
HAL Id: hal-04389884
https://hal.science/hal-04389884

Preprint submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computation of Hilbert class polynomials and modular
polynomials from supersingular elliptic curves

Antonin Leroux

To cite this version:
Antonin Leroux. Computation of Hilbert class polynomials and modular polynomials from supersin-
gular elliptic curves. 2023. �hal-04389884�

https://hal.science/hal-04389884
https://hal.archives-ouvertes.fr


ar
X

iv
:2

30
1.

08
53

1v
2 

 [
m

at
h.

N
T

] 
 1

5 
D

ec
 2

02
3

Computation of Hilbert class polynomials and

modular polynomials from supersingular elliptic

curves

Antonin Leroux

DGA-MI, Bruz, France
IRMAR - UMR 6625, Université de Rennes, France

antonin.leroux@polytechnique.org

Abstract. We present several new heuristic algorithms to compute class
polynomials and modular polynomials modulo a prime p by revisiting
the idea of working with supersingular elliptic curves. The best known
algorithms to this date are based on ordinary curves, due to the supposed
inefficiency of the supersingular case. While this was true a decade ago,
the recent advances in the study of supersingular curves through the
Deuring correspondence motivated by isogeny-based cryptography has
provided all the tools to perform the necessary tasks efficiently.
Our main ingredients are two new heuristic algorithms to compute the
j-invariants of supersingular curves having an endomorphism ring con-
tained in some set of isomorphism class of maximal orders. The first one
is derived easily from the existing tools of isogeny-based cryptography,
while the second introduces new ideas to perform that task efficiently for
a big number of maximal orders at the same time.
For each of the polynomials (Hilbert and modular), we obtain two algo-
rithms. The first one, that we will qualify as direct, is based on the com-
putation of a set of well-chosen supersingular j-invariants defined over
Fp2 and uses the aforementioned algorithm to translate maximal orders
to j-invariants as its main building block. The second one is a CRT al-
gorithm that applies the direct algorithm on a set of small primes and
reconstruct the result modulo p with the chinese remainder theorem.
In both cases, the direct algorithm achieves the best known complexity
for primes p that are relatively small compared to the discriminant (for
the Hilbert case) and to the level (for the modular case).
Our CRT algorithms matches the complexities of the state-of-the-art
CRT approach based on ordinary curves, while improving some of the
steps, thus opening the possibility to a better practical efficiency.

1 Introduction

Hilbert class polynomials and modular polynomials are central objects in number
theory, and their computation have numerous applications. One field where these
computations are of particular interest is cryptography. The main applications
are to be found in elliptic curve cryptography and pairing-based cryptography,

http://arxiv.org/abs/2301.08531v2


but we can also mention, more marginally, the recent field of isogeny-based
cryptography.

Class polynomials, for instance, play a central role in the CM method, which
is the main approach to find ordinary curves with a prescribed number of points
over a given finite field (see [AM93,BS07]). This has applications to primality
proving with the ECPP method and finding pairing friendly-curves with the
Cocks-Pinch method.

Modular polynomials are related to isogenies between elliptic curves. His-
torically, they play a very important role in the SEA point counting algorithm
[E+98,Sch95] which remains one of the main algorithms used in elliptic-curve
cryptography to generate cryptograhic curves. Moreover, the interest in isoge-
nies have been renewed with the rise of isogeny-based cryptography. While most
applications tend to use the more efficient Vélu formulas [Vél71], we can cite a
few instances where modular polynomials have been considered. For example,
it is used in the CRS key exchange [Cou06,RS06], the very first isogeny-based
protocol, and we can also mention the OSIDH construction [CK19].

The goal of this work is to explore theoretical and practical improvements to
the best-known algorithms to compute class polynomials and modular polyno-
mials modulo prime numbers through the use of supersingular curves.

Related work. One of the main problems behind the computation of class polyno-
mials and modular polynomials is the huge size of their coefficients over Z. There
exists several algorithms of quasi-linear complexity [Eng09,CH02,Sut11,BLS12],
but more often than not, memory is the real bottleneck in the concrete compu-
tations of those polynomials. In theory, size is less an issue when the result is
needed modulo some prime p, but this is only true in practice if we have a way
to skip entirely the computation over Z, which is not so easy to get.

Nonetheless, Sutherland [Sut11] proved that this could be done for class poly-
nomials by a careful application of the CRT method. The result was later applied
to modular polynomials by Bröker, Lauter and Sutherland (BLS) [BLS12]. The
main advantage of the CRT method compared to other approaches is the low
memory requirement (almost optimal in the size of the final output), and this is
why this method has achieved the best practical results.

For both class and modular polynomials, the main tools used in the CRT
algorithms from [Sut11,Sut12,BLS12] are /ordinary elliptic curves.

Supersingular curves had been considered in the context of the Hilbert poly-
nomial computation in [BBEL08] and in the context of the modular polynomials
computation in [CL05], but these methods were discarded over the time because
they were slower than those based on ordinary curves.

The situation has changed with the recent interest on the connection be-
tween supersingular curves and quaternion algebras sparked by isogeny-based
cryptography.

Since the work of Deuring [Deu41], it is known that endomorphism rings of
supersingular curves in characteristic p are isomorphic to maximal orders in the
quaternion algebra Bp,∞ ramified at p and infinity, and that, conversely, every
such maximal order types arises in this way. This is the first result of what is now

2



called the Deuring correspondence. In this work, we are particularly interested
in the task of computing the j-invariants of the (at most 2) supersingular elliptic
curves over Fp2 having a given maximal order type as endomorphism ring.

The first concrete effort to realize that task is an algorithm of Cervino [Cer04]
to compute the endomorphism rings of all supersingular curves in characteristic
p. The complexity of this algorithm is O(p2+ε) and it becomes rapidly impracti-
cal. This algorithm was more recently improved by Chevyrev and Galbraith in
[CG14] but the complexity is still O(p1,5+ε). As part of cryptanalytic efforts to
understand the difficulty of various problems related to the Deuring correspon-
dence, a heuristic algorithm of polynomial complexity in log(p) was introduced
by Eisenträger, Hallgren, Lauter, Morrison and Petit [EHL+18] . This algorithm
builds upon the previous works of Kohel, Lauter, Petit and Tignol [KLPT14]
and Galbraith, Petit and Silva [GPS17].

More concretely, these works prove that an isogeny can be efficiently com-
puted between two supersingular curves of known endomorphism ring by trans-
lating the problem over the quaternions with the Deuring correspondence, solv-
ing the translated problems over quaternions, before translating back the solu-
tion as an isogeny. This can be applied directly to compute the j-invariants of
all curves with an endomorphism ring contained in a given maximal order type
by using one starting curve E0 of known endomorphism ring (such a curve can
always be computed efficiently with the CM method).

Recently, in [Rob22], Robert introduced new algorithms to compute modu-
lar polynomials from supersingular curves, this time using the high-dimensional
isogeny techniques recently introduced in the context of isogeny-based cryptogra-
phy cryptanalysis. Like us, Robert has a direct algorithm and a CRT algorithm.
The direct algorithm has a quadratic complexity in the level ℓ, just as our direct
algorithm, but the asymptotic complexity is somewhat differently balanced. The
CRT algorithm reaches the same complexity has Sutherland’s. Robert algorithm
have the very nice advantage to have a proven complexity without any heuristic,
but they require more memory, in particular the CRT algorithm.

Contributions. Our main contribution is to revisit previous methods to compute
Hilbert and modular polynomials from supersingular curves with the recent al-
gorithmic progress on the Deuring correspondence.

Our main sub-routine aims at translating a set of isomorphism class of maxi-
mal orders into their corresponding supersingular j-invariants under the Deuring
correspondence. We introduce two algorithms, with different performance pro-
files, to perform that task.

With these new algorithms, we obtain an improvement over the asymptotic
complexity of the class and modular polynomials computation in a wide range
of primes below some upper-bounds that depend either on the discriminant of
the class polynomial or the level of the modular polynomial. Moreover, we show
that our new algorithm can also be used in the CRT method to reach the same
complexity as ordinary curves, but with possibly better practical efficiency.

3



1.1 Technical overview

We start by looking at our main-subroutine that consists in the computation of
the j-invariants of supersingular elliptic curves corresponding to some set of max-
imal order isomorphism classes (called maximal order types, see Definition 1).
In the rest of this article, unless specified otherwise, a curve is considered to be
a supersingular elliptic curve.

Maximal orders to j-invariants. We propose two algorithms dedicated to that
task. Let consider that a set S of types is given in input, together with some
prime p.

Our first algorithm is called OrdersTojInvariantSmallSet and it consists merely
in a sequential execution of a sub-algorithm from [EHL+18] that performs the
desired translation for one type of maximal order. When everything is done care-
fully, it can be executed in O(log(p)5+ε) under experimentally verified heuristics
detailed in [KLPT14] and related to the probability for numbers represented by
some quadratic form to be prime. Thus, since OrdersTojInvariantSmallSet consists
in #S executions of this sub-algorithm, the total heuristic complexity of Orders-
TojInvariantSmallSet is O(#S log(p)5+ε). For a generic p and set of maximal order
type S, we do not know how to do better than that. However, when S contains
almost all maximal order types (the maximal size being upper-bounded by the
number of supersingular curves), it becomes sub-optimal due to the amount of
redundant computation performed along the way. In that case, it becomes much
more practical to use an algorithm designed to sieve through the entire set of
types, only focusing on the ones in S when they’re met along the way. It re-
quires a bit of care to perform this task in the most efficient manner but it can
be done, and this leads to the algorithm OrdersTojInvariantBigSet of complexity
O(#S log(p)2+ε + p log(p)1+ε). This algorithm requires one heuristic that we
detail in Section 3, as Claim 1. It is related to the expansion property of the
supersingular isogeny graphs.

We stress that both algorithms are designed to work (and analyzed) for a
generic prime p which is why they are so interesting.

The direct algorithms. Our heuristic algorithms OrdersTojInvariantSmallSet and
OrdersTojInvariantBigSet can be used directly to compute the roots of class and
modular polynomials modulo p (under the assumption that these roots are su-
persingular). The method is pretty straightforward: find the maximal order types
corresponding to the desired roots, then, compute them with either Orders-

TojInvariantSmallSet or OrdersTojInvariantBigSet. With the complexity we have
stated, this is already enough to obtain an asymptotic improvement over existing
generic methods when p is not too big (compared to the discriminant or level of
the associated class or modular polynomial).

If we write S the ”degree” of the polynomial (it is h(D) = O(
√

|D| log(D)ε)
for Hilbert polynomials of discriminant |D| and O(ℓ2) for modular polynomials
of level ℓ), then we obtain the following complexity with OrdersTojInvariantSmall-

Set:
O(S log5+ε p+ S log2+ε S log p).

4



With OrdersTojInvariantBigSet, the complexity becomes

O(S log2+ε p+ p log1+ε p+ S log2+ε S log p).

In both cases, the latter term comes from the polynomial reconstruction step
that must be performed to recover the polynomial from its roots. Note that the
size of the output is O(S log p). In terms of space, the requirement is quasi-
optimal in both cases: so O(S1+ε log p).

It is clear that the second algorithm will be better when p = O(S log(S)).
However, whenever S = o(p) (which is often the case in applications), it will be
better to use the variant with OrdersTojInvariantSmallSet.

The CRT for class polynomials. Let us take a prime p and a discriminant D < 0.
We want an efficient algorithm to compute HD(X) mod p. Our main algorithm
is essentially the same as the one introduced by Belding, Bröker, Enge and Lauter
in [BBEL08], and later improved by Sutherland in [Sut11] .

