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Abstract: The symmetric nano morphologies, asymmetric electronic structures, and as well as the
heterojunctions of the developed photocatalytic systems perform a vital role in promoting light
absorption, separation of electron and hole pairs and charge carrier transport to the surface when
exposed to near-infrared (NIR) light. In this present work, we synthesized hematite (α-Fe2O3)
nanoparticles (NPs) by a facile hydrothermal method and studied their structural, optical, and
photocatalytic properties. Powder X-ray diffraction (XRD) confirmed the rhombohedral phase of the
α-Fe2O3 NPs, and Fourier transform infrared spectroscopy (FT-IR) was used to investigate symmetric
and asymmetric stretching vibrations of the functional groups on the surface of the catalysts. The
optical bandgap energy was estimated to be 2.25 eV using UV-Vis diffuse reflectance spectroscopy
(UV-Vis DRS) and scanning electron microscopy (SEM) images indicated sphere like morphology. The
oxidation and reduction properties of α-Fe2O3 NPs were analyzed by cyclic voltammetry (CV). The
α-Fe2O3 NPs were utilized for the degradation of methylene blue (MB) dye under natural sunlight.
The experimental results demonstrate that the degradation efficiency was achieved at 33% in 2 h, and
the pseudo-first-order rate constant was calculated to be 0.0033 min−1.

Keywords: hematite; nanoparticles; hydrothermal synthesis; optical properties; photocatalytic activity

1. Introduction

Advances in the field of nanotechnology over the past few decades have enabled re-
searchers to develop and synthesize nanomaterials with unique physicochemical properties
for photocatalytic applications. Among these nanomaterials, metal-oxide-based nanoparti-
cles have attracted great attention due to their excellent physiochemical properties, which
are largely different from their bulk counterpart. Nanomaterials have become a fascinating
class of materials that are highly sought after for various useful applications. Incorporating
nanoscale materials into catalyst research generates new ideas for the development of
catalyst science. Nanocatalysts have high activity and selectivity, allowing them to improve
the rate and yield of catalytic reactions. The photodegradation of organic pollutants is
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significantly increased when metal oxide nanoparticles are used as catalysts. Additionally,
the catalytic performance of metal oxides depends not only on their composition but also
on their structure, phase, shape, size, particle size, and the particle agglomeration of the
dispersed sample. Advancement in industrialization, leading to toxic by-products, has
altered the environment by unleashing a distinct variety of toxins and emissions of haz-
ardous gases into the atmosphere [1–3]. Therefore, conventionally implemented strategies
such as immobilization, biological and chemical oxidation, and incineration have been
largely employed to treat several types of organic and toxic industrial contaminants [4,5].
Nanomaterials (NMs), due to their nanoscale sizes, have augmented a new prospect for
their several industrial and environmental applications, including sewage treatment and re-
moval of hazardous contaminants [6–8]. Confronting the subject of treatment of hazardous
contaminants from the environment, NMs delivering unique optical, magnetic, or electrical
properties become a fundamental key for environmental remediation [9]. Therefore, the
distinct physicochemical material characteristics that were unattainable in the conventional
bulk matrix drew several research scholars and scientists to elevate their attention to the
field of nanoscience and technology [10–12]. Metal oxide nanoparticles such as TiO2, ZnO,
SnO2, and ZrO2 and their combination with other metals/metal oxides are effective pho-
tocatalysts in water treatment processes, including pharmaceutical and dye-containing
effluents [10–17]. Among all metal oxide NPs, iron oxide nanoparticles (Fe2O3 NPs) have
received much attention for organic pollutants degradation and biomedical applications,
etc., due to their low cost, low toxicity, and unique magnetic properties [18,19]. Iron oxide
can exist in different polymorphs, including magnetite (Fe3O4), wustite (FeO), maghemite
(γ-Fe2O3), and hematite (α-Fe2O3), of which hematite is thermodynamically stable phase
under ambient conditions [20–22]. Synthesis of α-Fe2O3 NPs was reported by using various
methods [23–28]. Hematite (α-Fe2O3) is a metal-oxide-based semiconductor which has
been widely investigated in the field of photocatalysis, including photocatalytic water
splitting, CO2 reduction, and organic pollutants degradation. It has a narrow bandgap
energy of 2.1 eV, which allows light absorption in the visible region up to 570 nm, as well as
suitable VB and CB edge position for water splitting, CO2 reduction, and dye degradation.
In addition, it exhibits several favorable properties, including earth abundance, nontoxicity,
facile synthetic accessibility, and high physicochemical stability [29]. Therefore, in the
present work, α-Fe2O3 nanoparticles were synthesized by hydrothermal route, and their
photocatalytic and electrochemical activities were studied.

