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Abstract 

This article concerns the time-evolution, spectral structure and scaling of weak turbulence 
subject to rotation and stable stratification. The flow is expressed as a combination of 
particular solutions, referred to as modes, of the linearized governing equations without 
viscosity or diffusion. Modes are of two types: oscillatory ones which represent inertial-
gravity waves and time-independent ones that express a non-propagating (NP) component of 
the flow. The presence of the NP component, which plays an active role in the dynamics apart 
from in the case of pure rotation, renders wave-turbulence analysis problematic because the 
NP mode is nondispersive. Equations are derived for the time evolution of the modal 
amplitudes, evolution which is due to nonlinearity and visco-diffusion. Subsequent analysis 
assumes that one or other (or both) of the Rossby and Froude numbers is small (weak 
turbulence). Given this assumption, the NP component is found to evolve independently of 
the wave one and a numerical scheme, similar to, though significantly different from classical 
DNS, is used to determine its time evolution. The treatment of the wave component assumes 
its amplitude large compared with the NP one, otherwise there are seemingly intractable 
difficulties of closure in the analysis. Given this further assumption, the wave component 
decouples from the NP one. Evolution equations for the wave spectra are derived using wave-
turbulence analysis and are integrated numerically. As might be expected, these equations 
indicate that nonlinear coupling of wave modes is dominated by resonances. Results are given 
for both the NP and wave components. 

1. Introduction 

This paper concerns decaying homogeneous turbulence in a rotating, stably stratified fluid 
with constant Brunt-Vaisala frequency and assumes that the rotation vector is parallel to 
gravity. The decay is due to viscous and diffusive effects which are detailed later. We refer 
the reader to Sagaut and Cambon (2018) for a wide-ranging description of homogeneous 
turbulence, including, among other cases, rotation and stratification. In the present paper, one 
or other (or both) of the Rossby and Froude numbers is supposed small (weak turbulence), so 
nonlinearity is negligible over short enough time spans. 

As discussed in Bartello (1995) and Cambon (2001), in the absence of nonlinearity and 
visco-diffusion, the flow consists of inertial-gravity wave modes, which oscillate in time, and 
a non-propagating (abbreviated to NP in what follows) mode which is steady. These modes 
form a complete set and so, even in the presence of nonlinearity and visco-diffusion, the flow 
can be expressed as a combination of modes. When weak nonlinearity and visco-diffusion are 



 

 

allowed for, the mode amplitudes evolve with time, slowly compared to the oscillation period 
of the waves. The elucidation of the effects of this long-time evolution on the turbulence 
statistics in the presence of both rotation and stratification is the objective of this paper. 

Weakness of turbulence has profound implications for the nonlinear dynamics, as 
indicated by wave-turbulence analysis, which is the usual approach for weak turbulence and 
has a long history (see e.g. Benney and Saffman (1966), Benney and Newell (1969), 
Zhakarov, Lvov and Falkovich (1992), Newell and Rumpf (2011) and Nazarenko (2011)). 
According to that theory, nonlinear coupling between wave modes is dominated by 
resonances, non-resonant interactions being suppressed, which reduces the effectiveness of 
nonlinearity. More recently, studies have been undertaken (see e.g. Deng and Hani (2021)) 
which aim to place the theory on a rigorous mathematical basis. 

Galtier (2003) and Bellet et al. (2006) (henceforth referred to as [B]) used the wave-
turbulence approach in the case of pure rotation, but we are unaware of any previous 
applications of wave-turbulence theory which allow for stratification. The difficulty is that 
wave-turbulence analysis requires that modes be dispersive, which is not true of the NP ones 
in the present problem. As a result, wave-turbulence analysis does not allow for the NP 
component of the flow, which must be analysed separately. In the special case 2N   , 
where N  is the Brunt-Vaisala frequency and   the rotation rate, the wave modes are also 
nondispersive. To allow the application of wave-turbulence analysis to the wave component, 
we suppose that N  is not too close to 2 . This condition turns out to be also required by our 
treatment of the NP component. 