Let us write O for the quadratic imaginary order of discriminant D < 0. We
may assume that the factorization of D is known as computing it is negligible
compared to the rest of the computation. We define PO to be a set of primes.
We write BD for the bound on the bit-size of the coefficients of HD over Z.

Here is how the algorithm works:

1. Select some primes p1, . . . , pn in PO with
∏n

i=1 pi > 2BD .

2. Compute a suitable representation of Cl(D).

3. For each pi ∈ PO:

(a) Compute the coefficients of HD mod pi.

(b) Update CRT sums for each coefficient of HD.

4. Recover the coefficients of HD mod p.

The main difference between the several variants of the CRT approach (in-
cluding ours) lies is in the choice of the set PO and in the way to compute HD

mod pi. In [BBEL08], different algorithms were proposed to handle the distinct
cases of split and inert pi. In both cases, the HD mod pi are constructed from
their roots. These roots are always j-invariants of elliptic curves in characteristic
pi, but this is where the similarity ends. In the former case, the elliptic curves
are ordinary and are defined over Fpi , whereas in the latter case, we obtain su-
persingular elliptic curves defined over Fp2

i
. The ordinary and supersingular case

are very different and the resulting algorithms are also very different.

Sutherland [Sut11] improved the method from [BBEL08] for split primes by
a careful choice of the primes and other tricks to improve the computation of
HD mod pi.

We improve the method presented in [BBEL08] for non-split primes by mak-
ing use of the Deuring correspondence with our OrdersTojInvariantBigSet algo-
rithm to replace Cervino’s algorithm [Cer04].

5



The CRT for modular polynomials. Let ℓ be a prime distinct from p. We want
a CRT approach to compute Φℓ(X,Y ) mod p. It can be done in a very similar
fashion to class polynomials by computing Φℓ mod pi for some pi in a set Pℓ

and reconstruct the final polynomial via the CRT.
Bröker, Lauter and Sutherland (BLS in the rest of this article) in [BLS12]

proposed to use primes of the form (t2 − 4v2Dℓ2) with t, v,D ∈ N for which
there is a very specific volcano structure involving ℓ-isogenies. This structure
implies the existence of two distinct sets of ordinary curves defined over Fpi : the
curves with endomorphism ring isomorphic to O for some quadratic imaginary
order O of discriminant D and class number bigger than ℓ + 2 and the curves
with endomorphism ring isomorphic to Z+ ℓO. Since the latter are ℓ-isogenous
to the former, it is possible to recover the full Φℓ mod pi by computing the j-
invariants corresponding to these two sets of curves. The volcano structure allows
for efficient computation by minimizing the number of ℓ-isogeny computations.

For supersingular curves, the choice of primes is even easier than for class
polynomials: we can use any primes pi that is big enough. As long as the num-
ber of supersingular curves is bigger than ℓ + 2 we will be able to recover the
full modular polynomial. This idea has already been considered by Charles and
Lauter in 2005 [CL05] but in a rather direct way (where each of the ℓ-isogeny
involved is computed using the Vélu formulas).

We prove that using the Deuring correspondence andOrdersTojInvariantBigSet,
we can avoid entirely any ℓ-isogeny computation and minimize the cost of elliptic
curve operations.

Generic improvements to the CRT method. There are several ways to improve
the CRT method in practical applications. First, alternative class polynomials
and modular functions (with smaller height bounds) can be used instead of
the standard Hilbert class polynomial and modular polynomials for the same
practical purpose. This was the focus of the paper [ES10].

Second, for a number of applications such as the CM method and the SEA
point counting algorithm, computing these polynomials is actually not neces-
sary. What is really needed is the ability to evaluate them. Sutherland showed
[Sut12,Sut13] that it was possible to do better than compute-then-evaluate in
both cases, providing, in particular, an additional improvement in terms of mem-
ory requirement for those applications.

Using supersingular curves rather than ordinary ones should not prevent
from applying all these practical improvements. For clarity’s sake we focus on
the simpler computation of the standard polynomials and leave to the reader
the task of adapting these improvements to our new setting which should not
be too daunting.

Organisation of the article. The rest of this paper is organized as follows: in
Section 2, we introduce some background on isogenies, quaternion algebras and
the Deuring correspondence. Then, in Section 3, we introduce our main new
algorithm to compute efficiently j-invariants corresponding to maximal order
types. In Section 4, we explain in details how this algorithm can be applied to

6



the computation of class polynomial with the CRT method. In Section 5, we do
the same for modular polynomials.

Acknowledgement. We thank Andrew Sutherland and anonymous reviewers for
very useful feedback on this work.

2 Background material

2.1 Notations

Basic complexities. We write MZ(b) for the cost of multiplying two integers of
less than b bits. For asymptotic complexities we consider MZ(b) = O(b1+ε). For
instance, this covers the complexity of all arithmetic operations in a finite field
Fp of characteristic p of less than b bits.

Similarly, we write MP(b) for the cost (in terms of arithmetic operations over
k) of multiplying two polynomials of degree smaller than b over a base field k.
Depending on the size of b we will either use MP(b) = O(b log(b)1+ε or O(b1+ε).

Finally, the cost of fast interpolation algorithm for a polynomial of degree b
is O(M(P(b) log(b)).

2.2 Elliptic curves, quaternion algebras and the Deuring

correspondence

More precise references on the topics covered in this section are: the book of Sil-
verman [Sho94] for elliptic curves and isogenies, the book of John Voight [Voi18]
on quaternion algebras and theoretical aspects of the Deuring correspondence,
the thesis of Antonin Leroux [Ler22] for the algorithmic aspects of the Deuring
correspondence.

Supersingular elliptic curves and isogenies. An isogeny ϕ : E1 → E2 is a non-
constant morphism sending the identity of E1 to that of E2. The degree of an
isogeny is its degree as a rational map (see [HS09] for more details). When the
degree deg(ϕ) = d is coprime to p, the isogeny is necessarily separable and
d = #kerϕ. An isogeny is said to be cyclic when its kernel is a cyclic group.
The Vélu formulas [Vél71] can be used to compute any cyclic isogeny from its
kernel. For any ϕ : E1 → E2, there exists a unique dual isogeny ϕ̂ : E2 → E1,
satisfying ϕ ◦ ϕ̂ = [deg(ϕ)].

Endomorphism ring. An isogeny from a curve E to itself is an endomorphism.
The set End(E) of all endomorphisms of E forms a ring under addition and com-
position. For elliptic curves defined over a finite field Fq, End(E) is isomorphic
either to an order of a quadratic imaginary field or a maximal order in a quater-
nion algebra. In the first case, the curve is said to be ordinary and otherwise
supersingular. We focus on the supersingular case in this article. Every supersin-
gular elliptic curve defined over a field of characteristic p admits an isomorphic

7



model over Fp2 . It implies that there only a finite number of isomorphism class
of supersingular elliptic curves. The Frobenius over Fp is the only inseparable
isogeny between supersingular curves and it has degree p. We write π : E → Ep.
For any supersingular curve E, the property End(E) ∼= End(Ep) is satisfied but
we have E ∼= Ep if and only if E has an isomorphic model over Fp.

Quaternion algebras. For a, b ∈ Q⋆ we denote by H(a, b) = Q + iQ + jQ + kQ
the quaternion algebra over Q with basis 1, i, j, k such that i2 = a, j2 = b and
k = ij = −ji. Every quaternion algebra has a canonical involution that sends an
element α = a1 + a2i+ a3j + a4k to its conjugate α = a1 − a2i− a3j − a4k. We
define the reduced trace and the reduced norm by tr(α) = α+α and n(α) = αα.

Orders and ideals. A fractional ideal I of a quaternion algebra B is a Z-lattice
of rank four contained in B. We denote by n(I) the norm of I, defined as the
Z-module generated by the reduced norms of the elements of I.

An order O is a subring of B that is also a fractional ideal. Elements of an
order O have reduced norm and trace in Z. An order is called maximal when
it is not contained in any other larger order. A suborder O of O is an order of
rank 4 contained in O.

In this work, we will work with isomorphism classes of maximal orders in
some quaternion algebra B and this is why we introduce the notion of type.

Definition 1. The type of an order O written TypO is the isomorphism class
of O.

The left order of a fractional ideal is defined as OL(I) = {α ∈ Bp,∞ | αI ⊂ I}
and similarly for the right order OR(I). A fractional ideal is integral if it is
contained in its left order, or equivalently in its right order. An integral ideal
is primitive if it is not the scalar multiple of another integral ideal. We refer to
integral primitive ideals hereafter as ideals.

The product IJ of ideals I and J satisfying OR(I) = OL(J) is the ideal gen-
erated by the products of pairs in I × J . It follows that IJ is also an (integral)
ideal and OL(IJ) = OL(I) and OR(IJ) = OR(J). The ideal norm is multiplica-
tive with respect to ideal products. An ideal I is invertible if there exists another
ideal I−1 verifying II−1 = OL(I) = OR(I

−1) and I−1I = OR(I) = OL(I
−1).

The conjugate of an ideal I is the set of conjugates of elements of I, which is an
ideal satisfying II = n(I)OL(I) and II = n(I)OR(I).

We define an equivalence on orders by conjugacy and on left O-ideals by
right scalar multiplication. Two orders O1 and O2 are equivalent if there is an
element β ∈ B⋆ such that βO1 = O2β. Two left O-ideals I and J are equivalent
if there exists β ∈ B⋆, such that I = Jβ. If the latter holds, then it follows that
OR(I) and OR(J) are equivalent since βOR(I) = OR(J)β. For a given O, this
defines equivalences classes of left O-ideals, and we denote the set of such classes
by Cl(O).

8



The Deuring correspondence is an equivalence of categories between isogenies of
supersingular elliptic curves and the left ideals over maximal order O of Bp,∞,
the unique quaternion algebra ramified at p and ∞, inducing a bijection between
conjugacy classes of supersingular j-invariants and maximal orders (up to equiva-
lence) [Koh96]. Moreover, this bijection is explicitly constructed as E → End(E).
Hence, given a supersingular curve E0 with endomorphism ring O0, the pair
(E1, ϕ), where E1 is another supersingular elliptic curve and ϕ : E0 → E1 is an
isogeny, is sent to a left integral O0-ideal. The right order of this ideal is isomor-
phic to End(E1). One way of realizing this correspondence is obtained through
the kernel ideals defined in [Wat69]. Given an integral left-O0-ideal I, we define
the kernel of I as the subgroup

E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I}.

To I, we associate the isogeny

ϕI : E0 → E0/E0[I].

Conversely, given an isogeny ϕ, the corresponding kernel ideal is

Iϕ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(ϕ)}.

In Table 1, we recall the main features of the Deuring correspondence.

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ

deg(ϕ) n(Iϕ)

ϕ̂ Iϕ
ϕ : E → E1, ψ : E → E1 Equivalent Ideals Iϕ ∼ Iψ
Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ
Table 1: The Deuring correspondence, a summary from [DFKL+20].

Effective Deuring correspondence After establishing the nice theoretical results
of the Deuring correspondence, it is natural to ask if we can obtain efficient algo-
rithms to perform the translation between the two sides of our correspondence.
This trend of work was started by Kohel, Lauter, Petit and Tignol in [KLPT14],
and developed By Galbraith, Petit and Silva in [GPS17]. In [EHL+18], Eisen-
trager, Haller, Lauter, Petit and Morrison provided the first complete picture
of the situation (at least heuristically). It turns out that if we start from the
quaternion side (either as a maximal order or an ideal), there are polynomial-
time algorithms to compute the corresponding element (j-invariant, or isogeny).

