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Abstract 

Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice 
for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced 
photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) 
complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chloro-
phyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. 
Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data 
for modelling the PSII–temperature relationship in large populations in a small amount of time. Coefficients from these 
models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and 
Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible 
for breeding. Genome-wide association studies were performed across both species for these traits, representing 
the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to 
date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted 
roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for 
improving photosynthetic heat tolerance in rice.
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Introduction

The timing of heat stress events plays an important role in de-
termining yield impacts for rice (Salvucci and Crafts-Brandner, 
2004; Jagadish et al., 2015; Zhen et al., 2020; Li et al., 2021). For 
example, high night-time temperatures increase rates of dark 
respiration, which in turn increase the consumption of photo-
assimilates that may otherwise be translocated to reproductive 
sinks (Xu et al., 2021). Daytime heat stress events can have sub-
stantial effects on productivity if they co-occur with anthesis 
(Lafarge et al., 2016; Jagadish, 2020). During pre-anthesis de-
velopmental stages, heat stress events can detrimentally impact 
photosynthesis, which in turn impairs growth and the build-up 
of stem-stored water-soluble carbohydrates (WSC; Khan et al., 
2019; Qu et al., 2021) that are important for subsequent grain 
filling. Therefore, the ability to limit pre-anthesis leaf senes-
cence can be an important target trait for developing climatic 
resilience in rice.

The increasing frequency and intensity of heat stress events 
in key rice growing regions (Sun et al., 2021; Sun et al. 2022) 
necessitates the development of novel heat-tolerant varieties. 
This goal can be achieved through the identification of mark-
ers that are linked to heat-tolerant loci for marker-assisted 
breeding, or through the identification of genes that regulate 
natural variation in heat tolerance that can form the basis of 
genetic engineering. These forward genetic approaches require 
the capacity to link genotypic information with phenotypic 
information. There is an abundant supply of single nucleo-
tide polymorphism (SNP) genotypic datasets available for 
rice thanks to work such as the 3000 Rice Genomes Project 
(Wang et al., 2018). These can facilitate genome-wide asso-
ciation studies (GWAS) to identify genetic regions linked to 
traits of interest. Consequently, the bottleneck in bridging the 
phenotype-to-genotype gap is the ability to quickly generate 
high-quality phenotypic data (Araus and Cairns, 2014; Yang 
et al., 2020; Song et al., 2021). For quantifying variation in heat 
tolerance this is an especially troublesome barrier to progress 
because the infrastructure required to expose large panels or 
populations of rice plants to elevated temperatures is substan-
tial. Here, prerequisites include access to large and well-regu-
lated controlled growth facilities or the ability to leverage field 
trials across geographic temperature clines.

Stabilizing photosynthesis under heat stress is an important 
determinant of heat tolerance, especially pre-anthesis, and it is 
phenotypically and genetically linked to the ability to stay green 
(Jagadish et al., 2015; Ferguson et al., 2020). Numerous aspects 
of photosynthesis are sensitive to increasing temperatures. For 
example, perturbed re-activation of Rubisco by Rubisco acti-
vase contributes to the decline in active carbon fixation with 

increasing temperatures (Salvucci and Crafts-Brandner, 2004; 
Qu et al., 2021). Moreover, as temperatures increase Rubisco 
specificity for carboxylation compared with oxygenation 
declines, and therefore photorespiration increases and photo-
synthetic output decreases (Cavanagh et al., 2022). The most 
heat-labile aspect of photosynthesis, however, is photosystem 
II (PSII) (Yamamoto, 2016; Yoshioka-Nishimura, 2018). PSII 
is the protein complex that catalyses the first reaction in pho-
tosynthesis. Here, a series of light-dependent electron-transfer 
reactions result in the splitting of water molecules, converting 
light energy into chemical energy (Shen, 2015). As tempera-
tures increase beyond optimal, the manganese-stabilizing pro-
tein of the PSII complex is released, which perturbs the oxygen 
evolution reaction (Thompson et al., 1989; Sharkey, 2005). This 
damage is reversible (Lydakis-Simantiris et al., 1999); however, 
as temperatures continue to increase, PSII disassembles and 
there is severe denaturation of chlorophyll-containing com-
plexes (Lípová et al., 2010), representing irreparable or long 
term damage.

The importance of stabilized photosynthesis for facilitating 
heat tolerance and the integral nature of PSII to this dynamic 
pinpoints chlorophyll fluorescence as a technique for facili-
tating phenomics of heat tolerance in crop species (Ferguson 
et al., 2021). Light energy absorbed by chlorophyll containing 
molecules in PSII can either facilitate photosynthesis, or be 
re-emitted as heat, or be re-emitted as light. The yield of re-
emitted light (i.e. chlorophyll fluorescence) can be used to de-
termine the quantum efficiency of PSII (Murchie and Lawson, 
2013). In recent years, we and others have demonstrated that 
it is feasible to combine relatively low cost chlorophyll fluo-
rescence platforms with custom methods of sample heating 
such as water baths or Peltier devices to screen the quantum 
efficiency of PSII in response to incrementally increasing tem-
peratures across several species, e.g. rice (Ferguson et al., 2020), 
tropical montane tree species (Feeley et al., 2020), wheat (Coast 
et al., 2022), and grapevine (Xu et al., 2014). These data have 
been employed to determine parameters that quantify key 
aspects of the relationship between PSII efficiency and tem-
perature. The most utilized of these is the critical temperature 
point (Tcrit), which is the temperature point at which PSII ef-
ficiency transitions from moderate to extreme reductions, and 
the temperature at which point PSII efficiency is 50% of its 
maximum, i.e. T50.

Whilst the efficiency of chlorophyll fluorescence temper-
ature response measurements has been well demonstrated 
in numerous species, there have not been any demonstrated 
instances of this approach being utilized to screen broad 
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intraspecific variation. Thus, demonstrating the applicability of 
this technique on a phenomics scale is required to understand 
its utility for forward genetics. To this end, we set a methodo-
logical target for this study to adapt our previous approach for 
screening chlorophyll fluorescence temperature responses by 
incorporating the use of silicone heater mats to screen substan-
tially more samples at a time. As a test case target, we sought 
to screen natural variation for these responses across separate 
African (O. glaberrima; Cubry et al., 2018) and Asian (O. sativa; 
Norton et al., 2018) rice diversity panels. Beyond testing the 
utility of our new approach for screening chlorophyll fluores-
cence temperature responses, we sought to (i) determine the 
extent to which quantitative trait loci (QTL) for photosyn-
thetic heat tolerance (PHT; e.g. Tcrit and T50) were consistent 
between the two diverged rice species and (ii) identify novel 
candidate genes for PHT as targets for developing heat toler-
ance in rice.