Direct numerical simulation (DNS) of the governing equations has often been used (see 
e.g. Orszag and Patterson (1972), Canuto et al. (1988)) to study homogeneous turbulence and 
specifically in the present case of rotation and stratification by Coleman, Ferziger and Spalart 
(1992), Smith and Waleffe (2002) and Liechtenstein, Godeferd and Cambon (2005). In this 
approach, the infinite flow is approximated as spatially periodic and is represented by Fourier 
series. However, DNS has difficulties when applied to the present problem if the turbulence is 
weak. This is because the intervention of nonlinearity requires evolution over many wave 
periods (according to wave-turbulence theory, the ratio of a typical wave period to the 
nonlinear time scale behaves as the square of the small parameter characterising the weakness 
of turbulence). The time step must be small compared with the wave period to resolve the 
associated oscillations, hence very many steps are needed before nonlinearity intervenes. 
Furthermore, the Fourier coefficients develop rapid oscillations in spectral space at large 
times, oscillations which need to be resolved numerically. This requires spatial periods 
considerably larger than the size of the large scales, otherwise numerical precision is 
degraded; the weaker the turbulence, the larger the required spatial periods. All of this means 
that the correct treatment by DNS of weak turbulence places considerable demands on 
computing time and memory requirements, demands which increase as the turbulence 
becomes weaker. With this in mind, the analytical and numerical methods developed here 
directly address the asymptotic limit of weak turbulence. 



 

 

The spectral closure model EDQNM (Eddy-Damped, Quasi-Normal, Markovian) has also 
been used to study purely stratified and purely rotating turbulence (see Cambon and Jacquin 
(1989), Godeferd and Cambon (1994), Cambon, Mansour and Godeferd (1997), Godeferd 
and Staquet (2003)). EDQNM was introduced by Orszag (1970) for homogeneous, isotropic 
turbulence and later extended to other cases in which there are dynamical mechanisms, such 
as stratification or rotation, which render the turbulence anisotropic, even if it is initially 
isotropic. For the case of pure rotation, the close relationship of EDQNM and wave-
turbulence theory is one of the principal subjects of [B], where it is shown that the weak-
turbulence limit of a particular version of EDQNM (EDQNM 3) gives the wave-turbulence 
equations for the spectra. It should, however, be recognised that models like EDQNM are 
based on ad hoc hypotheses, such as eddy-damping and quasi-normality, whereas wave-
turbulence theory follows from detailed asymptotic analysis of weak turbulence (given in 
appendix B for the present case), analysis which justifies closure in that limit. 

The paper is organised as follows. Section 2 concerns the governing equations of the flow, 
their Fourier transforms, the definition of the modes, the results of modal projection (i.e. the 
mode amplitudes) and the mode-amplitude evolution equations. It also recognises the random 
nature of turbulent flow and, using ensemble averaging, defines a spectral matrix, denoted A , 
whose diagonal elements represent the energy distribution in spectral space of the different 
modes and whose off-diagonal elements express correlations between modes and are less 
important. 

Section 3 introduces the assumption of weak turbulence and presents analyses of the 
consequences for the NP and wave components of the flow. In section 3.1, the NP component 
is found to evolve independently of the wave one and a numerical method, closely related to 
classical DNS of homogeneous turbulence, is proposed. However, although the methods are 
related, the flow field is here projected onto the NP modes at each time step, which 
distinguishes the present approach from the classical one. Note that, because we apply DNS 
only to the NP component, which is non-oscillatory, the problems of the classical approach, 
discussed above, do not arise. 

Section 3.2 and appendix B derive wave-turbulence equations which describe the time 
evolution of the wave part of the spectral matrix. To avoid the seeming intractability which 
the presence of the NP component entails if it is of comparable or greater magnitude than the 
wave one, the derivation requires that the NP component be small compared with the wave 
one. The end result is a system of equations for the diagonal elements of the wave-component 
spectral matrix. 

Finally, section 4 describes results of numerical calculations for both the NP component 
using DNS and the wave component using the wave-turbulence equations. 

2. Formulation 

Consider decaying, homogeneous turbulence in a rotating, stably stratified fluid having 
constant Brunt-Vaisala frequency, N , and rotation vector Ω , which is supposed parallel to 



 

 

gravity. It is also supposed that N  and   Ω  are not both zero. When 0   an axial 

direction is defined by the unit vector / e Ω . On the other hand, if 0  , e  is taken in 
the vertical direction. Henceforth, spatial coordinates, time and velocity are 

nondimensionalised using L ,   1/ 22 24N


   and  1/ 22 24L N   , where L  is a length scale 

characterising the initial turbulence. 