2. Experimental Procedure
2.1. Materials

For the hydrothermal synthesis of α-Fe2O3 NPs, the following chemicals were used
without any further purification. Analytical-grade ferric nitrate nonahydrate (Fe(NO3)3·9H2O),
ammonia (NH3) solution, and absolute ethanol were purchased from Sigma-Aldrich.

2.2. Synthesis of α-Fe2O3 Nanoparticles

For the hydrothermal synthesis of α-Fe2O3 NPs [20], an iron source, Fe (NO3)3·9H2O
(1.8 g), was dissolved in 20 mL of distilled water to form a homogeneous solution. Subse-
quently, an ammonia solution was added dropwise to the above reaction solution under
constant stirring for 30 min to adjust the pH value to 9.0. Subsequently, the reaction mixture
was transferred to a 25 mL Teflon-lined stainless-steel autoclave. The autoclave was then
heated at 150 ◦C for 10 h in a heating oven and naturally cooled to room temperature.
Finally, the resulting product was washed several times with distilled water followed by
ethanol and dried at 80 ◦C in a drying oven.

2.3. Study of Photocatalytic Activity

The photocatalytic degradation performance of α-Fe2O3 NPs was evaluated using
MB dye as a model pollutant. In a typical photocatalytic degradation reaction, 40 mg of
the catalyst powder was dispersed in 60 mL of a solution containing 10 ppm MB dye and
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stirred for 30 min. Before starting the photocatalytic reaction, the reactor was kept in the
dark and stirred for 30 min to ensure the adsorption/desorption equilibrium. During this
time, MB dye molecules were adsorbed on the surface of the α-Fe2O3 NPs. Subsequently,
the reactor was exposed to natural outdoor sunlight, and 5 mL aliquots were taken from
the reaction mixture every 30 min interval. The reaction mixture was then centrifuged, and
the absorbance of the supernatant was measured by UV–Vis spectroscopy at the maximum
absorption wavelength of the MB dye (λmax = 662 nm). The percentage of degradation
efficiency was estimated by Equation (1)

Degradation (%) =
C0 −C

C0
× 100 (1)

where C0 and C denote the absorbance initially before exposure to sunlight and after
exposure time t, respectively.

2.4. Study of Electrochemical Activity

The electrochemical activity of α-Fe2O3 NPs was evaluated using a three-electrode
system. A α-Fe2O3 drop-casted GEC acted as the working electrode, Pt wire as the counter
electrode, and Ag/AgCl as the reference electrode. A 0.5 M Na2SO4 solution was used as
an electrolyte for electrochemical activity studies. The potential was applied to the working
electrode with respect to the Ag/AgCl reference electrode in the range of −2.0 to 2.0 at
a scan rate of 20 mV/s. The working electrode was fabricated as follows: First, the GCE
surface was polished using 0.5 µm alumina slurry, followed by rinsing with deionized water
and drying at room temperature. Then, 20 mg of the catalyst powder was dispersed in a
mixture of ethanol (0.5 mL) and Nafion (5 wt%) solution, followed by sonication for 30 min.
This is known as ink or slurry solution. Then, 15 µL of the ink solution was drop-casted
onto the surface of the GEC and allowed to dry at room temperature. Electrochemical
impedance measurements were performed using a Versa STST MC impedance spectrometer
in the frequency range of 1 Hz to 1 MHz.