Materials and methods

Plant material and growth conditions
Seed from all accessions comprising this study were heat treated in water 
at 55 ℃ for 40 min to limit fungal infections and promote germination. 
Seeds were sown directly into 12 litre growth containers filled with a 
specialized rice compost (50:50; John Innes 3: Levington M3, The Scotts 
Company, Ipswich, UK). Forty-eight plants were grown per container 
in a randomized design, representing a planting density of 0.05 plants 
cm−2. One hundred and eighty-six accessions of the Bengal Assam Asus 
Panel (BAAP) of O. sativa (Norton et al. 2018) and 146 accessions of O. 
glaberrima (Cubry et al. 2018) were grown in total (Supplementary Table 
S1), and the reference IR64 O. sativa accession was grown in each growth 
container.

Plants were sown and grown in a common controlled-environment 
growth room. Here, a combination of metal halide and incandescent 
lamps were lowered such that the lighting intensity measured as photo-
synthetically active radiation was ~550 µmol m−2 s−2 at plant level. The 
photoperiod was set to a 12 h day–night cycle. Temperature was set to 28 
℃ (daytime) and 25 ℃ (night-time). Relative humidity stayed within a 
range of 50–70%.

Chlorophyll fluorescence–temperature response measurements
At 4 weeks post-sowing, a 4–4.5 cm portion of the third leaf of each plant 
was sampled. These leaf samples were arranged in a randomized manner 
on 2 mm-thick damp filter paper. The damp filter paper was placed on 
top of a 3 mm-thick aluminium sheet (40 cm×60 cm). Once all samples 
were arranged, a 1.5 mm-thick sheet of non-reflective glass (as described 
previously: Ferguson et al., 2020) was placed on top of the leaf samples 
taking care not to disturb their positions. One hundred to one hundred 
and twenty samples were arranged and measured in any given run of mea-
surements, where a reference map was produced on each occasion to de-
termine the identity of each sample. Samples were collected and arranged 
within 45 min in a room directly adjacent to the controlled growth room.

The aluminium sheet containing the samples was subsequently placed 
on top of two adjacent 400 W silicone heater mats (model LM240, 
Thermosense, Bourne End, UK) inside of a previously described 
(McAusland et al., 2019) custom closed chlorophyll fluorescence system 
(PSI, Czech Republic). The temperature of both silicone heater mats was 
regulated by the same proportional-integral-derivative (PID) controller 

(model CH102, Thermosense). Temperature feedback to the PID con-
troller was achieved via a K-type bead thermocouple that was placed 
underneath the glass sheet adjacent to leaf samples, and therefore the 
PID controller regulated the temperature of the heater mats according to 
the temperature adjacent to samples on top of the filter paper. Through 
testing with a separate thermocouple, we determined that as long as the 
thermocouple regulating the PID controller was between the glass sheet 
and the filter paper, its specific position did not influence the tempera-
ture of 10 random points across the entire temperature-regulated area 
containing the samples. Further testing demonstrated the temperature at 
the position of the regulating thermocouple never overshot, regardless of 
the temperature set point.

Before measurements of chlorophyll fluorescence, samples were allowed 
to dark adapt for 45 min. After this point, a measuring light pulse was 
switched on to provide a measure of minimal chlorophyll fluorescence 
(Fo). A follow-up saturating light pulse was used to provide a measure of 
maximum chlorophyll fluorescence (Fm). Variable fluorescence (Fv) was 
calculated as Fm−Fo and the maximum quantum efficiency of PSII was 
calculated as Fv/Fm. Following this room temperature measurement of 
Fv/Fm, the PID controller was switched on at an initial temperature of 25 
℃. Once the set temperature was reached a timer was set for 2 min. After 
this 2 min period, the aforementioned chlorophyll fluorescence measure-
ments were performed again. This was repeated at each incremental 1 ℃ 
of temperature up to 55 ℃, such that we obtained a value for Fv/Fm at 
30 temperature points and room temperature (Supplementary Video S1).

On each day of measurements, we performed one round of measure-
ments starting with sample preparation at 09.00 h, which was typically 
completed around 11.00 h. A second round of measurements was then 
performed starting with sample preparation at 11.30 h, which was typi-
cally completed at around 13.30 h.

Estimation of Tcrit, T50, m1, and m2

Raw data coming from the FluorCam 7 software used to operate the 
closed chlorophyll fluorescence system was quality checked and format-
ted within R as described previously (Ferguson et al., 2020) utilizing the 
following packages: plyr (Wickham, 2011), reshape2 (Wickham, 2007), 
and ggplot2 (Wickham, 2009).

We estimated Tcrit, m1, and m2 via the breakpoint modelling approach 
we have described previously (Ferguson et al., 2020) that utilizes the seg-
mented() function in the R package segmented (Muggeo, 2017). Tcrit is 
a computationally determined breakpoint in the relationship between 
Fv/Fm and temperature where the response of Fv/Fm transitions from a 
slow to a rapid decline. m1 and m2 are the slope values from linear mod-
els that define Fv/Fm as a function of temperature before and after Tcrit 
(Supplementary Fig. S1). Additionally, for this study we also estimated 
T50, which we define as the temperature point where Fv/Fm is 50% of 
the maximum value estimated on a sample-by-sample basis. This was 
achieved first by extracting the Fv/Fm value measured at 25 ℃, which 
was always the maximum value for Fv/Fm. We then constructed an in-
verse linear model of that used to estimate Tcrit, i.e. where temperature 
becomes the dependent variable and Fv/Fm is the independent variable. 
We then generated a segmented model based on this linear model as 
described previously. Using this segmented model, we predicted the tem-
perature (y), where Fv/Fm (x) was 50% of the previously extracted max-
imum value.

