing solar thermal fuels derived
from AZO-GO/RGO may be improved by raising the grafting density and intramolecular
H-bonding interactions.
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Figure 11. (A) Typical I-V characteristics of the GO-AZO and pristine AZO without and with UV
irradiation (365 nm and 2.45 mWcm−2). (B) Absorption spectra of (a) AZO and (b) GO-AZO, and the
corresponding fluorescence spectra of (c) AZO and (d) GO-AZO in anhydrous dimethyl formamide
(DMF) at 480 nm. (C) Changes in the absorption spectra of AZO and (D) GO-AZO in DMF at 365 nm.
Arrows refer to the variations due to irradiation. (E) Photocurrent response of (a) pristine AZO
and (b) GO-AZO films in 0.1 M KCl aqueous solution at 0.5 V bias, and (F) GO-AZO photocurrent
responses in single on/off cycles [96].
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4.3. Memory

Due to their inherent conductivity and extraordinarily high specific area (2600 m2 g−1),
AZO-GO materials have the potential to be used in electrochemical capacitors [127]. In ad-
dition, its storage capacity enables data to be written and erased in photon mode with great
temporal and spatial precision. Min et al. [128] used an all-solution-processed technique to
make a non-volatile molecular memory device with an AZO layer between two RGO films
as electrodes. The RGO/ABC10 SAM/RGO device demonstrates a reliable nonvolatile
memory ability, as shown by the fast-current response to trans-cis isomerization (voltage-
controlled). The memory performance remains stable for more than 400 cycles of WRER
(write-read-erase-read), and reading, writing, and erasing voltages were −1, 3, and −3 V,
respectively. The WRER function was retained after six months of storage, displaying criti-
cal features for application in nonvolatile memory and consistent endurance and retention
of ON/OFF. The memory device exhibits clear non-destructive and ON/OFF modes across
>20,000 readouts for 10,000 s. Additionally, such flexible device shows excellent memory
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performance under bending stress. Zhang et al. [120] have shown that nonvolatile resistive
random access memory (RRAM) with digital-type current switching and high ON/OFF
ratio characteristics may significantly increase polymer memory device storage capacity.
A poly(N-vinylcarbazole)-functionalized GO with AZO chromophore (PVK-AZO-GO)
was synthesized, where carbazole moiety, GO, and AZO function as electron donor (D),
electron acceptor (A), and charge trap (T), respectively. The Al/PVK-AZO-GO/ITO device
structure and its current-voltage (I-V), and effect of operation time and read pulse is shown
in Figure 13. This device shows a nonvolatile ternary WORM memory performance as a
result of interaction of field-induced charge-transfer between GO (A) and carbazole moiety
(D), as well as later charge trapping at AZO chromophores (T). The obtained OFF: ON1:
ON2 current ratio was 1:101.6:104.5, with low switching threshold voltages of −1.53 (ON1)
and −2.50 V. (ON2).
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4.4. Other Applications

In addition to applications in solar energy storage, photoswitches, and memory,
photochromic carbon nanomaterials with AZO has potential in other emerging fields.
Florio et al. [129] built the first graphene multi-layer nano-strain gauge to measure mechan-
ical forces associated with light-driven processes, such as developing polymer surface relief
gratings. When irradiated with a light interference pattern, photosensitive film deforms
as per spatial intensity fluctuation, resulting in the production of periodic topographies,
including surface relief gratings, with the internal pressure surpassing 1 GPa due to grating
formation. Deka et al. [123] used AZO nanocluster to create two functionalized graphene
composites: one with RGO via π-π stacking and another directly immobilized on the GO.
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The electrical characteristics of AZO-RGO exhibit n-type behavior, whereas GO shows
p-type behavior. Ultimately, when AZO-RGO and GO are coated on a 1 cm × 1 cm filter
paper substrate to create a junction, it effectively displays the typical diode’s character-
istic curve, demonstrating the use of this material in electrical devices. Wu et al. [112]
revealed that the C3F7(cationic polyfluorinated)-AZO+/RGO-modified electrode (C3F7-
AZO+/RGO/GCE) might determine dopamine (DA), ascorbic acid (AA), and uric acid
(UA), simultaneously (see Figure 14), with high anti-interference and stability. The de-
tecting levels are 65 nM, 11 nM, and 8 nM for DA, UA, and AA, ranging from 57.28 to
134.28 µM, 9.23 to 23.45 µM, and 0.04 to 6.01 µM, respectively. Moreover, because of their
unique physicochemical features, including large surface area, high adsorption capacity,
chemical stability, and recyclability, GO-based nanomaterials, and their composites are
regarded as potential adsorbents for removing dyes, heavy metals, and other harmful
pollutants from aquatic environments [130].
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4.5. AZO-Gr2Ms Polymers Composites