9



In particular, Eisentrager et al. introduced a heuristic polynomial-time algorithm
that computes the j-invariant corresponding to a maximal order type given in
input. Henceforth, we call this algorithm SingleOrderTojInvariant(). It will be a
crucial building block in one of our algorithm.

3 Computing j-invariants corresponding to maximal

orders.

Let us fix some prime number p.
In this section, we introduce two algorithms to compute the j-invariants of

supersingular curves over Fp2 corresponding to a set S of maximal order types
in Bp,∞. By the Deuring correspondence, we know that each maximal order type
in Bp,∞ corresponds to one or two j-invariants of supersingular curve over Fp2 .

We will explain in Section 3.1 how to represent efficiently maximal order
types as elements in some set H. Concretely, the input S to our algorithms will
be given as some subset of H.

Our two algorithms presented in Sections 3.2 and 3.3 target two opposite
situations with respect to the relative size of p and S. The first algorithm is
called OrdersTojInvariantSmallSet. As the name suggests, it targets the case where
#S/p is ”small”. It is a quite direct application of standard results on the ef-
fective Deuring correspondence, and handles each maximal order independently.
The asymptotic complexity is O(#S log p5+ε) and works for any prime p and
set S.

The second algorithm is called OrdersTojInvariantBigSet and it is more in-
volved in both design and analysis. It targets the case where S is made of a
significant portion of all O(p) possible types and is based on the idea that since
S is big enough, the strategy that consists in going through the entire supersin-
gular isogeny graph, collecting the j-invariants we want along the way, is quite
optimal. Its complexity is O(S log p2+ε + p log p1+ε). Hence, the cutoff between
the two methods will be for some S with #S = Θ(p/ log p2+ε). Note that our
second algorithm will be optimal when p/#S = Θ(log p1+ε).

3.1 Hashing to maximal order types

One of the important point for making our algorithms practical is to have a good
way to handle sets of maximal order types and test if a type belong in some set
of types.

For any maximal order O, we will represent TypO by an invariant H(O).
The purpose of this section is to introduce an efficiently computable invariant
H(O) and the corresponding function H .

To derive an invariant for an isomorphism classes of lattices, it is quite natural
to look at the smallest elements of that lattice. This idea was introduced by
Chevyrev and Galbraith [CG14] in a related context, and their result was recently
strengthened by Goren and Love [GL23]. Let us take a maximal order O. It can
be shown (see [CG14] and [GL23, Theorem 1.4]) that if x1, x2, x3 realize the

10



successive minimas of the Gross lattice OT = {2x−tr(x)|x ∈ O}, then the values
n1, n2, n3 where ni = n(xi) for i = 1, 2, 3 determine uniquely the maximal order
O.

This is enough to obtain an invariant of size O(log p) as it can be shown that
log(ni) = O(log p) for all i ∈ {1, 2, 3}. If needed, for compactness, one can then
apply some kind of hash function h : {0, 1}∗ → H where H is big enough to make
the probability of a collision negligible over all maximal order types in Bp,∞.

For a generic statement, we take an arbitrary function h (which might be the
identity) and assume its computational cost is negligible. Then, we define H as:

1. Compute OT .
2. Compute the three successive minimas x1, x2, x3 of OT .
3. Output H(O) = h (n(x1),n(x2),n(x3)).

Proposition 1. The hash function H presented above can be computed in O(log(X)1+ε)
when all the coefficients in the decomposition of the basis of O over 〈1, i, j, k〉
are smaller than X.

Proof. This can be achieved by computing the successive minimas of OT with
the algorithm to reduce ternary quadratic form of [ER01], or the L̃1 algorithm
from [NSV11] to perform lattice reduction in small dimension.

3.2 Matching maximal orders and j-invariant: a generic algorithm.

Let us fix a prime p. We assume that a function H as introduced in Section 3.1
is defined and we assume that the underlying hash function h is such that there
is no collisions over all maximal order types in Bp,∞.

The algorithm OrdersTojInvariantSmallSet is easily derived from the ideal-to-
isogeny algorithm described as [EHL+18, Algorithm 12] and whose main building
blocks where first introduced in [GPS17]. We provide a somewhat detailed de-
scription of this algorithm below. We refer to [GPS17,EPSV23] for a description
of the main algorithmic building blocks.

1. Compute a curve E0 and a maximal order O0 with End(E0) ∼= O0.
2. Set M = {}.
3. For each O ∈ S do:
4. Compute an ideal I of powersmooth norm connecting O0 and O
5. Translate that ideal into the corresponding isogeny ϕI .
6. Compute the j-invariant jO of the codomain of ϕI .
7. M = M ∪ {H(O), jO}.
8. Return M .

Under some heuristic assumptions regarding the distribution of numbers rep-
resented by quadratic forms (see [KLPT14]), the complexity of this algorithm is
O(#S log p5+ε).

For a concrete implementation, we propose to use the approach described in
[EPSV23].

11



3.3 Maximal orders to j-inv: a faster algorithm when #S ≈ p.

OrdersTojInvariantSmallSet treats independently each order in S. This is fine
when S is quite small compared to the number of maximal order types in Bp,∞,
but it becomes less and less optimal as #S/p increases. Indeed, we end up
redoing a lot of computations in that manner.

To overcome this problem when the ratio #S/p increases, we can try to
mutualize as much computation as possible by using an approach that explores
the entire isogeny graph and only targets the specific elements of S along the
way. Since, our exploration of the isogeny graph is completely generic, we obtain
an algorithm with a much better amortized cost per maximal order type.

More concretely, our idea is the following: take a smooth degree L such that
all supersingular curves are L-isogenous to some starting curve E0 of endomor-
phism ring in TypO0 for some maximal order O0. Compute all the O0-ideals of
norm L and their right orders and select the ones contained in the set S. Then,
enumerate efficiently through all the corresponding isogenies of degree L and
collect the j-invariants of the codomains. Since quaternion operations cost less,
we will do the exhaustive part over the quaternions, while minimizing the cost
of elliptic curve operations by ”selecting” the L-isogenies than we cannot avoid
to compute.

Note that we do the ideal and isogeny phases in a simultaneous manner in
OrdersTojInvariantBigSet. The good complexity we obtain will come from the care
we take in computing all the required isogenies in the most efficient way possible,
and in particular to avoid as many useless isogeny computations as possible. For
that, the choice of L will be very important. In particular, if L = L1L2, by
factorization of isogenies, we can compute all relevant L-isogenies by computing
all L1-isogenies and only a subset of all the O(L1L2) L2-isogenies. This subset
obviously depends on S and the L1L2-isogeny computations account for the
S log p2 terms in the complexity (because we will choose L2 to be smooth). The
p log p covers the costs of the quaternion operations (which does not depend on
S since we cover all maximal order types) and L1 isogeny computations.

Before describing the algorithm in itself, we need to provide several properties
and one heuristic claim that are going to be crucial for analyzing the algorithm
complexity and proving its correctness.

Preliminary results and a heuristic assumption. Our first results target the de-
gree L of the isogenies that we will use. As we explained above, this degree is
crucial for optimizing the algorithm. To enable the fast computation of a lot
of L-isogenies at the same time, we need it to be power-smooth (for efficient
application of the Vélu formulas), but with coprime factors that are not too
small.

Let us write Φ(N) the number of cyclic isogenies of degree N for any N ∈ N.

Lemma 1. There exists a bound B and constants B0, C0, 1 < C1 < C2 such
that for every number N > B, there exists a value n < B0 log(N) and integers
(ei)1≤i≤n such that, if we define ℓi to be the (n − i + 1)-th smallest prime and

12



Li = ℓeii then we have
√

C0 log(N) ≤ Φ(Li) < C0 log(N) for all 1 ≤ i ≤ n − 1,
(C0/2) log(N) ≤ Φ(Ln) < C0 log(N) and C1N ≤ ∏n

i=1 Φ(Li) < C2N .

Proof. We remind that when ℓ is a prime number and e ≥ 1 is an integer,
Φ(ℓe) = ℓe−1(1 + ℓ).

Let us take C0, 1 < C1 < C2 three constants. We leave these constants
unspecified for now. We start our reasoning without assuming anything on those
constants, and we will encounter conditions on them during the proof. At the
end, we will verify that these constraints can all be satisfied.

We also take a bound B that we assume to be ”big enough” for various
asymptotic inequalities to be verified. Let us finally take any integer N > B.

Let us construct two integers n,Λn recursively from Λ0 = 1 in the following
manner: if Λi ≥ C1N , then set n = i, otherwise let Λi+1 = Φ(λi+1)Λi with
λi+1 = ℓ

en−i

n−i where each ℓi is the n− i+ 1-th prime and ei is defined to be 1 if
Φ(ℓi) ≥ C0 log(N) or the biggest exponent such that Φ(λi+1) < C0 log(N).

It is clear that this recursive algorithm always terminates and so we can get
two integers n,Λn in that manner for any N . Moreover, we have C0/2 log(N) ≤
Φ(λ1) since ℓ1 = 2 and

√

C0 log(N) ≤ Φ(λi) for all other i (because if ℓi ≤
Φ(λi) <

√

C0 log(N), then ℓn−iΦ(λi) = Φ(ℓn−iλi) ≤ C0 log(N) and this is
impossible by construction of the exponent en−i).

Then, there are two possibilities: either Λn < C2N or Λn ≥ C2N .

First case: Λn < C2N . Let us set Li = λn−i+1 for 1 ≤ i ≤ n, we will show that
L1, . . . , Ln is satisfies all the required properties.

In fact, the only thing that remains to be verified is that Φ(Li) < C0 log(N)
for 1 ≤ i ≤ n− 1. By construction of the Li, it is clear that is suffices to prove
that the n-th prime (the divisor of L1) is smaller than C0 log(N)− 1.

By taking logarithms of the inequality
√

C0 log(N)
n ≤ Λn < C2N , we otbain

(n/2)(log(C0) + log log(N)) < Λn < log(C2) + log(N). From there, it follows
(since B is big enough) that n < 3 log(N)/ log log(N).

From asymptotic results on the size of the n-th prime (see for instance [RS62,
3.13]), we get that we can assume ℓ1 < 2n log(n) < 6 log(N). Thus, if C0 ≥ 7,
the result is proven.

Second case: Λn ≥ C2N . Since Λn is too big, we will try to divide Λn by
a factor δ. Since N is big enough, we can assume n ≥ 4. We don’t want to
modify λ1 since the bound is tight, but we can divide λ2, λ3 by some powers of
ℓn−1 = 3, ℓn−2 = 5. The idea is that we can remove up to O(

√

log(N)) from
λ2, λ3.

Since we have Λn−1 < C1N , by the same reasoning as before we get n <
1 + 3 log(N)/ log log(N). Hence, with ℓ1 < 2n log(n) we get ℓ1 < 7 log(N).

Since, Φ(λn) is either smaller than C0 log(N) or equal to ℓ1 + 1, we deduce
that Φ(λn) < max(8, C0) log(N) and it suffices to choose C0 ≥ 8 to ensure that
Φ(λn) < C0 log(N).