Statistical analyses
To account for unwanted variance with the traits of interest, we per-
formed linear mixed models to extract genotype variance components 
using the lmer() function from the lme4 R package (Bates et al., 2015). 
The models were constructed as:
Y = Zij + Zk + Zl + e
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where Y represents the vector of responses (Tcrit, T50, m1, or m2); Z 
represents a matrix of random effects due to the interaction between 
round and time of measurements (ij), the container from which a plant 
originated (k), and the genotype (l); and e is a vector of random errors. 
Genotype best linear unbiased predictors (BLUPs) were extracted from 
these models using the ranef() function from lme4. BLUPs were added 
to the population mean for each trait obtained from the above-described 
models to generate adjusted means that thereby controlled for unex-
plained variance in the traits. This approach was taken for each species 
separately since the experiments for each were also performed sepa-
rately. Unless stated otherwise, all further statistical analyses and genetic 
mapping were performed using BLUPs (Supplementary Table S2). The 
variances extracted from each linear mixed model were used to estimate 
broad sense heritability (H2) as the ratio of the variance due to genotype, 
i.e. genotypic variation, and the summation of variation from all sources, 
i.e. phenotypic variance.

For each species, we explored correlations between all pairwise 
trait interactions via Pearson’s correlation coefficient. These interac-
tions were visualized via a network plot constructed using the corr R 
package. Further graphical plotting was performed using the ggplot2 
R package, with some post-processing performed in Affinity Designer 
(Serif).

Genome wide association mapping
Since genotypic data was separate for the two species, GWAS were 
carried out individually for each population using previously pub-
lished pipelines. All SNP marker sets used in this study were aligned 
to the Nipponbare high quality reference genome (IRGSP-1.0), with 
bioinformatic pipelines, software and SNP filtering steps all described 
in more detail in Norton et al. (2018) and Cubry et al. (2018). For 
the O. sativa Bengal Assam Aus Panel (BAAP), GWAS was undertaken 
using PIQUE (Parallel Identification of QTLs Using EMMAX) as in 
Norton et al. (2018) and a latent factor mixed model (LFMM) was 
subsequently performed using the lfmm R package (Caye et al., 2019), 
using the published 2 053 863 imputed SNP marker-set filtered for 
minor allele frequency (MAF) >0.05 and missing data <0.1 (Norton 
et al., 2018). GWAS of the O. glaberrima population was performed 
via a bioinformatics pipeline utilizing GAPIT (Lipka et al., 2012) and 
encompassing multiple models including LFMM and efficient mixed 
model association (EMMA), as in Cubry et al. (2020), using 892 539 
imputed SNP markers (Cubry et al., 2018) filtered for MAF >0.05 
and missing data <0.05. Results from all analyses were visualized via 
QQ and Manhattan plots using the qqman R package (Turner, 2018). 
QQ plots were used to assess the two best fitting GWAS models for 
each trait within each population and to determine the significance 
threshold for SNP calling within these models. For most traits, visu-
alizing the distribution of the GWAS P-values (Supplementary Figs 
S2–S6) demonstrated a reduction in their effect compared with what 
would be expected for a normal distribution, likely due to the high 
polygenic nature of photosynthetic heat tolerance. Therefore, we used 
a less stringent threshold of −log10(P-value) <4 to determine SNPs of 
interest in most models.

A linkage disequilibrium (LD)-based clumping procedure on PLINK 
(Purcell et al., 2007) was used to process significant SNPs into putative 
QTLs based on average genome-wide LD (150 kb and 243 kb respec-
tively in O. glaberrima and BAAP populations, in accordance with pre-
viously published data). To reduce the likelihood of highlighting false 
positives, QTLs were discarded if they contained fewer than two SNPs 
(Norton et al., 2018).

Local LD was calculated between each SNP pair within a 500  kb 
region either side of each QTL peak for the BAAP population using 
the LDheatmap R package (Shin et al., 2006) to create LD heatmaps 
and matrices. All genes within these 1 Mb regions were annotated using 

the IRGSP-1.0 (International Rice Genome Sequencing Project) ref-
erence genome assembly from the Rice Annotation Project Database 
(RAP-DB). Genes containing at least one SNP in LD (r2>0.3) with a sig-
nificant SNP from GWAS were extracted for further analysis. This list of 
genes were used for Gene Ontology (GO) enrichment analyses using the 
PANTHER classification system (Mi et al., 2019). Candidate genes were 
shortlisted based on functional classification, GO, homology, expression 
over developmental stages based on information from the Rice Genome 
Annotation Project (RGAP), RAP-DB and RiceXPro, and differential 
expression within published rice heat stress transcriptomic studies (Liu 
et al., 2020; Sharma et al., 2021).

Results

Analysis of phenotypic variation

Our data acquisition and processing pipeline facilitated the 
generation of a dataset comprising the photosynthetic heat 
tolerances (PHTs) of 146 O. glaberrima and 186 O. sativa acces-
sions within 5 weeks of sowing seeds (Fig. 1; Supplementary 
Table S1). Through segmented modelling, we benchmarked 
PHT as Tcrit, T50, m1, and m2 as described previously (Ferguson 
et al., 2020; Supplementary Fig. S1), thereby characterizing the 
whole response of Fv/Fm to rapidly increasing temperatures 
(Fig. 2).

In general, the intraspecific variation for PHT within O. 
sativa was greater than the intraspecific variation within O. gla-
berrima (Fig. 3). For example, m2 varied from 0.142 to 0.169 in 
O. glaberrima (Fig. 3C) and from 0.092 to 0.206 in O. sativa (Fig. 
3D). Similarly, Tcrit varied from 45.7 to 48.8 in O. glaberrima 
(Fig. 3E) and from 47.3 to 50.7 in O. sativa (Fig. 3F).

The variation in PHT within O. sativa was shifted towards 
reduced sensitivity to temperature compared with O. glaber-
rima. For example, the population means for the slope metrics 
(m1 and m2) were greater in O. glaberrima (0.0053 and 0.151, 
respectively) compared with O. sativa (0.0049 and 0.132, re-
spectively; Fig. 3A–D), where reduced values here indicate a 
less extreme response. Similarly, the range in Tcrit and T50 values 
and their associated population means were reduced in O. gla-
berrima (44.7 and 46.8) compared with O. sativa (46.4 and 48.8; 
Fig. 3E–H), where greater values here indicate a less sensitive 
response to temperature, i.e. Fv/Fm reaches the critical temper-
ature point and 50% of the maximum Fv/Fm at a higher tem-
perature in general in O. sativa.