Non-conjugated AZO groups are those in which two or more AZO groups are linked to-
gether using non-conjugated flexible linkers [131,132]. Non-conjugated multi-AZO groups
can be introduced in series in polymers [132]. In recent years, there has been much inter-
est in AZO polymers with photoswitchable glass transition temperatures and reversible
solid-to-liquid transitions [133]. AZO polymers have been widely investigated as pho-
tochromic (AZO) compounds. Light-induced AZO chromophores may create a large
and steady in-plane anisotropy, nonlinear optical responses, and imprinting surface-relief
structures [134–137]. The modifications observed in the properties of functional compos-
ites are due to the photoisomerization of AZO by the interaction between molecules or
groups, considering various photonic and electronic applications [132,138]. Recent studies
revealed that a molecular mode with AZO is covalently bonded to carbon nanostructures
(graphene or carbon nanotubes), which have the potential for high-density solar thermal
storage. Materials with isomerization of single, double bonds (C-C, C=C, and N=N), or
conversion [139,140] have widely been studied owing to their special characteristics of
reversing the solar energy to be stored in the chemical bonds [141,142]. With the absorption
of photons at a particular wavelength, a photoisomerizable molecule can endure structural
changes with the transition to a high-energy metastable state. By applying external factors
(e.g., heat, light, voltage, or chemical reaction), molecules in the metastable state can return
to a stable condition by crossing the thermal barrier. GDs functionalized in AZO-polymer
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complexes show photo modulation and solar thermal storage capabilities in producing
a moiety [143–145]. Jintoku et al. [144] demonstrated the air and thermally stable carbon
nanotube (CNT)-based transparent conductive material prepared in a one-step process
using a simple wet-coating method with an anionic AZO derivative and sulfonate group
(Figure 15). The AZO derived from the substituent size is thermally less susceptible, de-
creasing the thermal desorption of AZO from the CNT surface and further supporting the
stability of transparent conductive films at high temperatures, as shown in Figure 15 [144].
Stability refers to the strong intermolecular interactions between the AZO derivative and
CNT. The two-dimensional structures of GDs offer a good platform for assembling AZO
molecules in a close-packed order, enabling high-density grafting, strong intermolecular in-
teractions, and steric hindrance, which are suitable for controlling the steric configurations
and functional groups in composite systems [146].
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5. Conclusions

This review article summarized the structure, characteristics, synthesis, and applica-
tions of AZO-GO/RGO hybrids. Combining Gr2Ms (GO/RGO) with AZO molecules can
meet ever-growing and -challenging multifunctional system demands. Oxygen-containing
groups on GO/RGO enable covalent and non-covalent composite synthesis, producing
well-defined and customizable physical and chemical characteristics. These characteristics
include increased quantum effects, effective charge transfer at the interface, electrostatic
changes surrounding π-conjugated structures, optically controlled conductance, heat stor-
age in chemical bonds, and steric conformation. These materials can be used in various
devices such as photoswitches, photodetectors, phototherapy, molecular junctions, sensors,
flexible photonics and electronics, solar thermal storage, smart devices, and biological-based
recognition. In addition, these solar-powered materials might lead to eco-friendly, inno-
vative, and sustainable goods. However, there are still some challenges, such as ensuring
effective linkages between GO/RGO and AZO moieties, a comprehensive understanding
of complex interactions between GO/RGO and AZO, low quantum and thermal storage
yields of photoswitching isomers, modulating photochromic and electronic properties to
enhance light sensitivity and shorten response time need to address for applying such
multifunctional responsive materials with great success. A detailed analysis of the working
process of GD-AZO composite materials, focusing on the molecular interaction between
these structures, is also required to increase our understanding for future advancement.
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