13



From there, we deduce Λn = Λn−1Φ(λn) < C0C1N log(N), from which we
get

C1N ≤ Λn < C0C1N log(N). (3.1)

Now, we want to find δ|Λn such that C1N ≤ Λn/δ < C2N . We start by using
λ2. Let us take δ2 as the biggest divisor of Φ(λ2) such that

δ2 < min(Λn/(C1N),
√

C0 log(N)/3).

If we assume C2 > 3C1, then we can clearly take δ2 ≥ 3 without having
Λn/δ2 ≤ C1N .

If Λn/δ2 < C2N , then we are done with Ln−1 = λ2/δ2 and Li = λn−i+1 for
all other 1 ≤ i ≤ n, as we have C1N ≤ Λn/δ2 < C2N and the bound Φ(λ2)/δ2 >
√

C0 log(N) is satisfied by choice of δ2 and the fact that Φ(λ2) > C0 log(N)/3.
If not and Λn/δ2 ≥ C2N , we will now try to remove a divisor of λ3. Before

that, it is useful to try to upper-bound Λn/δ2 more precisely.
We have δ2 > min(Λn/(C1N),

√

C0 log(N)/3)/3 (otherwise we could have

multiplied δ2 by 3). If the inequality Λn/(C1N) <
√

C0 log(N)/3 were to be true,
then we would have δ2 > Λn/(3C1N) and so Λn/δ2 < 3C1N . This is smaller
than C2N by our assumption on C1 and C2, and so this is a contradiction. Thus
we must have Λn/(C1N) ≥

√

C0 log(N)/3 and we can get the lower-bound

δ2 ≤
√

C0 log(N)/9. If we plug that into Eq. (3.1), we obtain the following

C1N ≤ Λ/δ2 < 9
√

C0C1N
√

log(N). (3.2)

Now, we define δ3 as the biggest divisor of Φ(λ3) such that

δ3 < min(Λn/(C1δ2N),
√

C0 log(N)/ℓ3).

Then, following the same reasoning as for δ2, we get that if we assume further
5C1 < C2, then we can take a non-trivial δ3. Furthermore, we have that either
Λn/(δ2δ3) < C2N and we are done (for the same reasons as before), or we must
have Λn/(δ2C1N) ≥

√

C0 log(N)/ℓ3.
In that case, we can plug this in Eq. (3.2) to get

C1N ≤ Λn

δ2δ3
< 225C1N. (3.3)

If we assume that C2 > 225C1 this is impossible and so we are done.
In summary, suitable integers L1, . . . , Ln can be found for any big enough N

assuming that the constants C0, C1, C2 satisfies:

– C0 > 7.
– C2 > 3C1.
– C2 > 5C1.
– C2 > 225C1.

This system of inequalities can clearly be satisfied and so this proves the result.

14



Definition 2. Given any integer N > B, the integers L1, . . . , Ln as defined in
Lemma 1 is called a good-degree basis for N .

We derive the following result that will be useful in our analysis.

Proposition 2. Take an integer N > B with good degree-basis L1, L2, · · · , Ln

with n > 7. Then, there exists a constant C3 such that

n−6
∑

i=1

(n− i)

i
∏

j=1

Φ(Lj) < C3
N

log(N)2
(3.4)

Proof. To prove the result, we are going to use the equalities
∑m

i=0 X
i = Xm+1−1

X−1

and
∑m

i=1 iX
i = X(mXm+1−(m+1)Xm+1

(X−1)2 ) for any m and X . By our definition of

a degree-basis in Lemma 1, we have that Φ(Lj) ≥
√

C0 log(N) for all 1 ≤ j ≤ n.

Thus,
∏i

j=1 Φ(Lj) < C2N/
∏n

j=i+1 Φ(Lj) < C2N/(
√

C0 log(N))n−i. Let us take

X = 1/
√

C0 log(N). We have
∑n−6

i=1 (n−i)
∏i

j=1 Φ(Li) < C2N
∑n−6

i=1 (n−i)Xn−i.
Then, we have

∑n−6
i=1 (n − i)Xn−i =

∑n−1
i=6 iX i = X6

∑n−7
i=0 (i + 6)X i. Then, we apply our

two equalities to get

n−6
∑

i=1

(n− i)Xn−i =X6(6
Xn−6 − 1

X − 1
) +

(n− 7)Xn−5 − (n− 6)Xn−6 +X

(X − 1)2
)

=X6 (n− 1)Xn−5 − (n− 12)Xn−6 − 5X + 6

(X − 1)2
.

Since, asymptotically, we will have X < 1 while n will increase, we have that
the leading term in the numerator of the fraction is 1, and so there exists C′

3 such

that
∑n−6

i=1 (n− i)Xn−i ≤ C′
3X

4. Thus,
∑n−6

i=1 (n− i)
∏i

j=1 Φ(Li) <
C2C

′

3

C2
0

N
log(N)2 .

⊓⊔

Our heuristic claim is about the size of L required to meet the condition that
all supersingular curves are L-isogenous to some curve E0. We rewrite this under
the Deuring correspondence as a condition on maximal orders and ideals.

Claim 1 There exists a constant C4 such that for any prime p and maximal
order O0 in Bp,∞, given any number N > pC4, every maximal order type in
Bp,∞ is obtained as the type of the right order of a left integral O0-ideal of norm
N .

Remark 1. Claim 1 is consistent with experiments regarding the diameter of
the graph of supersingular 2-isogenies made in [ACNL+21]. We also made some
small experiments that seems to be consistent with that idea.

In case our claim fails, it is possible to use several starting curve E0 to
decrease the probability of missing some curve. If this is still not enough, and

15



a few types are not obtained in this manner, it is always possible to apply
SingleOrderTojInvariant to compute the remaining j-invariants without damaging
too much the complexity.

For a given input p to OrdersTojInvariantBigSet, we assume the knowledge of a
good degree-basis L1, · · · , Ln (see Definition 2) of C4p (where C4 is the constant
in Claim 1). In OrdersTojInvariantBigSet, we will use the Li torsion points for all
i. For supersingular curves, these points can always be defined over an extension
Fpmi . We have the following lemma to bound the value of all the mi from Li.

Lemma 2. Let p be a prime number and E0 a supersingular curve over Fp2 .

For any integer N , coprime with p, there exists Ê0
∼= E0 over Fp such that the

torsion subgroup Ẽ0[N ] is defined over an extension Fpm of even degree m ≤ N
over Fp.

16



Algorithm 1 OrdersTojInvariantBigSet

Input: A prime p. , and a set of maximal order types in Bp,∞.
Output: The set of j-invariants corresponding to the maximal orders of S.
1: Establish L1, . . . , Ln, a good-degree basis for the number of supersingular curves.
2: Compute a supersingular curve E0 over Fp2 with known endomorphism ring O0.
3: Compute I0 = O0〈α0, L〉 one left integral O0-ideal of norm L :=

∏n

i=1 Li.
4: Find α ∈ End(E0) such that gcd(n(x+yα), L) = 1 for all x, y with gcd(x, y, L) = 1.

5: for i ∈ [1, . . . , n] do
6: Compute a basis P0,i, Q0,i of E0[Li] over Fpmi .
7: Compute the generator R0,i of E[I0 +O0Li] from Pi, Qi.
8: Compute S0,i = α(R0,i).
9: end for

10: Set List = [{E0,O0〈1〉, [R0,1, . . . , R0,n], [S0,1, . . . , S0,n]}].
11: Set M = {} and m = 0.
12: if H(O0) ∈ S then

13: M =M ∪ {(H(O0), j(E0))} and m = m+ 1.
14: end if

15: for i ∈ [1, . . . , n] do
16: NewList= [].
17: for x ∈ List do

18: Parse x as E, I, [Ri, . . . , Rn], [Si, . . . , Sn].
19: for all cyclic subgroups 〈CRi + [D]Si〉 of order Li in 〈Ri, Si〉 do

20: Compute P := [C]Ri + [D]Si.
21: Compute J the ideal O0〈α0(C +Dα), Li〉.
22: Set K := I ∩ J .
23: Set List1 = [], List2 = [].
24: Let O = OR(K).
25: if i < n then

26: Compute ϕ : E → E/〈P 〉.
27: Compute List1 = [ϕ(Ri+1), . . . , ϕ(Rn)].
28: Compute List2 = [ϕ(Si+1), . . . , ϕ(Sn)].
29: end if

30: if H(O) ∈ S and not contained in M already then

31: if i = n then

32: Compute ϕ : E → E/〈P 〉.
33: end if

34: M =M ∪ {(H(O), j(E/〈P 〉))} and m = m+ 1.
35: end if

36: if m = #S then

37: Return M .
38: end if

39: Concatenate NewList and [E/〈P 〉,K, List1, List2].
40: end for

41: end for

42: List = NewList.
43: end for

44: return M .

17



Proposition 3. Assuming Claim 1, OrdersTojInvariantBigSet is correct.

Proof. By Claim 1 and our choice of L, we see that each maximal order types in
Bp,∞ is obtained as the right order of a L-ideal. Thus, we need to prove that our
algorithm goes through every possible L-ideal and that it computes correctly
the j-invariant associated with the right orders of those ideals. We will make
our reasoning over isogenies and the Deuring correspondence will allow us to
conclude the result over ideals.

Every cyclic L-isogeny can be factored as ϕn ◦ . . .◦ϕ1 where ϕi is an isogeny
of degree Li. When Ri, Si is a basis of E[Li], then all cyclic subgroups of order
Li are generated by an element [C]Ri + [D]Si. There is a 1-to-1 correspondence
between cyclic subgroups of order Li and cyclic isogenies of degree Li. Since
R0,i, S0,i is a basis of E0[Li] and ϕi−1 ◦ · · · ◦ϕ1 has degree coprime with Li, the
two points Ri, Si are a basis of E[Li] and so this proves that our enumeration
covers all possible isogenies of degree Li at each iteration of index i of the loop
in line 19.

Thus, at the end of the loop we have covered all L-isogenies, and this means
that if our ideal computation is correct, then we have covered all maximal order
types and our algorithm is correct.

Remains to prove that the ideal I1 ∩ . . . ∩ Ii where each Ij = O0〈α0(Cj +
Djα), Lj〉 is the ideal corresponding to the isogeny ϕi ◦ . . . ϕ1 where each ϕj

has kernel ϕj−1 ◦ · · · ◦ ϕ1([Cj ]R0,j + [Dj ]S0,j) or equivalently that the kernel of

ϕi ◦ . . . ◦ ϕi =
∑i

j=1([Cj ]R0,j + [Dj ]S0,j).
For that, it suffices to prove the result for each coprime factor of the degree,

so we need to prove that E0[Ij ] = 〈[Cj ]R0,j + [Dj]S0,j〉. Let us go back to the
definition of an ideal kernel given in Section 2. We have E0[Ij ] = {P, β(IJ ) =
0∀β ∈ Ij{. Since Ij contains LjO0, it is clear that the kernel must be a sub-
group of E0[Lj ]. Since multiplication in Bp,∞ amounts to composition of the
corresponding isogenies, it suffices to verify that kerα0(Cj + Djα) ∩ E0[Lj ] =
〈[Cj ]R0,j + [Dj ]S0,j〉.

First, note that we have kerα0 ∩ E0[Jj ] = 〈R0,j〉 by definition of α0 and
R0,j . Then, we have ([Cj ] + [Dj ]α)([Cj ]R0,j + [Dj ]S0,j) = ([Cj ] + [Dj ](α)([Cj ] +
[Dj ]α)(R0,j) = [n(Cj+Djα)]R0,j . This proves that we have 〈[Cj ]R0,j+[Dj]S0,j〉 ⊂
kerα0(Cj +Djα) ∩ E0[Lj ].