Except for the m2 parameter estimated in O. glaberrima, for 
which our mixed effect model did not well explain the data 
(R2=0.18), all of the PHT metrics estimated across both spe-
cies demonstrated moderate-to-high broad sense heritabili-
ties considering their complex nature (H2; Table 1). The most 
heritable trait was Tcrit, which was estimated at 0.65 in O. 
sativa and 0.61 in O. glaberrima. The least heritable trait for O. 
glaberrima was m2 (0.09), which conversely had a moderate 
heritability of 0.53 in O. sativa. The least heritable trait for O. 
sativa was m1 (0.48), which was also much less heritable in O. 
glaberrima (0.27).
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The only common correlation for both species was the 
strong positive correlation between Tcrit and T50, suggesting 
that genotypes that transition to the m2 phase of the associ-
ation between temperature and Fv/Fm fastest reach 50% of 
maximum Fv/Fm at the lowest temperatures, i.e. reduced PHT 
(Supplementary Table S3). The correlation between the Tcrit 
parameter and the m2 parameter was significant for both spe-
cies, but the direction of the correlation was reversed. Here, 
these parameters shared a positive correlation across the O. 
sativa accessions, but negative across the O. glaberrima acces-
sions. This suggests that O. sativa accessions that transition to 
the m2 phase at the lowest temperature demonstrate the lowest 
rate of decline in Fv/Fm from that point onward, whereas it 
suggests the opposite for the O. glaberrima accessions.

For O. glaberrima the only additionally significant correla-
tion was the positive correlation between m1 and T50, suggest-
ing that O. glaberrima accessions with the fastest initial decline 
in Fv/Fm reach 50% of the maximum Fv/Fm at the lowest 
temperature. This is also reflected in m1 and Tcrit showing a 
marginally non-significant (P=0.06) positive correlation also 
(Supplementary Table S3). For O. sativa, significant positive 
correlations were detected between Tcrit and m1 and between 
m1 and m2 (Supplementary Table S3), which suggests that lines 
that respond most strongly to the initial temperature increases 

(i) transition to the m2 phase quickest and (ii) also have the 
fastest rates of decline in Fv/Fm after the transition. Finally, m2 
and T50 demonstrated a significant negative correlation across 
the O. sativa accessions (Supplementary Table S3), which sug-
gests that lines that have the fastest rate of decline following 
the Tcrit point reach 50% of maximum Fv/Fm at the lowest 
temperatures.

Genome-wide association mapping

The T50 and Tcrit parameters demonstrated the highest herita-
bilities across the two species and were phenotypically linked 
to m1 and m2 in the majority (Table 1; Supplementary Table S3), 
and consequently we focused on these traits for our GWAS.

Marker-trait associations were tested using at least two dif-
ferent models, EMMA (Kang et al., 2008) and LFMM (Frichot 
et al., 2013), with additional computation of other GAPIT 
models including FarmCPU in the O. glaberrima population. 
For each trait within the two populations, we determined the 
best-fit model based on observations of the QQ plots, which 
describe the distribution of the P-values associated with all 
SNPs against what would be expected of a normal distribution 
(Supplementary Figs S2–S5). Within the O. sativa population 
there was little difference between the QQ plots, and therefore 

Fig. 1. Flow diagram demonstrating steps of data acquisition, data processing, and data analysis leading to the identification of candidate genes.
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EMMA was used as the best-fit for both T50 and Tcrit, whereas 
in O. glaberrima LFMM was superior for T50 whilst FarmCPU 
fit Tcrit marginally better than EMMA. QQ plots were further 
used to determine a cut-off significance threshold for SNPs. 
These plots suggested that T50 and Tcrit were polygenic in both 
species (Supplementary Figs S2–S5) and that a stringent signif-
icance threshold would be inappropriate for identifying SNPs 
of interest. Thus, to identify QTLs we employed a threshold 
of −log10(P)>4 in all but one of the models (T50-Glab-LFMM; 
Supplementary Table S4).

Significant SNPs were clumped into putative QTLs con-
taining two or more significant SNPs based on global LD of 
150 kb in O. glaberrima (Cubry et al., 2018) and 243 kb within 
the O. sativa BAAP population (Norton et al., 2018). Through 
comparison of the best-fitting GWAS models, 15 distinct QTLs 

were identified within the O. sativa and O. glaberrima popula-
tions (Table 2; Fig. 4), with high consensus in SNPs within 
these regions between the two best-fitting models for each 
trait. Whilst there were no overlapping QTL regions between 
the two species, there was overlap between traits within the O. 
sativa population. For example, within both of the T50 QTLs 
on chromosome 2 (Os-T50-2a and Os-T50-2b) and within 
Os-T50-11a, a singular significant SNP was also identified for 
Tcrit. Likewise, a significant T50 association was highlighted in 
Os-Tcrit-11a (Fig. 4).

Whilst most of the QTLs identified from this PHT screen 
appear to be novel, there are a couple that overlap with pre-
viously identified heat-tolerance QTLs. The BAAP popula-
tion-specific Tcrit QTLs on chromosome 3 (Os-Tcrit-3) and 
chromosome 5 (Os-Tcrit-5) overlap respectively with slpc3.1, 
shoot length under heat stress (Kilasi et al., 2018), and qhts-
5, spikelet fertility under heat (Ishimaru et al., 2016). Also of 
note with respect to O. glaberrima is the T50 QTL on chro-
mosome 8 (Og-T50-8), which is just 236  kb from a QTL 
identified in environmental GWAS by Cubry et al. (2020) for 
BIOCLIMATIC PRINCIPLE COMPONENT 2, which is 
explained primarily by the mean temperatures of the driest 
and coldest quarters. As the O. glaberrima SNP dataset was 
generated using alignment to the O. sativa Nipponbare ref-
erence genome (Cubry et al., 2018), the region between the 
two QTLs was investigated using the NCBI database. This 
identified 31 genetic loci, 14 of which have orthologues in 
O. glaberrima (Supplementary Table S5). These genes include 
those with roles in heat tolerance (Os08g0135900) and reac-
tive oxygen species (ROS) homeostasis (Os08g0133000 and 
Os08g0133700), as we discuss later.