2.5. Characterization

The structural properties of the prepared sample were investigated by X-ray diffraction
analysis using the Rigaku Multiflex diffractometer (Japan). The surface morphology and
chemical composition of the samples were examined by SEM using the EI-Quanta FEG
200F instrument (Thermo Fisher Scientific, USA), which was connected to an EDX detector.
The chemical structure and surface functional groups were identified using the FT-IR
instrument (Perkin Elmer, USA). The optical characteristic of the sample was explored
using the Cary 50 UV–Vis spectrophotometer (Varian Technologies, USA).

3. Results and Discussion
3.1. Structural Analysis

XRD analysis was carried out for α-Fe2O3 NPs in the 2θ range of 20–80◦, as shown in
Figure 1. XRD results reveal that the prepared α-Fe2O3 NPs have a rhombohedral structure
with a space group of R-3c, and the diffraction characteristic peaks are indexed as (012),
(104), (110), (113), (024), (116), (018), (214), (300), (1010), and (220) planes corresponding
to α-Fe2O3. The data were well corroborated with the literature data JCPDS card No.
84-0311 [30]. Furthermore, the appearance of sharp, narrow, and highly intense peaks in
the spectrum indicates the crystalline nature and purity of the synthesized α-Fe2O3 sample.
The average crystallite size calculated from the three most intense peaks using the Scherrer
formula, Equation (2). The average crystal size was found to be 26.2 nm.

D =
κλ

β cos θ
(2)



Symmetry 2023, 15, 1139 4 of 14

where κ denotes the shape factor, which is taken as 0.9, D refers to the average crystallite
size, λ is the wavelength of the CuKα X-ray radiation = 0.15406 nm, and β and θ refer to
the full width at half maximum intensity of the peaks and the Bragg angle, both measured
in radians, respectively. The average crystal size was calculated from the Williamson–Hall
(W-H) plot, as shown in Figure 1b. The W-H equation is given in Equation (3).

βcos θ =
0.9λ

D
+ 4εsin θ (3)
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tances a = b = 5.10485, c = 13.91330, along with axes (for Fe, x = 0.000000, y = 0.000000, and z = 0.145825 
and O, x = 0.000000, y = 0.304877, and z = 0.750000), and angles α = β = 90°, γ = 120°. 

3.2. FT-IR Analysis 
FT-IR analysis was used to understand the chemical structure of the sample as shown 

in Figure 2. The weak peak that appeared at 2364 cm−1 can be attributed to the CO2 asym-
metric stretching vibration present in the atmosphere. The band at 1396 cm−1 can be at-
tributed to the -OH in-plane deformation of the Fe-OH bond. The band at 901 cm−1 corre-
sponds to the stretching vibration of the Fe-O-Fe bond [31,32]. The bands at 555 and 469 
cm−1 can be assigned to the Fe-O-Fe bending vibration of α-Fe2O3 NPs [33]. 

Figure 1. (a) Powder XRD pattern of the synthesized α-Fe2O3 NPs. The Rhombohedral crystal structure
of α-Fe2O3 drawn by Vesta software (Version 3.4.5). (b) Williamson–Hall (W-H) plot for α-Fe2O3

NPs. (c) Ball-and-stick model of α-Fe2O3 crystal structure and (d) polyhedral model of α-Fe2O3 crystal
structure. Unit cell lattice parameters: crystal system—Rhombohedral, space group—R-3c, distances
a = b = 5.10485, c = 13.91330, along with axes (for Fe, x = 0.000000, y = 0.000000, and z = 0.145825 and O,
x = 0.000000, y = 0.304877, and z = 0.750000), and angles α = β = 90◦, γ = 120◦.

The average crystalline size was calculated to be 26.18 nm of the α-Fe2O3 NPs. The
crystallite sizes calculated from the Scherrer formula and W-H plot were approximately the
similar for the α-Fe2O3 NPs. Furthermore, Figure 1c,d shows the ball-and-stick model and
polyhedral model of the rhombohedral crystal structure of α-Fe2O3, respectively, where the
arrangement of Fe3+ and O2− ions in α-Fe2O3 can be seen. Moreover, corundum structured
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and crystallized in the trigonal R-3c space group. Fe3+ was bonded to six equivalent O2−

atoms to form a distorted face, edge, and corner-sharing FeO6 octahedron mixture. The
angles of the corner-sharing octahedral tilt range from 48–60◦. Three Fe-O bond lengths
were shorter (1.98 Å) and three were longer (2.13 Å). O2− was bonded to four equivalent
Fe3+ atoms to form a trigonal pyramid with distorted edges and corner-sharing OFe4 [19].