By definition of α the scalar n(Cj + Djα) is coprime with Lj and so the
endomorphism Cj +Djα is a bijection on E0[Lj ]. Thus, there cannot be another
subgroup than 〈[Cj ]R0,j + [Dj]S0,j〉 that is sent to 〈R0,j〉 and this concludes the
proof that kerα0(Cj +Djα) ∩ E0[Lj ] = 〈[Cj ]R0,j + [Dj]S0,j〉.

With that last fact, we have proven the point.

Complexity analysis. Below, we give as Theorem 1, a complexity statement
for Algorithm 1. We derive this result from smaller statements for all the main
Steps of Algorithm 1. The proofs of these statements include a more detailed
description of the steps when needed. When a step has a complexity that will
end-up being negligible before the total cost, we will sometimes not bother with
a precise statement.

18



Note that all operations involving manipulations of the list M can be done
efficiently in O(1) using adequate data structure so we do not analyze this part
of the computation.

Since we look for an asymptotic statement, we assume that the size n of the
good-degree basis used is bigger than 6 so we can apply Proposition 2.

Proposition 4. Under GRH, Step 2 can be executed O(poly(log p)).

Proof. The first step can be performed using an algorithm that was described as
part of the proof of [EHL+18, Proposition 3]. The idea is the following. Select the
smallest fundamental discriminant d such that p is inert in the ring of integer Rd

of Q(
√
d). Note that it can be proven that d = O(log p2) under GRH. Then, we

know that there are supersigular curves that admit an embedding of Rd in their
endomorphism ring. The j-invariants of these curves are the roots to the Hilbert
class polynomial Hd. It suffices to find one root of Hd over Fp to get a supersin-
gular curve E0 whose endomorphism ring will contain the Frobenius π and an
endomorphism ι of norm d. This endomorphism can be found by computing all
the isogenies of degree d with the Vélu formulae. Since the suborder 〈1, ι, π, ι◦π〉
has an index in O(d) = O(poly(log p)) inside End(E0), and recovering the full
endomorphism ring can be done in O(poly(log p)).

This proves the result for Step 2.

Proposition 5. Step 3 and Step 4 can be executed in O(poly(log(p))) and the
output α0 and α have coefficients in O(poly(p)) over the canonical basis of Bp,∞.

Proof. First, note that we can fix a basis of O0 with coefficients (over the canon-
ical basis of Bp,∞) in O(p) (see [KLPT14, Section 2.3] for instance).

The Steps 3 and 4 can be solved in a similar manner despite a final goal that
is quite different. For Step 3, it is sufficient to find a β0 such that that the matrix
of the action of β0 on a basis of the L-torsion has two distinct eigenvalues. Then,
we can take α0 = β0 −λ where λ is one of the two eigenvalues. Note that this is
equivalent to saying that β0 needs to have two distinct eigenvalues mod Li for
all 1 ≤ i ≤ n.

For Step 4, a sufficient condition to obtain α such that gcd(n(x+yα), L) = 1
for all x, y with gcd(x, y, L) = 1 is to have that the matrix of α over a basis of
the Li-torsion with no eigenvalues for all 1 ≤ i ≤ n.

The existence and value of these eigenvalues mod Li for a quaternion el-
ement β can be verified directly by computing the roots of the polynomial
X2 + tr(β)X + n(β) mod Li.

Thus, to solve the two steps, we can apply the following method. First, for
each Li dividing L, find one element β0,i (resp. αi) in O0/LiO0 with two dis-
tinct (resp. no) eigenvalues mod Li. Since the ring O0/LiO0 is isomorphic to
M2(Z/LiZ) it is clear that a solution can be found by enumerating over the L4

i

elements of O0/LiO0.
Then, the final element β0 (resp. α) can be obtained by CRT (doing this

coefficient-wise over the basis of O0). The coefficients of β0 (resp. α) will have
size O(L) over the basis of O0 and so we get the desired result by taking into

19



account the coefficients of this basis over the canonical basis of Bp,∞. For each Li,
we have to enumerate at most L4

i quaternion elements, so the final complexity
statements follows from the complexity of computing modular squareroot and
the complexity of CRT.

Proposition 6. The FOR loop in line 5 can be executed in O(poly(log(p))).

Proof. The loop is repeated O(log p) times. Computing a basis is a very stan-
dard task and it can be done in O(poly(log(p))) since mi = O(log p). The gener-
ator R0,i can be computed in O(poly(log(p))) using the algorithm described in
[GPS17] to find the kernel of an ideal. Evaluating the endomorphism α can be
done by evaluating a basis of End(E0) and then performing the scalar multipli-
cations corresponding to the coefficients of α in this basis. The first part can be
done in O(poly(log(p))) with the ideas of the proof of Proposition 4 by choice of
E0 and the second can also be done in O(poly(log(p))) by the size bound given
on the coefficients of α in Proposition 5.

The main computational task of OrdersTojInvariantBigSet is quite clearly per-
formed during the loop in line 15. This FOR loop contains two inner loops. We
will incrementally provide complexity statements for each of these loops in orders
to clearly decompose the cost of each operations.

Proposition 7. At index i < n− 6, Step 26 produces a polynomial over Fp2 of
degree smaller than Li in O(MP(Li) log(Li)) operations over Fpmi . This polyno-
mial defines uniquely the isogeny ϕ. At index n− 6 ≤ i ≤ n, Li = ℓeii for some
prime ℓi ≤ 13 (the 6-th prime) and Step 26 produces ei polynomials of degree ℓi
over Fp2 in O(e2i ) operations over Fpmi . These polynomials uniquely defines the
isogeny ϕ.

Proof. It can be shown with the Vélu formulaes [Vél71], that to represent an
isogeny it suffices to compute its kernel polynomial, i.e., the polynomial whose
roots are the x-coordinate of the points of the kernel and that this polynomial
is always defined over Fp2 even if the kernel points are not.

From a single kernel point, the O(Li) points of the kernel can be generated
in O(Li) operations over Fpmi . Then, the kernel polynomial can be constructed
with complexity O(MP(Li) log(Li)) from its roots.

When n − 6 ≤ i ≤ n, we can write Li = ℓeii for some prime ℓi = O(1) and
then, we can factor our isogeny of degree Li as ei isogenies of degree ℓi. All these
isogenies can be computed in time O(e2i ) from a kernel generator (see [JDF11]
for more on this topic).

Proposition 8. There exists a constant C such that, at any index i ≤ n − 6,
the number of Fp-operations executed in Steps 27,28 of the FOR loop in line 19
is upper bounded by C(n− i) log pMP(log p). When i > n− 6, we have the upper-
bound C(n− i)llog(p)2MP(log p)

Proof. For each i < j ≤ n, we need to evaluate the polynomial produced by
Step 26 on the points Ri+1, . . . , Rn and Si+1,...Rn . By Proposition 7, when i ≤

20



n− 6, each evaluation costs O(Li) operations over Fpmj . The cost of arithmetic
over Fpmj in operations over Fp is upper-bound by C′MP(mj) for some constant
C′. So we get the result from Li = O(log p) and mj = O(log p) by Lemma 2.

When i > n − 6, there are ei = O(llog(p)) polynomials of degree ℓi = O(1)
and we get the desired result.

Remark 2. The Vélusqrt algorithm from [BFLS20] cannot be applied here be-
cause the kernel of the isogenies and the point on which the evaluation is per-
formed do not live in the same extension.

Proposition 9. There exists a constant C such that, at any index i ≤ n − 6,
the number of binary operations executed in each execution of the FOR loop in
line 19 is upper bounded by CΦ(Li)(n− i) log pllog(p)MP(log p)MZ(log p). When
n− 6 < i < n, the number of binary operations is smaller than

CΦ(Li)llog(p)
2MP(log p)MZ(log p).

Proof. For each execution of this loop, the number of iteration is exactly Φ(Li).
Arithmetic over quaternion orders and ideals such as intersection and right order
computation can be performed in O(MZ(log p)) (because the coefficients have
size in O(log p) and these operations are simple linear algebra in dimension 4).
Then, the hash can be computed in O(log p1+ε). Thus, the total cost of the
loop is O(Φ(Li) log p

1+ε) for quaternion operations for any i. This is negligible
compared to other operations when i < n.

The verification that H(O) ∈ S and insertion in the hash map operation can
be done in O(1) with the appropriate hash-map structure.

Then, there are the cost of operations over Fp for the isogeny computation.
To derive the total complexity, we apply Propositions 7 and 8. Arithmetic over
Fp takes O(MZ(log p)) binary operations. For any i, the kernel computation is
negligible. When i ≤ n− 6, the isogeny computation takes

O(Φ(Li) log pllog(p)MP(log p)MZ(log p)),

then the evaluations take O((n− i)Φ(Li) log pMP(log p)MZ(log p)).
Similarly, when n− 6 < i < n, this cost is replaced by

O(Φ(Li)llog(p)
2MP(log p)MZ(log p)).

Proposition 10. There exists a constant C such that, at any index i ≤ n− 6,
the number of binary operations executed in the FOR loop in line 17 is upper
bounded by C

∏i
j=1 Φ(Lj)(n − i) log p3+ε. When n − 6 < i < n, it is upper

bounded by C
∏i

j=1 Φ(Lj)(n − i) log p2+ε. When i = n, it is upper-bound by

C(#S log p2+ε + p log p1+ε).

Proof. There are Φ(Li) cyclic subgroups of order Li. Thus at index i < n, the

size of List is
∏i−1

j=1 Φ(Lj) and the result follows directly from Proposition 9.
When i = n, we perform the quaternion computations (intersection, right

order and computation of the hash value) for all
∏n

j=1 Φ(Li) subgroups. Thus,

21



since we have
∏n

j=1 Φ(Lj) = O(p) by Lemma 1 and Claim 1, and the cost

of quaternion operations is O(log p1+ε) as in the proof of Proposition 9, we
get that the cost for quaternion operations is O(p log p1+ε). The isogeny com-
putation is only performed when the right maximal order is contained in S,
thus, we can upper-bound the number of times where an isogeny is computed
by #S. As for all the i ≥ n − 6, the cost of each Ln-isogeny computation is
O(llog(p)2MP(log p)MZ(log p)) and this proves the result.

Proposition 11. The loop in line 15 can be executed in O(#S log p2+ε+p log p1+ε)
binary operations.

Proof. The total cost of the loop is directly obtained by summing over all
i the bounds in Proposition 10. We start by summing over all i ≤ n − 6.
We get an upper-bound on the number of binary operation by C

∑n−6
i=1 (n −

i)
∏i

j=1 Φ(Lj) log p
3+ε. So we get O(p log p1+ε) after applying Proposition 2.

For n− 6 < i < n, we get the upper-bound

C
n−1
∑

i=n−5

(n− i)
i
∏

j=1

Φ(Lj) log p
2+ε.

Since by Lemma 1, Φ(Ln) > C0/2 log p, we have
∏i

j=1 Φ(Lj) ≤ C′p/ log p for
some constant C′ and any i < n. Thus, since there is a constant number of
summands, we get the cost is in O(p log p1+ε) for those indices.

Finally, at i = n, we can apply directly the bound from Proposition 10. The
final cost is O(#S log p2+ε + p log p1+ε).

All the results above lead directly to the following theorem.

Theorem 1. Under Claim 1, on input p and S, OrdersTojInvariantBigSet can
be executed in

O(#S log p2+ε + p log p1+ε)

binary operations. The space requirement of OrdersTojInvariantBigSet is in O(p log p).