Since the genome is better annotated for Oryza sativa, and 
the BAAP population has been selected specifically for its 
increased abiotic stress resources, we performed a more detailed 
downstream bioinformatics analysis of all the QTLs identi-
fied within the BAAP population. Local linkage disequilib-
rium (LD) around each QTL was calculated to identify genes 
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Fig. 2. Example of segmented models fitted to two distinct Oryza sativa 
accessions. The orange solid line is the mean predicted model fit from 
four biological repeats, where the shaded area represents the standard 
error of the mean. Mean Tcrit and T50 are indicated with blue and green 
dashed lines respectively with associated standard errors. (A) Accession 
IRGC_28958 (Oryza sativa). (B) Accession IRGC_28994 (Oryza sativa).

Table 1. The population mean, broad sense heritability (H2), 
and goodness of fit of the linear mixed model (R2) for each trait 
measured on each species.

Trait Population 
mean 

H2 R2 

O. glaberrima

  T50 46.847 0.53 0.76
  Tcrit 44.709 0.61 0.83
  m1 −0.005 0.27 0.42
  m2 −0.151 0.09 0.18
O. sativa

  T50 48.763 0.61 0.74
  Tcrit 46.415 0.65 0.72
  m1 −0.005 0.48 0.49
  m2 −0.132 0.53 0.52
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co-localizing with the significant SNPs (Fig. 5). This approach 
identified 133 genes within LD (r2>0.3) of significant SNPs 
(Supplementary Table S6). We performed GO enrichment 

analyses to benchmark the likelihood of these genes being in-
volved in PHT. Here, we tested whether these 133 genes were 
significantly enriched for GO terms associated with biological 
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Fig. 3. Natural variation for all parameters modelled from the segmented relationship between Fv/Fm and temperature. (A, B) m1 for O. glaberrima and 
O. sativa, respectively. (C, D) m2 for O. glaberrima and O. sativa, respectively. (E, F) Tcrit for O. glaberrima and O. sativa, respectively. (G, H) T50 for O. 
glaberrima and O. sativa, respectively.

Table 2. Location of putative QTLs identified from GWAS of T50 and Tcrit traits within the Bengal Assam Aus sub-population of Oryza 
sativa (BAAP) and sub-population of Oryza glaberrima (Glab).

QTL-ID QTL location  Number of significant SNPs

Chr Range Peak (Mb) T50-BAAP Tcrit-BAAP T50-Glab Tcrit-Glab 

Os-T50-2a 2 10.06–10.14 10.059 2 ab 1 a

Os-Tcrit-2 2 14.57–14.71 14.568 3 a

Os-T50-2b 2 24.29–24.38 24.382 2 a 1 b

Og-Tcrit-3 3 1.61–1.61 1.61 2 a

Os-Tcrit-3 3 17.89–17.89 17.894 3 a

Os-Tcrit-5 5 14.45–14.45 14.452 2 b

Og-Tcrit-7 7 22.24–22.26 22.256 3 a

Og-T50-8 8 1.71–1.78 1.757 20 a

Os-T50-9 9 8.76–8.76 8.757 2 a

Os-T50-10 10 6.25–6.25 6.255 2 b

Og-Tcrit-11 11 4.96–4.97 4.964 2 a

Os-Tcrit-11a 11 16.88–16.89 16.88 1 b 2 ab

Os-T50-11a 11 23.25–23.51 23.25 3 a 1 a

Os-T50-11b 11 26.40–26.48 26.456 12 a

Os-Tcrit-11b 11 26.81–27.25 26.978 40 b

Maximum number of significant SNPs within the QTL is reported according to the best (a) and second best (b) fit GWAS model.
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Fig. 4. Manhattan plots for genome wide association of PHT traits within the two rice populations. (A) Tcrit association with O. glaberrima (Og) SNPs 
according to FarmCPU GWAS model; (B) T50-Og association according to LFMM model; (C) Tcrit association with O. sativa (Os) according to EMMA 
model; (D) T50-Os association according to EMMA model. Solid red line indicates of suggestive SNP significance threshold based upon polygenicity 
assessment of QQ plots. SNPs within the identified QTLs are highlighted in green to show distinct distribution across traits and populations.
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processes, molecular functions, and cellular components. No 
GO cellular component terms were identified as significantly 
enriched in this set of genes, but terms for biological processes 
and molecular processes were enriched compared with what 
would be expected according to how many genes within the 
rice genome represent those terms (Fig. 6; Supplementary Table 
S7). For biological processes, five granular (specific) terms were 
enriched: ‘regulation of salicylic acid biosynthetic processes’, 
‘peptidyl-tyrosine phosphorylation’, ‘cell surface receptor sig-
nalling pathway’, ‘defence response’, and ‘response to other or-
ganism’ (Fig. 6A). Five granular terms were also enriched for 
molecular functions: ‘transmembrane receptor protein kinase 
activity’, ‘calmodulin binding’, ‘ADP binding’, ‘protein serine/
threonine kinase activity’, and ‘ATP binding’ (Fig. 6B).

To pinpoint loci that might underlie photosynthetic heat tol-
erance we analysed the functional annotation, GO terms and 
literature associated with each of these genes alongside avail-
able RNA-Seq data showing transcriptomic changes in re-
sponse to heat. We found that 19 of these genes are differentially 
expressed in response to heat in either IR64 or Annapurna 
seedlings according to a previously published RNA-Seq analysis 
(Sharma et al., 2021) and 11 genes are expressed in the chlo-
roplast according to GO annotation of cellular compartment 
(Supplementary Table S6). Eleven of the genes, or their homo-
logues, reportedly have a function in stress response, photosyn-
thesis or carbon partitioning, chloroplast development, stomatal 
density, or senescence according to a literature search. Taken to-
gether, this generated a shortlist of 30 genes (Table 3) that are 
strong candidates for the QTLs identified within this study.

Discussion

Heritable variation in photosynthetic heat tolerance 
highlights the development of a new breeding tool

Performing large-scale screening of heat tolerance in any crop 
is hampered by numerous logistical issues relating to space to 
grow plants and infrastructure to elevate temperatures both 
in controlled and in field environments (Sharma et al., 2017; 
Ruiz-Vera et al., 2018). Consequently, there is a strong require-
ment to develop platforms that bypass these hurdles and fa-
cilitate the rapid generation of data relating to heat tolerance. 
Chlorophyll fluorescence techniques are rapid and can pro-
vide information on the efficiency of particularly heat-labile 
components of photosynthesis that are important for defining 
growth and productivity (Maxwell and Johnson, 2000; Murchie 
and Lawson, 2013). Furthermore, it has been demonstrated 
that measuring various different aspects of photosynthesis on 
excised leaves via chlorophyll fluorescence is strongly represen-
tative of measuring the same parameter on leaves still attached 
to the plant in numerous crop species (McAusland et al., 2019; 
Ferguson et al., 2023, Preprint). This therefore opens up the 
opportunity to utilize chlorophyll fluorescence as a platform 

for rapidly screening heat tolerance. In our previous work, we 
have shown that Tcrit and m1 as measured on excised leaf seg-
ments from rice seedlings are able to forecast adult vegetative 
heat tolerance measured as stay green (Ferguson et al., 2020), 
which is a common breeding-based method of scoring abiotic 
stress tolerance (Jagadish et al., 2015). Although effective, this 
previous approach suffered from throughput limitations. With 
the present study, these limitations were resolved by developing 
a heating system using silicone heater mats instead of relying 
on a water bath system.