Using a rotating frame of reference and Cartesian coordinates (which will often be taken 

such that  0,0,1e ), as well as the summation convention, the nondimensional Boussinesq 

equations of motion are 
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2

i i
ijk j k i i j u

i j j j

u up
e u N e u u D

t x x x x
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 
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, (2.2) 

  
2

i i j
j j j
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where ijk  is the alternating tensor,   1/ 22 22 4N


    


 and   1/ 22 24N N N


  


. 

Furthermore,   1/ 22 2 24uD N L
     and   1/ 22 2 24D N L 

    , where   is the 

kinematic viscosity and   the diffusivity associated with the buoyancy variable  . Note that, 

since 2 2 1N  
 

,   1/ 22 1N 


 


 and   1/ 22 1 


  


, where / 2 /N N    
 

. Thus, 

the nondimensional governing equations, (2.1)-(2.3), only depend on the parameters  , uD  

and D . For simplicity’s sake, 


, N


 are denoted  , N  in what follows. Because we will 

only be working with nondimensional quantities, this should not lead to confusion. Note that 
the right-hand sides of (2.1) and (2.3) express nonlinearity, viscosity and diffusion. The visco-
diffusive terms dissipate energy. When 0N   (pure rotation), (2.1) and (2.2) decouple from 
(2.3), so the velocity field can be studied independently of  , which becomes a passive 

scalar. In all other cases, there is coupling in both directions between (2.1) and (2.3). 

2.1 Fourier transforms and modes 

Defining the Fourier transforms 

       3
3

1
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8i iu u i d
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 k x k.x x , (2.4) 
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1
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
 k x k.x x , (2.5) 



 

 

with similar definitions of p , i ju u  and ju , (2.1)-(2.3) yield 

  2i
ijk j k i i j i j u i

u
e u N e ik p ik u u D k u

t
 

     

    , (2.6) 

 0i ik u  , (2.7) 

  2
i i j jNe u ik u D k

t 
  
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
  , (2.8) 

where k  k . 

Appendix A examines the consequences of (2.6)-(2.8). In the absence of nonlinearity and 
visco-diffusion, the right-hand sides of (2.6) and (2.8) are zero. There are then three linearly 
independent solutions, referred to as modes. These solutions have time dependence

  exp is t k , where s  takes one of the three values 0, 1s   , 

      
1/ 22 2 2 2

1/ 22 2 2 2sin cos
N k k

N
k

     k kk


, (2.9) 

k  k e  is the transverse wavenumber, k  k.e  is the axial wavenumber and 0   k  is 

the angle between k  and e . The modes with 1s    represent inertial-gravity waves, for 
which (2.9) is the dispersion relation, while that with 0s   will be referred to as the non-
propagating (NP) mode because, when regarded as a wave, it has zero group velocity. The 
modal solutions of (2.6)-(2.8) (with zero right-hand sides) are 

       exps
i iu v is t k k , (2.10) 

       exps is t   k k , (2.11) 

where 
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are unit vectors orthogonal to each other and to k , 
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when 1s    and 
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It follows from (2.12)-(2.15) and the definitions of k  and k  that        
*s s

i iv v  k k  and 

       
*s s   k k , where *  denotes complex conjugation. Note the orthonormality relation 

        
2 * *

1

l l s s
s s ss

l

u u   
 



  , (2.16) 

where ss   is the Kronecker delta. Note also that the 0s   modes, referred to as NP here, are 

often described in the geophysical literature as “vortical modes” or “potential vorticity (PV) 
modes”. 

2.2 Mode-amplitude equation 

The modes form a complete set for iu ,   satisfying (2.7). Thus, 

      
0, 1

, s
i s i

s

u b t v
 

  k k , (2.17) 
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s
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where, as shown in appendix A, the modal coefficients evolve according to 
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in which 
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is a Hermitian, positive definite matrix expressing viscosity and diffusion. Real iu  and   

requires that    *
i iu u k k   and    *  k k  , conditions which, according to (2.17), 

(2.18),        
*s s

i iv v  k k  and        
*s s   k k , are met provided    *

s sb b k k . 