Proof. The cost of Step 1 is negligible before all the other computations. The
result follows from all the propositions proven in this section.

For the space requirement, the proof is quite similar. After each iteration of
the loop for an index i ≤ n, the list contains

∏i
j=1 Φ(Li) entries of the form

E,K, Pi+1, . . . , Pn, Qi+1, . . . , Qn where E is an elliptic curve, K is an ideal of
norm

∏i
j=1 Li and Pj , Qj are points of order Li. Thus, this can be represented

in O(
∏i

j=1 Φ(Li)(log p + (n − i) log(p2)). Using Proposition 2 for i ≤ n − 6
we see that this takes O(p log p) space. With Φ(Ln) = Θ(log(p)), we get that
∏i

j=1 Φ(Li) = O(p/ log p) and so the memory required for indices n− 6 ≤ i < n
is also in O(p log p). Finally, at index i = n the second term is zero and so we
get O(p log p).

Finally, the space required by the list M is O(#S log p) = O(p log p), and
this concludes the proof.

22



Good choice of primes. The analysis we provided above for both OrdersTo-

jInvariantSmallSet and OrdersTojInvariantBigSet does not assume anything on the
prime p. There are some ”nice” choices of primes p for which we could basically
gain a factor log p over all elliptic curve operations by having all the required
torsion point defined over Fp2 (thus saving the cost of operations over big Fp-
extensions). Since we are interested in a generic statement, we do not bother
with these marginal gains.

In the context of applying OrdersTojInvariantBigSet to the CRT method, this
idea will have its importance in the concrete choice of primes pi. However, due
to the linear dependency in p, it does not appear possible to select all CRT
primes among these “nice” primes. And so the CRT complexity will depend on
the worst-case complexity of our algorithm OrdersTojInvariantBigSet.

4 Computation of the Hilbert class polynomial

In this section, we introduce our two algorithms to compute Hilbert class poly-
nomial. In Section 4.1, we present the direct algorithm, and in Section 4.2, we
introduce the CRT algorithm and we also provide a comparison with Suther-
land’s CRT algorithm from [Sut11].

4.1 Computing the class polynomial modulo a non-split prime.

Let us fix some negative discriminant D and a non-split prime p in Q(
√
D) (and

we assume further that p is coprime to the conductor of O). We write h for the
class number of O. For simplicity, we assume below that the factorization of D
is known so this step is not part of our estimates.

Our goal in this section is to explain how to compute the Hilbert class poly-
nomialHD(X) mod p. This polynomial can be reconstructed from its roots that
are j-invariants of some supersingular curves over Fp2 .

When p is split, the roots correspond to ordinary curves. In Sutherland’s
algorithm they are obtained in two main steps algorithm [Sut11]: start by iden-
tifying one root, and then enumerate through all the roots using the action of
the class group Cl(O) through isogenies of small degree.

When p is non-split, we have three main steps. We start to do something
very similar to what is done for ordinary curves, but instead of working directly
with the roots, we first use the Deuring correspondence, and identify the roots
from the the corresponding maximal orders of the quaternion algebra Bp,∞. The
class group action of Cl(O) can be realized much more efficiently in that case
because all operations in Bp,∞ are essentially linear algebra.

The Deuring correspondence states that the set of maximal order we obtain
in this manner are isomorphic to the endomorphism rings of the elliptic curves
we want to compute. Thus, we constitue a set SD(p) of maximal order type and
we can apply OrdersTojInvariantBigSet on this set to compute the j-invariants
we need. This execution constitutes our third step.

23



The fourth and final step in our algorithm is common with the third step of
the ordinary case: recover the polynomial HD from its roots. Note that this is
done using standard polynomial arithmetic.

This is described more precisely in Algorithm 2.

Algorithm 2 SupersingularHilbertComputation(D, p)

Input: A discriminant D < 0 and a prime p such that p is non-split in, and coprime
to the conductor of,O the quadratic order of discriminant D.

Output: HD(X) mod p.
1: Find a maximal order O in Bp,∞ with O →֒ O.
2: Use the action of Cl(D) to find SD(p), the set of types of maximal orders in Bp,∞

with an optimal embedding of O. To each type O ∈ SD(p) is associated a number
nO ≥ 1 counting the multiplicity of the type O in this enumeration. The set of
these multiplicites is write ND(p).

3: Compute JD(p) = OrdersTojInvariantSmallSet(p,SD(p)) (or use
OrdersTojInvariantBigSet if this is more efficient).

4: Reconstruct H(X) =
∏
jD(p)∈J (X − j) mod p from SD(p), JD(p) and ND(p).

5: return Return H(X).

Proposition 12. SupersingularHilbertComputation is correct and it can be exe-
cuted in

O(
√

|D|(log(|D|)2+ε log(p)1+ε + log(|D|)ε log(p)2+ε) + p log(p)1+ε),

binary operations and requires O((p+h(D)) log p) memory when OrdersTojInvariantBigSet

is used in Step 1 (assuming GRH and Claim 1), and

O(
√

|D|(log(|D|)ε log(p)5+ε + log(|D|)2+ε log(p)1+ε)),

binary operations and requires O(h(D) log(p)) space with OrdersTojInvariantSmall-

Set (under GRH and the heuristics from [KLPT14]).

Proof. Correctness follows from [Onu21, Theorem 3.4]. We will now explain how
each step can be performed and what is the best known complexity.
Step 1. This task has already been solved in the context of generating backdoor
curves to the SIDH scheme [QKL+21] and generating keys for the Séta encryp-
tion scheme [DFFdSG+21]. First, we need to solve a quadratic equation over Q
to find a, b, c, d ∈ Q such that Z[a+ib+jc+kd] is the quadratic order of discrim-
inant D. This can be done using Simon’s algorithm [Sim05] to solve quadratic
forms in dimension 4. The complexity of Simon’s algorithm is polynomial in the
logarithm of the determinant once the factorization of the determinant is known
and the size of the output is also logarithmic in the determinant. In our case, the
quadratic form we consider is basically b, c, d, e 7→ (qb2 + p(c2 + qd2)− e2D and
its determinant is equal to p2q2D2f for some small integer f . The computation
of the full factorization is sub-exponential in log(pD).

24



Now that θ = a+ ib+ jc+kd has been computed, we need to find a maximal
order O containing it. Let us take A as the smallest common denominator of
a, b, c, d, we have A = O(poly(log(pD))). Then Aθ ∈ O0 whereO0 is any maximal
order containing the sub-order 〈1, i, j, k〉. Since Aθ ∈ O0, the right order of the
ideal I = O0Aθ+O0C contains θ. We can setO = OR(I) andO can be computed
in O(poly(log(p|D|))). Hence, this step can be performed in sub-exponential in
log p|D| and is negligible compared to the rest of the computation.

Step 2.We go from one maximal order type to all maximal order types of interest
by using the group action of the class group in a manner similar to what is
used by Sutherland in [Sut11]. For that, we use a polycyclic representation of
Cl(D) as introduced in [Sut11, Section 5]. But, in our case, instead of isogeny
computation, we can simply use arithmetic over quaternions through the action
of ideals of the form O(θ − λ) + Oℓ on the set of maximal orders containing θ
which cover all maximal order types we need. Any group action computation
for an ideal of norm ℓ takes O(log(ℓ)). Thus, using the same estimates than in
[Sut11, Lemma 7] where we see that under GRH the biggest norm of an ideal
involved a polycyclic representation is in O(log2(D)), we see that this part can
be performed in O(h log(|D|)ε) = O(

√

|D| log(|D|)ε).
We can hash (with the function introduced in Section 3.1) all the maximal

order types obtained in this manner to create the setSD(p) in O(
√

|D| log(|D|)ε-
log(p)1+ε).

Step 3. This step consists simply in the execution of OrdersTojInvariantBigSet
on the set SD(p) computed in Step 2. Thus, by Theorem 1 and the estimates
on h, the complexity of this step is O(

√

|D| log(|D|)ε log(p)2+ε + p log(p)1+ε).
Alternatively, it is possible to use the OrdersTojInvariantSmallSet algorithm and
obtain a complexity of O(

√

|D| log(|D|)ε log(p)5+ε).

The reconstruction step. The complexity of this step is O(
√

|D| log(|D|)2+ε-
log(p)1+ε) as was proven in [Sut11].

The total complexity. Putting together all the results above, we get the complex-
ity result.

Space complexity. In terms of memory requirement, the polynomial reconstruc-
tion requires O(h(D) log p) space (since we only need to store two levels of the
product tree at the same time). The set of maximal orders takes O(h(D) log p)
space. For the variant with OrdersTojInvariantBigSet, the results follows from
Theorem 1. When OrdersTojInvariantSmallSet is used, the computation of each
j-invariant is done sequentially, and so the space requirement is optimal and is
O(h(D) log p). ⊓⊔

Which version is optimal? We obtain two versions of SupersingularHilbertComputation

depending on weither we useOrdersTojInvariantSmallSet orOrdersTojInvariantBigSet.
For a given value of D, the former has a better asymptotic complexity. However,
for primes p in O(

√

|D| log(|D|)4+ε), the latter has a better complexity.

For a range of medium-sized primes, this algorithm will have the best known
complexity. The cut-off with the CRT method (whose complexity is O(|D|1+ε))

(as we will see below) happens for p = O(2|D|1/10).

25



4.2 Application to the CRT method and comparison with existing

method.

In this section, we present and analyze the algorithm yielded by applying the
CRT method from [Sut11] on top of the SupersingularHilbertComputation algo-
rithm introduced in the previous section. The algorithm is pretty straightfor-
ward, and the only constraint on the selection of the small primes.

Algorithm 3 HilbertComputation(D, p)

Input: A discriminant D < 0 and a prime p.
Output: HD(X) mod p.
1: Set BD as the upper-bound on the coefficients of HD(X) over Z.
2: Set PO = {}, P = 1, q = 3.
3: while P < BD do

4: if q is prime and q is non-split in and coprime to the conductor of O then

5: P ← q · P , Pℓ ← Pℓ ∪ {q}.
6: end if

7: q ← q + 2
8: end while

9: Perform the precomputations for the explicit CRT mod p using PO.
10: for q ∈ PO do

11: HO,q(X)← SupersingularHilbertComputation(D, q).
12: Update the CRT sums for each coefficient of HO,q(X).
13: end for

14: Perform the postcomputation for the explicit CRT to obtain HD(X) ∈ Fp[X].
15: return Return HD(X).

Proposition 13. Under GRH and Claim 1, the complexity of HilbertComputation

is O(|D| log3+ε |D|). The space requirement is O(
√

|D|(log2+ε |D|+ log p))

Proof. Under GRH, we can lower bound the probability that a given prime is
non-split in O by 1/2. Then, following the same reasoning as in [Sut11], it can be
shown that we have #PO = O(logBD/llog(BD)) and maxq∈PO

q = O(log(BD)).

With the usual logBD = O(
√

|D| log1+ε |D|) that holds under GRH, we get

that we can take O(
√

|D|) primes with maxq∈PO
q = O(

√

|D| log(|D|)). By
Proposition 12, the dominant complexity of each CRT computation is the cost
of the polynomial reconstruction. Thus, following the complexity estimates from
[Sut11], we obtain that the overall complexity estimate is O(|D| log(|D|)3+ε).
The space complexity follows from the space requirements computed in [Sut11]
and Proposition 12.