Using this system, we detected significant genetic variation 
for PHT metrics (Fig. 3). Moreover, the broad sense herita-
bility of these metrics were high (Table 1), especially compared 
with studies that have measured similar chlorophyll fluores-
cence parameters across diversity in other species, where heri-
tabilities tend to be much lower (Čepl et al., 2016; Herritt et al., 
2018; Burgess et al., 2020, Preprint; Herritt and Fritschi, 2020). 
Indeed the heritabilities we observed are much more similar to 
those observed in a precisely controlled phenomics platform 
designed for measuring chlorophyll fluorescence in Arabidopsis 
(Flood et al., 2016). This suggests that our phenotyping plat-
form limits environmental noise that may confound our mea-
surements and highlights the existence of genetic mechanisms 
underlying the observed variation in both species. These are 
attractive features of a phenotyping platform and suggest that 
it could provide cost-free, repeatable, and potentially valuable 
data to use as covariates in selection models for rice breeding. 
Breeding for yield while also considering information relating 
to heat tolerance has the potential to enhance the climatic re-
silience of future, highly productive rice varieties.

The main coefficients obtained from the segmented model-
ling used to characterize the Fv/Fm temperature response, i.e. 
Tcrit and T50 (Fig. 2), demonstrated strong positive correlations 
(Supplementary Table S3). However, the correlations were not 
perfect (Supplementary Table S3; R2=0.73 and 0.65 in O. gla-
berrima and O. sativa, respectively). Therefore, the aspect(s) of 
the response of PSII to incrementally increasing temperatures 
that they are characterizing are different. This is valuable for 
gene identification, because it allows us to detect unique QTLs 
underlying the different traits, even though they are positively 
correlated. This is evidenced by our results, for example map-
ping for Tcrit and T50 can pick up colocalizing QTLs (e.g. on 
chromosome 2 and 11 in O. sativa; Figs 4, 5), but occasionally 
genetic regions only appear important for regulating one of 
these traits within a species (e.g. on chromosome 8 and 11 in 
O. glaberrima; Fig. 4).

In general, our data suggest that our Assam Aus diversity set 
of O. sativa is more heat tolerant than the surveyed O. glaberrima 
lines (Fig. 3). It is also interesting to note the differences in cor-
relations between PHT parameters across the species. We have 
previously discussed in detail what these parameters reflect in 
terms of PSII activity and its response to heat stress (Ferguson 
et al., 2020). Here, we note in particular that Tcrit and m2 are 
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Fig. 5. Precise mapping of 1 Mb region (26.3–27.3 Mb) on Chromosome 11. Zoomed Manhattan plots showing SNP associations with Tcrit and T50 in 
the O. sativa population are plotted against a linkage disequilibrium (LD) heatmap, with blue asterisks highlighting significant SNPs (P<0.0001). All genes 
within the region are further plotted, with dotted lines highlighting the positions of select PHT candidate genes (Table 3) within LD (r2>0.3) of significant 
SNPs.
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positively correlated in O. sativa but negatively correlated in 
O. glaberrima (Supplementary Table S2). m2 describes the re-
lationship between Fv/Fm and temperature after the point 
(Tcrit) where it transitions to a rapid decline and refers more 
to heat resistance than tolerance in that it gauges the capacity 
to restrain permanent damage as opposed to maintaining typ-
ical plant function, i.e. tolerating high temperatures (Thompson 
et al., 1989; Zhang and Sharkey, 2009; Ferguson et al., 2020). 
The negative correlation between Tcrit and m2 in O. glaberrima 
appears initially more logical since it suggests that lines that 
transition to the m2 phase faster, i.e. have reduced Tcrit, have 
a faster rate of PSII disassembly as well. This is indicative of 
O. glaberrima genotypes with high heat tolerance also having 
high heat resistance (reduced rate of decline of Fv/Fm in the 
secondary temperature range after Tcrit). The positive correla-
tion between these parameters in O. sativa would suggest the 
opposite. This highlights uncoupling in O. sativa between the 
tolerance of PSII to heat, which is likely conferred through 
mechanisms related to the capacity of the thylakoid mem-
branes to unfold for PSII repair (Theis and Schroda, 2016), and 
its resistance to heat after the transition to the point where PSII 
deconstruction begins to take place. The underlying mecha-
nisms that confer potential trade-offs here are of interest and 
could help guide target traits for crop improvement depending 
on the environment being selected for, e.g. mild or extreme 
heat stress.

GWAS for photosynthetic heat tolerance identifies 
genes enriched with predicted functions associated 
with regulating PSII activity

Through GWAS, we have identified novel and distinct QTLs 
underlying PHT in diverse rice populations (Figs 4, 5; Table 2). 
Three times as many Tcrit and T50 QTLs were identified for O. 
sativa than for O. glaberrima. This reflects our observation that 
heritability for all PHT traits was higher in O. sativa than in O. 
glaberrima (Table 1) and that O. sativa was in general more tol-
erant to heat stress, with higher population means for Tcrit and 
T50 (Fig. 3). Taken together, these findings suggest that selec-
tion strength for PHT may have been reduced in O. glaberrima 
or that it harbours fewer, but of stronger effect, PHT-associated 
genes compared with the Asian species. Compared with other 
types of O. sativa, the aus varieties are considered to be highly 
stress tolerant. This may be a consequence of aus cultivars orig-
inating predominantly from Bangladesh and India (Ali et al., 
2011) since there appears to have been strong selective pres-
sure on rice cultivated in the stress-prone Bangladesh and adja-
cent regions to be more resilient to environmental stresses (Bin 
Rahman and Zhang, 2018). This increased PHT is unlikely 
to be representative of the O. sativa species as a whole. The O. 
glaberrima accessions were selected from ranges of temperature, 
rainfall, and altitudes across western Africa, but it is unclear 
how limited the variation in this region might be compared 
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with that across Asia (Cowling et al. 2021). Regardless, it seems 
that PHT mechanisms are divergent between the two popula-
tions sampled as we found no overlapping QTLs.