3.2. FT-IR Analysis

FT-IR analysis was used to understand the chemical structure of the sample as shown
in Figure 2. The weak peak that appeared at 2364 cm−1 can be attributed to the CO2
asymmetric stretching vibration present in the atmosphere. The band at 1396 cm−1 can
be attributed to the -OH in-plane deformation of the Fe-OH bond. The band at 901 cm−1

corresponds to the stretching vibration of the Fe-O-Fe bond [31,32]. The bands at 555 and
469 cm−1 can be assigned to the Fe-O-Fe bending vibration of α-Fe2O3 NPs [33].
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Figure 2. FTIR spectrum of the α-Fe2O3 NPs.

3.3. Morphology

SEM and EDX were performed to evaluate the morphology and chemical composition
of the α-Fe2O3 NPs. Figure 3a–c shows the SEM micrographs of the α-Fe2O3 NPs. Figure 3a
shows the presence of fine grains (b and c) with a spherical shape, with some agglomeration.
The average particle size (diameter) was found to be around 150 nm, using ImageJ software
(Figure 3d). Figure 3e shows the EDX spectrum of α-Fe2O3 NPs, which detected the peaks
of Fe and O, resulting in α-Fe2O3 NPs with high purity. The EDS images of the α-Fe2O3 NPs
are shown in Figure 4. The figure shows that Fe and O are evenly distributed, confirming
the homogeneity of the sample. Additional peaks for Cl were found in the EDX spectra
due to the presence of impurities in the Fe (NO3)3·9H2O starting material. Furthermore,
the Fe:O atomic ratio of α-Fe2O3 NPs, obtained from the SEM-EDS analysis, is estimated to
be approximately 2:3, which is very closely consistent with the theoretical weight ratio (2:3)
of Fe2O3.
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(d), and EDX spectrum (e) of α-Fe2O3 NPs.
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3.4. Dynamic Light Scattering (DLS)

The hydrodynamic particle size distribution of the α-Fe2O3 NPs was estimated using
dynamic light scattering (DLS). Figure 5 shows the DLS size distribution plot of the α-Fe2O3
NPs dispersed in DW. According to the histogram, the average hydrodynamic particle size
was found to be 141 nm.
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3.5. Optical Properties

UV–Vis spectroscopy was performed to evaluate the absorbance and bandgap of the
α-Fe2O3 NPs, as shown in Figure 6a,b. The maximum absorption was observed at 560 nm.
Based on these results, α-Fe2O3 NPs can be used in photocatalytic MB dye degradation that
requires visible-light absorption. The band gap energy was calculated by extrapolating the
line from the from (αhν)1/2 versus hν, as shown in Figure 6b. The band gap was calculated
to be 2.25 eV, which is in good agreement with an earlier report [34].
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Figure 6. (a) UV–Vis absorbance spectrum of the synthesized α-Fe2O3 NPs and (b) the corresponding
Tauc plot.

3.6. Electrochemical Property Study

The cyclic voltammetry curve of the α-Fe2O3 NPs is shown in Figure 7. The observed
anodic and cathodic peaks represent the oxidation and reduction reactions associated with
the interconversion of Fe0 and Fe3+ species in the solution, respectively. The presence of
double anodic peaks at −0.39 V and 0.32 V might be due to the oxidation of Fe0 to Fe2+

and then to Fe2+ to Fe3+ at the applied potential range and pH of the solution. However,
the cathodic peak corresponding to the conversion of Fe3+ to Fe2+ for the reverse reduction
reaction almost gets diminished due to the irreversible reaction with the formation of a
solid electrolyte interface layer [35]. The Nyquist plot of the electrochemical impedance
spectra (EIS) of the synthesized α-Fe2O3 NPs is shown in Figure 7b. The Nyquist plot
was drawn by imaginary (Z”) versus real (Z′) impedance. The Figure 7b inset shows the
equivalent circuit diagram. This study shows the kinetics of the charge transfer between
the active electrode and the electrolyte interface. The presence of the semicircle with a small
diameter in the higher frequency region indicates the redox reaction, and a linear slope
in the lower frequency region in the plot indicates the diffusion-controlled process at the
electrode–electrolyte interface. Since the semicircle is quite small, the reaction is kinetically
facile, and the ionic conduction and electrolyte diffusion over the porous structure of the
electrode is also clearly evident.
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3.7. Photocatalytic Activity Study