Practical comparison with the CRT algorithm based on ordinary curves from
[Sut11]. We can see that the complexity reported in Proposition 15 is the same
as Sutherland’s algorithm from [Sut11]. Even if the two algorithms have the

26



same asymptotic complexity, they might not have the same practical efficiency.
Below, we try to see which one could be faster in practice.

First, note that the set of CRT primes are very different between the two
methods. Since the probability that a given prime can be selected in PO in our
algorithm HilbertComputation is 1/2, the primes that we select are going to be
much smaller than the ones used in Sutherland’s algorithm.

Now, we look at the concrete algorithmic steps. Let us start with the poly-
nomial reconstruction step as it is the asymptotically dominant step. We re-
mind that the concrete complexity of this step is O(

√

|D| log(|D|)2+ε log(p). It
is pretty similar in both algorithms and we argue that the practical cost should
be roughly the same. This is not completely obvious since the primes will not
have the same size in the two cases and the roots are defined over Fp for ordinary
curves against Fp2 over supersingular curves. First, the size of the primes does
not really matter because the product

∏n
i=1 pi have roughly the same size in the

two cases and the complexity of the reconstruction is linear in log(pi) for all i.
Second, since in the supersingular case, the Galois conjugate (by the action of
the Frobenius) of a root of HD mod pi is also a root, by building the remainder
tree from polynomials of the form (X− j)(X− jpi) ∈ Fpi [X ], we see that we can
make the entire computation over Fpi as in the ordinary case (and thus avoid
the constant overhead brought by multiplications over Fp2

i
). We conclude from

this brief reasoning that the reconstruction cost will be essentially the same in
the two cases.

Now, if we forget the reconstruction step, we see that using supersingular
curve offers an asymptotic advantages. Indeed, in Steps 1, 2 and 3 of our algo-
rithm, the dominant step is the execution of OrdersTojInvariantBigSet in Step 3,
which has a O(|D| log(|D|)2+ε) complexity (if we consider the executions over all
primes pi ∈ PD and we use log(pi) = O(log(|D|))). In particular, this is smaller
than the O(|D| log(|D|)5/2+ǫ) that dominates that part of the computation in
Sutherland’s algorithm (corresponding to the computation of one curve with the
correct endomorphism ring).

This is the first reason that suggests that the supersingular case might be
more efficient than the ordinary one, but this is not the main one. The main
reason behind the practical speed-up we hope to obtain is that we can use smaller
primes. Indeed, the expected maximum of our primes is in O(

√

|D| log(|D|))
(against O(|D| log(|D|)1+ε for ordinary curves). Moreover, we can take all the
small primes that satisfy the reduosity condition. In particular, we will be able
to use a good portion of primes significantly smaller than

√

|D|.
We hope that the very small primes will give a nice improvement in practice

because for these primes, some of the roots will have big multiplicities, which
should help perform every steps more efficiently in practice (for example there
will be less than O(

√

|D|) j-invariants to compute in that case) and it should
improve the practical efficiency.

Note that there is also a good potential for practical improvement by carefully
selecting the primes in PD and choosing the good-degree basis used for each
of those primes in order to minimize the degree of the extension required to

27



compute the isogenies in OrdersTojInvariantBigSet. A selection is also performed
in the algorithm of Sutherland to help improve the cost of finding one curve with
the good cardinal, so it would be natural to do the same thing in our case.

Even if OrdersTojInvariantBigSet proves to be too slow to beat the version
of Sutherland by using only supersingular primes, it is clear that it is worth
considering an hybrid set of primes PD containing a mix of supersingular and
ordinary primes to obtain the best efficiency as the computation will be definitely
very fast for a lot of small non-split primes.

Further improvement: batching class polynomial computation. OrdersTojInvariantBigSet
can be easily modified to handle several sets S1, . . . ,Sk more efficiently than k
executions of OrdersTojInvariantBigSet for each Si.

Thus, if we have several discriminantsD1, . . . , Dk, and a prime p in
⋂

1≤i≤k PDk
.

A good part of the computations performed to compute HD1
, . . . , HDk

mod p
can be done at the same time at a reduced cost.

Moreover, if some HDi have some common roots, the common divisors could
be constructed once and for all.

Thus, our new method could be used to batch efficiently the computation of
several class polynomial at the same time.

5 Computation of the modular polynomials

In this section, we introduce our new algorithms to compute modular polyno-
mials. In Section 5.1, we present the direct algorithm, and in Section 5.2, we
describe the CRT algorithm and compare the various existing algorithms of the
literature.

5.1 Direct modular polynomial computation with supersingular

curves

Let us take a prime level ℓ and a prime p. To make a direct computation of
Φℓ(X,Y ) mod p it suffices to identify ℓ + 1 distinct j-invariants and for each
of those, to interpolate Φℓ(j, Y ) from its roots that are the ℓ + 1 ell-isogenous
j-invariants.

The idea of our algorithm for modular polynomials follows the same principle
as the class polynomials algorithm. There is a slight difference because modular
polynomials are bivariate but it does not change the generic principle of the al-
gorithm. Indeed the full polynomial Φℓ mod p is interpolated from the Φℓ(ji, Y )
for ℓ + 1 j-invariants (ji)0≤i≤ℓ of elliptic curves defined in Fp. Each univariate
polynomial Φℓ(ji, Y ) is reconstructed from its roots, that are the j-invariants of
curves ℓ-isogenous to ji.

In SupersingularModularComputation, we compute the maximal orders that
correspond to all the j-invariants that we need under the Deuring correspon-
dence, and then, we apply OrdersTojInvariantBigSet (or OrdersTojInvariantSmall-

Set) to find the required j-invariants.

28



Algorithm 4 SupersingularModularComputation(p, ℓ)

Input: A prime p and a prime ℓ such that ⌈p/12⌉ + 1 > ℓ.
Output: Φℓ(X,Y ) mod p.
1: Compute a set S0 = {O1, . . . ,Oℓ+1} of distinct maximal order types in Bp,∞.
2: Set S1, . . . ,Sℓ+1 = {}, . . . , {}.
3: for i = 1 to ℓ+ 1 do

4: Compute Ii,1, . . . , Ii,ℓ+1, the ℓ+ 1 left Oi-ideals of norm ℓ.
5: Si ← {OR(Ii,k)|1 ≤ k ≤ ℓ+ 1}.
6: end for

7: S =
⋃

0≤i≤ℓ+1 S0.
8: Compute J = OrdersTojInvariantSmallSet(p,S) (or use

OrdersTojInvariantBigSet(p,S) if this is more efficient).
9: Divide J as J0, J1, . . . Jℓ+1 corresponding to S0,S1, . . . ,Sℓ+1.
10: for i = 1 to ℓ+ 1 do

11: P (ji, Y )←
∏
j∈Ji

(Y − j).
12: end for

13: Reconstruct P (X,Y ) mod p from the P (j, Y ) for j ∈ J0.
14: return Return P (X,Y ).

Proposition 14. SupersingularModularComputation can be executed in

O(ℓ2(log ℓ2+ε log p1+ε + log p2+ε) + p log p1+ε)

binary operations and requires O((ℓ2+p) log p) when OrdersTojInvariantBigSet is
use in Step 8 (assuming GRH and Claim 1), and

O(ℓ2(log p5+ε + log ℓ2+ε log p1+ε))

binary operations and requires O(ℓ2 log p) space with OrdersTojInvariantSmallSet

(under GRH and the heuristics from [KLPT14]).

Proof. With the condition on the respective size of ℓ and p, we know there are
enough supersingular j-invariants defined over Fp2 . We now briefly explain how
each of the steps can be performed and what are their complexities.

By Claim 1, there is a value L = O(p) such that every supersingular j-
invariant are L-isogenous to a given j-invariant j0. Thus, under the Deuring cor-
respondence, the ℓ+ 1 maximal order types can be computed in O(ℓ log(p)1+ε)
by starting from a canonical maximal order type O0 ⊂ Bp,∞ (for which there
exists formulas in [KLPT14] for any p). Thus, the complexity of Step 1 is
O(ℓ log(p)1+ε).

The computation of an ℓ-ideal and of its right order can be done inO(log(ℓp)).
Thus, the set of maximal order types S can be computed in O(ℓ2(log p+ log ℓ)).

As show in [BLS12], the interpolation of all the Φℓ(ji, Y ), and the final in-
terpolation of Φℓ(X,Y ) take O(ℓ2 log ℓ2+ε log p1+ε) .

The final complexity statement follows from the results shown previously on
the complexities of OrdersTojInvariantBigSet and OrdersTojInvariantSmallSet.

29



The space complexity of the polynomial reconstruction is O(ℓ2 log p) and
the results follow from the space complexites of OrdersTojInvariantBigSet and
OrdersTojInvariantSmallSet.

5.1.1 Which version is better ? Thus, we see that the first algorithm based on
OrdersTojInvariantBigSet will be better for small values of p. We can estimate a
cut-off for a value of p in O(ℓ2+ε). In that range of primes, our algorithm with
OrdersTojInvariantBigSet has the best known generic complexity to compute Φℓ

mod p. For primes bigger than that, it is better to use the variant with Orders-

TojInvariantSmallSet to avoid the quasi-linear dependency in p. For a range of
medium-sized primes, this algorithm will have the best known complexity.

Space complexity. In terms of memory requirement our two algorithms are op-
timal and require O(ℓ2 log p).

5.2 CRT methods to compute modular polynomials from

supersingular curves.

In this section, we analyse the benefit of using supersingular curves in the CRT
method and compare it with the algorithm described by Bröker, Lauter and
Sutherland in [BLS12]. We refer the reader to the algorithm outlined in Sec-
tion 1.1. Since the CRT is typically based on a lot of very small primes, we use
the variant with OrdersTojInvariantBigSet.

Algorithm 5 ModularComputation(p, ℓ)

Input: A prime p, j ∈ Fp, a prime ℓ.
Output: Φℓ(X,Y ) mod p.
1: Let j be the integer in [0, p− 1] equal to j mod p.
2: Set Bℓ = 26ℓ log ℓ+18ℓ+log(ℓ+2).
3: Set Pℓ = {}, P = 1, q = 12ℓ.
4: while P < Bℓ do

5: if q is prime then

6: P ← q · P , Pℓ ← Pℓ ∪ {q}.
7: end if

8: q ← q + 2
9: end while

10: Perform the precomputations for the explicit CRT mod p using Pℓ.
11: for q ∈ Pℓ do
12: Pq(X,Y )← SupersingularModularComputation(q, ℓ).
13: Update the CRT sums for each coefficient of Pq(X,Y ).
14: end for

15: Perform the postcomputation for the explicit CRT to obtain P (X,Y ) ∈ Fp[X,X].
16: return Return P (X,Y ).

30



Proposition 15. The complexity of ModularComputation is O(ℓ3 log ℓ3+ε). The
space requirement is O(ℓ2 log p).

Proof. Following the same reasoning as in [Sut11], it can be shown that we have
#Pℓ = O(Bℓ/ log(Bℓ)) and maxq∈Pℓ

q = O(log(Bℓ)). The choice of Bℓ for the
bound on the coefficients of Φℓ holds under GRH. We get that we can take O(ℓ)
primes with maxq∈Pℓ

q = O(ℓ log(ℓ)).
By Proposition 14, for the complexity of SupersingularModularComputation

with OrdersTojInvariantBigSet, and the complexity of the CRT steps described in
[BLS12], we see that the complexity of each CRT computation takesO(ℓ2 log(ℓ)3+ε).
Thus, we obtain that the overall complexity estimate is O(ℓ3 log(ℓ)3+ε). The
space complexity follows in a similar manner.