The enriched GO terms within the candidate genes high-
light the utility of our phenotyping and GWAS approach. The 
biological processes and molecular functions associated with 
these terms pinpoint roles for these genes in PSII activity and 
the response to stress (Fig. 6). The role of PSII in the conversion 
of ADP to ATP by non-cyclic photophosphorylation (Arnon, 
1984) is reflected in the enrichment of genes associated with 
the ‘ADP binding’ molecular function GO term. Additionally, 
the enriched GO terms associated with tyrosine activity (i.e. 
‘peptidyl-tyrosine phosphorylation’ and ‘transmembrane re-
ceptor protein tyrosine kinase activity’) further highlight a role 
in PSII activity for many of the candidate genes, as tyrosine 
phosphorylation involves the transfer of a phosphate away from 
ATP (Mühlenbeck et al., 2021), which may in turn increase the 
demand for ATP, thereby influencing PSII activity. Indeed, the 
increasing demand for ATP may be a result of the heat shock 
damage to PSII, since ATP is demonstrated to be the driving 
force in the repair of PSII during photoinhibition (Murata and 
Nishiyama, 2018). Here, ATP-dependent regulation of PSII re-
pair under environmental stress is associated with synthesis of 
the D1 protein, which is the primary target of PSII photooxida-
tive damage (Yoshioka and Yamamoto, 2011). A further enriched 
GO term of interest that highlights the efficiency of our GWAS 
in identifying genes involved in PSII activity is the ‘calmodulin 
binding’ molecular function (Fig. 6B). Calcium is an essential 
cofactor for the oxygen evolving complex of PSII that catalyses 
the oxidation of water (Barry et al., 2005; Wang et al., 2019), 
thus it is logical that predicted calmodulins (calcium-binding 
proteins) may be enriched in our candidate genes. Further sup-
port is lent to this from studies that have demonstrated that 
exogenous application of Ca2+ can stabilize PSII activity under 
heat stress (Tiwari et al., 2019; Zheng et al., 2022), thereby high-
lighting the importance of Ca2+ homeostasis for PHT, poten-
tially achieved through calmodulin-mediated Ca2+ signalling.

Across the 133 candidate genes, the GO term most enriched 
was that associated with salicylic acid (SA) biosynthesis (Fig. 
6A). SA has been well demonstrated to play a role in influ-
encing the response of plants to heat stress, where it is best 
characterized by inducing antioxidant activity (Dat et al., 
1998; Nazar et al., 2011; Khan et al., 2013; Jahan et al., 2019; 
Janda et al., 2020). Antioxidant enzymes can protect PSII from 
damage due to ROS (Das and Roychoudhury (2014)). There 
is evidence suggesting that during rapid stress events, SA accu-
mulation can have an alleviating effect on PSII photoinhibi-
tion. For example, Chen et al. (2020) demonstrated that under 
high light stress, SA accumulation increased photoprotection 
in Arabidopsis by enhancing the phosphorylation of the D1 
and D2 PSII proteins and by reducing the rate of disassembly 
of the PSII–LHCII super complexes. The same authors have 
also shown that SA has a similar photoprotective role in wheat 
seedlings (Chen et al., 2016).

Additionally, enriched GO terms highlight the potential of 
genes with defence roles regulating variation in Tcrit and T50 
(Fig. 6A). PSII is important for plant immunity because of its 
role in producing ROS, which can be important retrograde 
signalling molecules for coordinating defence responses (Järvi 
et al., 2016; Foyer & Hanke, 2022). Consequently, genes in-
volved in regulating ROS production to protect PSII during 
heat stress may additionally have roles in the signalling path-
ways associated with plant immunity. Indeed, disrupting chlo-
roplastic function has been shown to impair resistance in wheat 
to Septoria leaf blotch (Lee et al., 2015), where resistance to this 
end is associated with photoprotection (Ajigboye et al., 2021).

We have confidence in our GO enrichment approach for 
validating our GWAS because of the identified and discussed 
terms. Additionally, we believe it is a valid approach in this in-
stance because of the number of QTLs identified. Since we 
identified more than 10 QTLs for Tcrit and T50 and inputted 
associated genes into the GO enrichment analyses we would 
expect some enrichment in genes involved in PSII activity. 
This would not be the case if we had identified only a few 
(~1–5 QTLs). Indeed, the number of genes associated with 
the enriched terms is small and consistent with the number of 
identified QTLs, but the fold enrichment and the significance 
attached to them is high (Fig. 6).

Promising candidate genes for the development of 
heat tolerance in rice

Our approach for narrowing down the candidate genes (Fig. 
1, Materials and methods) identified 30 genes for which we 
have high confidence in their role in PSII activity and/or heat 
tolerance (Table 3), and we highlight the most promising of 
these below.

We identified two genes whose Arabidopsis homologues are 
known to play essential roles in chloroplast development (Table 
3), namely DELAYED GREENING 1 (DG1) and ALBINO 
OR PALE GREEN 3 (APG3). Knockout mutants of these 
two genes exhibit striking phenotypes. dg1 mutant seedlings 
exhibit initially pale young leaves that gradually green to wild 
type levels (Chi et al., 2008) whilst apg3 mutants lack chloro-
phyll pigments and cannot photosynthesize (Motohashi et al., 
2007). Both genes appear to encode proteins involved in the 
formation of thylakoid membranes. The location of PSII within 
the thylakoid membrane further highlights the role these genes 
likely play in the activity of PSII where stable thylakoid com-
plex assembly and maintenance will play an important role in 
heat tolerance. Furthermore, OsDG1 exhibits a 2-fold increase 
in expression in response to 42 °C heat stress in IR64 seed-
lings (Sharma et al., 2021). Mutations in AtDG1 have also been 
shown to result in temperature sensitivity and reduced Fv/Fm 
at high temperatures relative to wild type, where the same phe-
notype is not observed under optimal growing temperatures 
(Sun et al., 2020); here DG1 appears to be important for regu-
lating chloroplastic mRNA editing at elevated temperatures.
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We additionally identified several other genes with demon-
strable roles in photosynthesis (Table 3). For example, GOLGI 
LOCALIZED MONOSACCHRIDE TRANSPORTER 1 
(GST1) encodes a protein that has been shown to play a role in 
sugar accumulation during abiotic stress (Cao et al., 2011) and 
its Arabidopsis homologue, pGlct, encodes a protein involved in 
carbon partitioning, with mutants showing decreased photo-
synthesis (Cho et al., 2011). pGlct has also been demonstrated 
to have a role in sugar (maltose) accumulation for conferring 
photoprotection of PSII (Kaplan and Guy, 2005). A further 
identified photosynthesis-related gene of interest is SPOTTED 
LESSION 40 (SPL40, Table 3). SPL40 appears to be critical in 
activating SA signalling pathways and spl40 mutants show hy-
persensitivity to light and a compromise in ROS homeostasis. 
This is associated with a downregulation in the expression of 
photosynthesis-associated genes and a reduction in chlorophyll 
content (Sathe et al., 2019).