The photocatalytic activity of the α-Fe2O3 NPs for the degradation of the methylene
blue dye under sunlight irradiation was evaluated. The degradation of the MB dye irradi-
ated by natural sunlight was observed every 30 min. The intensity of the peak at 662 nm
decreased in the presence of the catalyst, complete degradation was observed at 120 min,
and the photocatalytic activity is shown in Figure 8a. The photodegradation efficiency of
the α-Fe2O3 NPs, as shown in Figure 8b, indicates that 33% of the dye decomposed after
2 h of irradiation. The rate of degradation of MB dye without the catalyst (blank test) and
with catalyst is shown in Figure 8c; the photodegradation reaction data can be described
well by pseudo-first-order reaction kinetics, given by Equation (4), as shown in Figure 8d.

ln
(

C0

C

)
= κ1t (4)

where k1 is the pseudo-first-order reaction rate constant, and C0 and C are as defined
previously in Equation (1). The value of k1 obtained is 0.0033 min−1, and the half-life of
the reaction, calculated using t1/2 = 0.693/k1, is 120 min. Table 1 provides a comparison of
the photodegradation performances of α-Fe2O3 NPs using different methods for various
pollutants under different conditions.

When α-Fe2O3 absorbs sunlight equal to or greater than the bandgap energy, electrons
in the valence band are excited to the conduction band, resulting in the generation of holes
in the valence band and electrons in the conduction band. Oxygen and water molecules
were adsorbed onto the surface of the α-Fe2O3 catalyst. Positive holes in the valence band
oxidize OH- or water at the catalyst surface to produce •OH radicals, which are extremely
strong oxidants (the oxidation potential of the •OH radical is 2.80 V). The hydroxyl radicals
subsequently oxidize the MB dye and produce CO2 and H2O (Figure 9) [36–38]. The
electrons on the catalyst surface are rapidly captured by molecular oxygen adsorbed on the
catalyst surface and are reduced to form superoxide radical anions (O2

•−; the oxidation
potential of the superoxide radical anion is −2.4 V). Superoxide radicals react with the MB
dye to produce CO2 and H2O, as shown in Equations (5)–(8), respectively.

Fe2O3 + hν→ Fe2O3
(
e−CB + h+

VB
)

(5)

O2 + e−CB → O−.
2 (6)

H2O + h+
VB → H+ + HO. (7)

MB + O−.
2 and HO. → decompositon products (8)
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Table 1. Comparison of the photocatalytic degradation of various dyes using various α-Fe2O3

nanostructures.

S.No. Catalyst/
Morphology Contaminant (s) Lamp Power and

Irradiance Light % Removal Pseudo-First-Order
Rate Constant References

1 Porous Fe2O3
nanorods

Rhodamine B (RhB)
eosin B,
Methylene blue (MB),
p-nitrophenol,
Methylene orange (MO)

500 W Xe lamp Simulated
solar light

86%
83%
23%
17%
13%

0.0131 min−1 [39]

2 α-Fe2O3
nanowires RhB 350 W Xenon lamp 420 nm cut-off filter 85% - [40]

3 Porous Fe2O3
nanotubes RhB Xenon lamp λ ≥ 420 nm 99% 0.282 min−1 [41]

4 Cubic Fe2O3
Disc Fe2O3

RhB

12
Philips TL
8w/54-7656
bulb lamps

- - 0.005 min−1

0.042 min−1 [42]

5 Mesoporous
spindlelike Fe2O3

RhB

Mercury and
tungsten mixed light
lamp (OSRAM,
250W, including UV
and visible light)