On the cost of elliptic curve operations. The complexity of our algorithm is
dominated by the polynomial reconstruction step. Note that this is also the case
for the BLS algorithm.

However, unlike BLS, the rest of our computation is much more efficient.
Indeed, if we look at the cost of the elliptic curve operation (the cost of all the
elliptic curve operations inside the calls to SupersingularModularComputation),
we see that the global complexity is only quadratic in ℓ. Indeed, we use primes
q of size O(ℓ1+ε) for which there exists only O(ℓ1+ε) supersingular j-invariants.
This means that we can simply compute them all with OrdersTojInvariantBigSet

in quasi-linear time in ℓ, thus yielding a quadratic complexity over all CRT
primes. This is why we expect our algorithm to produce a practical speed-up
over the BLS method.

Batching the computation. Similarly to the Hilbert polynomial case, the set of
small primes can be reused in the computations over various ℓ. In fact, the
situation is even better in the modular case, because, apart from size, there
are no restrictions on the primes. Thus, if we want to compute Φℓi for primes
ℓ1, ℓ2, . . . , ℓk of the same size, we will be able to use the same exact set PD for
all the computations. Thus, only the polynomial reconstruction phase will be
specific to each ℓi, and the rest needs to be done only once.

5.3 Comparison between different existing methods

Here, we compare the complexity of various known methods to compute modular
polynomials. Note that some of these methods are proven under some quite
ad-hoc heuristics (ours in particular) while some others are proven rigorously.
However, all the heuristics used in the various method are plausile and have been
verified experimentally. Thus, we don’t expect that these heuristics should be
problematic for a practical comparison.

Here is the list of algorithms to consider:

1. Our direct algorithm SupersingularModularComputation.
2. The direct algorithm from Robert [Rob22].

31



3. The CRT algorithm from BLS [BLS12].
4. Our CRT algorithm ModularComputation.
5. The CRT algorithm from Robert [Rob22].

The two direct algorithms are the only known algorithms for generic primes
whose complexity is only quadratic in ℓ. We have stated the complexity of the two
variants of SupersingularModularComputation in Proposition 14. The complexity
of Robert’s direct algorithm is O(ℓ2 log p log2+3u ℓ) for some parameter u that
might be 2 or 4 (it’s not really clear which one).

On the other hand, the complexity of the three CRT algorithms is the same:
it is cubic in ℓ and independand of p. BLS and ours are optimal in memory,
while Robert’s is not.

We will compare these various complexities by makin the value of p vary
while ℓ remains fixed.

For small values of p, SupersingularModularComputation with OrdersTojInvariantBigSet

will be the best algorithm as noted in the end of Section 5.1. However, due to
the linear complexity of p, this algorithm will quickly be outperformed by the
other algorithms as p grows. As soon as ℓ = o(

√
p), it will be better to use

SupersingularModularComputation with OrdersTojInvariantSmallSet. The log ℓ fac-
tor is only quadratic in the complexity of SupersingularModularComputation so it
will remain better than Robert’s direct algorithm when p remains not too big.
However, since the log p factor has an exponent of 5 in SupersingularModularComputation

while Robert’s algorithm is linear in log p, the latter will eventually outperform
our direct algorithm. The exact cross-point will depend on the value of u.

Finally, due to the fact that the CRT methods have a running time indepen-
dant of p, they will end up being more efficient than the direct algorithms when
ℓ = o(log p).

The practical efficiency of Robert’s algorithm is hard to estimate, but it
might not be competitive with the other two due to its much bigger memory
requirement (which ends being quite problematic as modular polynomial are
huge). We have already argued that we expect our method to outperform the
method from BLS in practice.

6 Conclusion

We have introduced several new algorithms to compute modular polynomials
of level ℓ and Hilbert polynomials of discriminant D modulo a generic prime
number p from supersingular curves. The direct version of our algorithmsn have
complexity in ℓ2 and

√

|D| respectively for generic primes. Depending on the
relative size of ℓ,|D| and p, we exhibit improvements over the best known asymp-
totic complexities for a significant range of primes.

Moreover, when applied to the CRT method, we obtain an algorithm whose
complexity is the same as previously known CRT method, but with the po-
tential to give a practical improvement (in particular in the case of modular
polynomials).

32



It remains to see how efficient our new algorithms are in practice. There are
several practical challenges to overcome before providing an implementation of
the proposed algorithms (in particular related to the field extensions involved
in the computations of some isogenies), and this is why we leave the concrete
implementation to future work.

References

ACNL+21. Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim,
Kristina Nelson, Travis Scholl, and Jana Sotáková. Adventures in su-
persingularland. Experimental Mathematics, pages 1–28, 2021.

AM93. A Oliver L Atkin and François Morain. Elliptic curves and primality
proving. M athematics of computation, 61(203):29–68, 1993.

BBEL08. Juliana Belding, Reinier Bröker, Andreas Enge, and Kristin Lauter.
Computing hilbert class polynomials. In International Algorithmic
Number Theory Symposium, pages 282–295. Springer, 2008.

BFLS20. Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith.
Faster computation of isogenies of large prime degree. ANTS, 2020.

BLS12. Reinier Bröker, Kristin Lauter, and Andrew Sutherland. Modular
polynomials via isogeny volcanoes. M athematics of Computation,
81(278):1201–1231, 2012.

BS07. Reinier Bröker and Peter Stevenhagen. Efficient cm-constructions
of elliptic curves over finite fields. M athematics of Computation,
76(260):2161–2179, 2007.

Cer04. Juan Marcos Cervino. On the correspondence between supersingu-
lar elliptic curves and maximal quaternionic orders. arXiv preprint
math/0404538, 2004.

CG14. Ilya Chevyrev and Steven D Galbraith. Constructing supersingular el-
liptic curves with a given endomorphism ring. LMS Journal of Compu-
tation and Mathematics, 17(A):71–91, 2014.

CH02. Jean-Marc Couveignes and Thierry Henocq. Action of modular corre-
spondences around cm points. In International Algorithmic Number
Theory Symposium, pages 234–243. Springer, 2002.

CK19. Leonardo Colò and David Kohel. Orienting supersingular isogeny
graphs. Number-Theoretic Methods in Cryptology 2019, 2019.

CL05. Denis Charles and Kristin Lauter. Computing modular polynomials.
LMS Journal of Computation and Mathematics, 8:195–204, 2005.

Cou06. Jean Marc Couveignes. Hard homogeneous spaces. IACR Cryptology
ePrint Archive, 2006:291, 2006.

Deu41. Max Deuring. Die typen der multiplikatorenringe elliptischer funktio-
nenkörper. Abhandlungen aus dem Mathematischen Seminar der Uni-
versität Hamburg, 14(1):197–272, Dec 1941.

DFFdSG+21. Luca De Feo, Tako Boris Fouotsa, Cyprien Delpech de Saint Guilhem,
Péter Kutas, Antonin Leroux, Christophe Petit, Javier Silva, and Ben-
jamin Wesolowski. Séta: Supersingular encryption from torsion attacks.
In ASIACRYPT, 2021.

DFKL+20. Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and
Benjamin Wesolowski. Sqisign: compact post-quantum signatures from
quaternions and isogenies. In International Conference on the Theory

33



and Application of Cryptology and Information Security, pages 64–93.
Springer, 2020.

E+98. Noam D Elkies et al. Elliptic and modular curves over finite fields
and related computational issues. AMS IP STUDIES IN ADVANCED
MATHEMATICS, 7:21–76, 1998.

EHL+18. Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison,
and Christophe Petit. Supersingular isogeny graphs and endomorphism
rings: Reductions and solutions. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages
329–368. Springer International Publishing, 2018.

Eng09. Andreas Enge. The complexity of class polynomial computation
via floating point approximations. M athematics of Computation,
78(266):1089–1107, 2009.

EPSV23. Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, and Mattia
Veroni. Deuring for the people: Supersingular elliptic curves with pre-
scribed endomorphism ring in general characteristic. C ryptology ePrint
Archive, 2023.

ER01. Friedrich Eisenbrand and Günter Rote. Fast reduction of ternary
quadratic forms. In International Cryptography and Lattices Confer-
ence, pages 32–44. Springer, 2001.

ES10. Andreas Enge and Andrew V Sutherland. Class invariants by the crt
method. In International Algorithmic Number Theory Symposium,
pages 142–156. Springer, 2010.

GL23. Eyal Z Goren and Jonathan R Love. On elements of prescribed
norm in maximal orders of a quaternion algebra. arXiv preprint
arXiv:2307.16828, 2023.

GPS17. Steven D. Galbraith, Christophe Petit, and Javier Silva. Identification
protocols and signature schemes based on supersingular isogeny prob-
lems. In ASIACRYPT, 2017.

HS09. Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106.
01 2009.

JDF11. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-
QuantumCryptography, pages 19–34, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

KLPT14. David Kohel, Kristin E. Lauter, Christophe Petit, and Jean-Pierre Tig-
nol. On the quaternion ℓ-isogeny path problem. IACR Cryptology
ePrint Archive, 2014:505, 2014.

Koh96. D. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD
thesis, University of California at Berkeley, 1996.

Ler22. Antonin Leroux. Quaternion Algebra and isogeny-based cryptography.
PhD thesis, Ecole doctorale de l’Institut Polytechnique de Paris, 2022.

NSV11. Andrew Novocin, Damien Stehlé, and Gilles Villard. An lll-reduction
algorithm with quasi-linear time complexity. In Proceedings of the forty-
third annual ACM symposium on Theory of computing, pages 403–412,
2011.

Onu21. Hiroshi Onuki. On oriented supersingular elliptic curves. F inite Fields
and Their Applications, 69:101777, 2021.

QKL+21. Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale,
Lorenz Panny, Christophe Petit, and Katherine E Stange. Improved

34



torsion-point attacks on sidh variants. In CRYPTO , pages 432–470.
Springer, 2021.

Rob22. Damien Robert. Some applications of higher dimensional isogenies to
elliptic curves (overview of results). C ryptology ePrint Archive, 2022.

RS62. J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for
some functions of prime numbers. I llinois Journal of Mathematics, 6:64–
94, 1962.

RS06. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem
based on isogenies. Cryptology ePrint Archive, Report 2006/145, 2006.

Sch95. René Schoof. Counting points on elliptic curves over finite fields. Journal
de théorie des nombres de Bordeaux, 7(1):219–254, 1995.

Sho94. P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 124–134, Nov 1994.

Sim05. Denis Simon. Quadratic equations in dimensions 4, 5 and more. preprint,
2005.

Sut11. Andrew Sutherland. Computing hilbert class polynomials with the chi-
nese remainder theorem. M athematics of Computation, 80(273):501–
538, 2011.

Sut12. Andrew V Sutherland. Accelerating the cm method. LMS Journal of
Computation and Mathematics, 15:172–204, 2012.

Sut13. Andrew Sutherland. On the evaluation of modular polynomials. The
Open Book Series, 1(1):531–555, 2013.

Vél71. J. Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de
l’Académie des Sciences, Série I, 273:238–241, juillet 1971.

Voi18. John Voight. Quaternion Algebras. Springer Graduate Texts in Math-
ematics series, 2018.

Wat69. William C. Waterhouse. Abelian varieties over finite fields. Annales
Scientifiques de l’E.N.S, 1969.

35


	Computation of Hilbert class polynomials and modular polynomials from supersingular elliptic curves