Calmodulin-Like Protein Gene 21 (CML21) was identified 
within the Os-Tcrit-5 QTL. In Arabidopsis, CML21 functions 
as a calcium sensor coordinating Ca2+ signalling (McCormack 
and Braam, 2003), highlighting a potential role in Ca2+ homeo-
stasis for protecting PSII. Further to this, the study of Aleynova 
et al. (2020) showed in grapevine that the native CML21 is 
differentially expressed in response to high temperatures. They 
also showed that heterologous overexpression of grapevine 
CML21 in Arabidopsis disrupted biomass accumulation in re-
sponse to heat stress, highlighting the importance of functional 
CML21 activity.

Also associated with the Os-Tcrit-5 QTL were genes 
with sequence similarity to the Arabidopsis plasma-mem-
brane localized receptor-like kinase FERONIA gene (Table 
3; Supplementary Table S6). Recent evidence has pinpointed 
FERONIA in having a key role in regulating tolerance to pho-
tooxidative stress (L. Wang et al., 2020; Shin et al., 2021; Jing 
et al., 2023). For example, Arabidopsis fer mutants are hugely 
light sensitive and demonstrate leaf bleaching when exposed 
to just moderate light intensities (Shin et al., 2021). Here, fer 
mutants do not appear to be able to induce expression of key 
stress genes in response to light, such that ROS overaccumu-
late causing severe damage to PSII. In apple, overexpression of 
a native FERONIA gene markedly improved drought toler-
ance (Jing et al., 2023). Here, FERONIA overexpression lines 
demonstrated significantly reduced photosystem damage and 
improved rates of photosynthesis compared with wild-type 
apple after 7 d of water withdrawal. The findings of these studies 
highlight the potential role of our identified FERONIA genes 
for improving photoprotection in response to heat in rice.

The recent study by Cubry et al. (2020) included the 
results of environmental-GWAS in O. glaberrima, where the 
authors performed GWAS on bioclimatic parameters specific 
to the point of origin of the same O. glaberrima accessions 
used in this present study. These bioclimatic parameters in-
clude those related to temperature. Since we are measuring 
temperature responses, we might expect to observe some 

overlap between environmental QTLs detected by Cubry 
et al. (2020) and our QTLs. To this end, we observed the 
colocalization (within 250 kb) of our Og-T50-8 QTL and a 
QTL detected for mean temperature-related parameters; 31 
genes lie within this region (Supplementary Table S4) and 
include those with potential roles in conferring heat toler-
ance (Table 3). Os08g0135900, for example, is orthologous 
to Arabidopsis TRYPTOPHAN SYNTHASE B SUBUNIT 
1 (TSB1), whose protein has been shown to modulate tryp-
tophan and abscisic acid biosynthesis to coordinate stress 
responses and growth in Arabidopsis (Liu et al., 2022) and 
rice (Dharmawardhana et al., 2013). Additionally, two genes 
in this region (Os08g0133000 and Os08g0133700) encode 
plant cysteine oxidases (Table 3; Supplementary Table S4). 
These enzymes are crucial in oxygen sensing and triggering 
various plant stress responses through the N-degron pathway 
to maintain cellular homeostasis in response to intracellular 
O2 and ROS accumulation (Holdsworth et al., 2020; Heo 
et al., 2021).

Conclusion

With this study, we have adjusted our previous approach to 
measure the response of the maximum efficiency of PSII to 
increasing temperatures, such that it now truly represents a 
phenomics-like platform. The high estimates of heritability 
and broad genetic variation characterized through this plat-
form highlight its utility for crop breeding, where Tcrit and T50 
could represent important covariates in rice selection models. 
Finally, we have assembled a list of high-confidence candidate 
genes representing targets for improving heat tolerance in rice.

Supplementary data

The following supplementary data are available at JXB online:
Fig. S1. Schematic figure demonstrating the segmented 

modelling of the response of Fv./Fm to temperature.
Fig. S2. Summary of results for GWAS for Tcrit (Oryza sativa).
Fig. S3. Summary of results for GWAS for T50 (Oryza sativa).
Fig. S4. Summary of results for GWAS for T50 (Oryza 

glaberrima).
Fig. S5. Summary of results for GWAS for Tcrit (Oryza 

glaberrima).
Fig. S6. Summary of results for GWAS for m1 and m1 (Oryza 

sativa and Oryza glaberrima).
Table S1. List of all accessions used in this study.
Table S2. All phenotypic data generated and used in this 

study.
Table S3. Pairwise trait interactions. 
Table S4. GWAS results, significant SNPs.
Table S5. Genetic loci within the region on chromosome 8 

between the Og-T50-8 QTL and eQTL (Cubry et al., 2020).
Table S6. Genes in linkage disequilibrium (LD>0.3) with 

significant SNPs within O. sativa QTLs.
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Table S7. Gene ontology enrichment analysis of genes in LD 
with significant SNPs within O. sativa QTLs.

Table S8. Location of putative QTLs identified for m1 and 
m2 in Oryza glaberrima and Oryza sativa, according to EMMA 
GWAS model.

Table S9. Genome wide association results: significant SNPs 
associated with m1 and m2 across Oryza glaberrima and Oryza 
sativa.

Video S1. Fv/Fm values of a series of samples at multiple 
temperatures throughout the experimental procedure.
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