UV and visible light 95% - [43]

6 Ultrathin α-Fe2O3
nanosheets Bisphenol S (BPS) A 300 W xenon lamp

(PE300BF) 420 nm cut-off filter 90% 0.0164 min−1 [44]

7
1D α-Fe2O3
nanobraids
1D α-Fe2O3
nanoporous

Congo red (CR) 400 W metal halide
lamp λ ≥ 365 nm 91%

90% - [45]

8 Porous α-Fe2O3
nanorods MB 250 W halide lamp 420 nm cut-off filter 95% 1.04 × 10−2 min−1 [46]

9 α-Fe2O3 hollow
sphere Salicylic acid - UV light - - [47]

10 α-Fe2O3 hollow
spindles Phenol

high-pressure Hg
lamp (500 W,
Nanjing Stonetech)

UV irradiation
(high-pressure Hg
lamp is 365 nm
after filtering)

10% - [48]

11 α-Fe2O3
mesoporous Salicylic acid high-pressure

Hg lamp UV irradiation 95% - [49]

12 α-Fe2O3 hollow
microspheres Salicylic acid high-pressure Hg

lamp (300 W) UV light 58% - [50]

13

α-Fe2O3 hollow
microspheres
assisted
solvothermal
method

RhB 300 W Xe lamp 400 nm cut-off filter 98% - [51]

14 α-Fe2O3 Rose Bengal 200 W tungsten lamp - 98% 1.57 × 10−2 min−1 [52]

15 α-Fe2O3 H2S

Xe-lamp light source
(Oriel, New-port
Stratford, Stratford,
CT) of intensity
450 W

cut-off filter
(>420 nm) - - [53]

16

α-Fe2O3 dendrites,
αFe2O3
nanospindles,
α-Fe2O3 nanorods,
α-Fe2O3
nanocubes

RhB 2 mW UV source (λ = 365 nm)
82%
83%
84%
84%

0.322 min−1

0.589 min−1

0.8505 min−1

0.876 min−1

[54]

17 α-Fe2O3
nanoparticles RhB 500 W xenon lamp 420 nm cutoff filter 52% - [55]

18
1D α-Fe2O3
microrods
1D α-Fe2O3
nanorods

RhB 300 W xenon lamp λ > 420 nm - 0.00977 min−1

0.148 min−1 [56]

19
α-Fe2O3 oblique
α-Fe2O3 truncated
nanocubes

RhB 300 W Hg lamp λ = 365 nm 59% - [57]

20

α-Fe2O3
microflowers,
α-Fe2O3
nanoparticles
α-Fe2O3
nanospindles

RhB 500 W xenon lamp 420 nm cut-off filter
98%
94%
91%

- [58]
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Table 1. Cont.

S.No. Catalyst/
Morphology Contaminant (s) Lamp Power and

Irradiance Light % Removal Pseudo-First-Order
Rate Constant References

21
flowerlike
α-Fe2O3
nanostructures

RhB 250 W high-pressure
Hg lamp UV irradiation 59% - [59]

22
α-Fe2O3 hollow
core/shell
hierarchical
nanostructures

Phenol high-pressure
Hg lamp UV irradiation 60% - [60]

23 α-Fe2O3
nanoparticle MB outdoor sunlight - 33% 0.0033 min−1 Present

work

4. Conclusions

Hematite (α-Fe2O3) NPs were successfully synthesized using a facile hydrothermal
method. From powder XRD analysis, the as-synthesized α-Fe2O3 was found to have a
rhombohedral phase with high crystallinity. The FT-IR spectrum indicated the presence
of a α-Fe2O3 phase in the synthesized sample. The SEM images indicate the formation
of an aggregated spherelike morphology. DLS indicated that the synthesized hematite
particles dispersed in DW were stable with an average hydrodynamic size of 141 nm.
The photocatalytic activity of the as-synthesized α-Fe2O3 NPs was also studied for the
model contaminant MB dye under natural sunlight irradiation, and it was found that 33%
of the dye could be decomposed after 2 h of radiation exposure at natural pH without
introducing oxidants.
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