Using (2.17), (2.18) and the inverse transforms of (2.4) and (2.5), the total flow can be 
expressed as the sum of wave and NP components: 

 W NP
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where 
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        0 3
0 expNP b i d   k k k.x k . (2.25) 

Given    *
s sb b k k ,        

*s s
i iv v  k k  and        

*s s   k k , both components are 

real, the 1s    contributions to the wave component being complex conjugates. 

If nonlinearity, viscosity and diffusion were neglected, the solution of (2.19) would have 

the expected modal form  expsb is t  . The resulting oscillations of 1b  due to waves can 

be supressed by defining  exps sa b is t , which evolves according to 
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In the absence of nonlinearity and visco-diffusion, the mode amplitudes sa  are time-

independent, whereas, when we later specialise to weak turbulence and small visco-diffusion 

they evolve slowly with time.    *
s sb b k k  and the definition of sa  imply 

   *
s sa a k k . 

As shown in appendix A, the nonlinear term in (2.26) can be expressed as 
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where 
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represents nonlinear coupling between modes and 
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A symmetrised version of (2.27), namely 
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where 
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, , ,

2p q p q q pss s ss s ss sM N N   k p k p k k p , (2.31) 

is also derived in appendix A. Using either (2.27) or (2.30), (2.26) provides an evolution 

equation for the sa . Both versions are employed in what follows. Note the symmetries 

   , ,
p q q pss s ss sM M  k k p k p  and    , ,

p q q pss s ss sF F  k k p k p . Note also that the wave 

vectors p  and   q k p , which appear in (2.27) and (2.30), satisfy the usual condition, 

0  k p q , for formation of a triad with k . 

2.3 The spectral matrix and energy 

Here and henceforth, the random nature of turbulent flow is recognized and ensemble 
averaging introduced. The flow is assumed statistically homogeneous, i.e. its statistical 
properties are the same at all spatial locations, in particular any one-point average is 
independent of position. Averaging (2.1) and (2.3) eliminates the nonlinear, pressure and 
visco-diffusive terms, while the average of (2.2) is automatically satisfied. We have in mind 

that there is no mean flow, i.e. 0iu  , where the overbar denotes ensemble averaging, hence 

the average of (2.1) gives 0  . 0iu    leads to 0s sa b  , while (2.22)-(2.25) imply 

that the wave and NP components are both of zero mean. Those components also inherit the 
statistical homogeneity of the total flow. 



 

 

The ensemble-averaged, nondimensional energy density in physical space is the sum of 
kinetic and potential energies: 
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Given statistical homogeneity, 
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in which   represents the Dirac function. Hence, using the inverse transform of (2.4), 
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which indicates that the kinetic-energy density in spectral space is   / 2K ue  k . Similarly, 

the potential-energy density in spectral space is   / 2Pe  k . 

Again using statistical homogeneity, 

        *
s s ssa a A    k k k k k , (2.35) 

where ssA   is the spectral matrix and s , s  run over the values 1 , 0  and 1 . ssA   is 

Hermitian and positive semi-definite. In particular, the diagonal elements of ssA   are real and 

non-negative. Also, given    *
s sa a k k ,    ,ss s sA A   k k . Using (2.12), (2.17), 

(2.18), (2.35),        l l
i i lle e 

k k  and  exps sb a is t   to evaluate the averages in (2.33), 
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Note that (2.16) implies 
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for the total energy density. Thus, ssA   determines the energy densities in spectral space, but it 

contains considerably more statistical information than that: any second-order, two-point 

moment involving iu  and   can be obtained knowing ssA  . 

The diagonal elements of ssA   can be interpreted as the energy densities of the different 

modes and will often be referred to as spectra, whereas the off-diagonal ones represent 
correlations between modes. As usual, it can be shown that the nonlinear term in (2.26) 
conserves the total energy, which decays due to visco-diffusion according to 
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Finally, a spherically-averaged spectrum,  E k , can be defined by averaging  e k  over the 

sphere kk , then multiplying by 24 k . When integrated over k ,  E k  gives the total 

energy. It represents the energy distribution in spectral space, without regard for anisotropy. 

Obviously,  E k  contains less information than  e k . 

The energy density in spectral space, given by (2.38), can be split into wave and NP 

contributions as W NPe e e  , where 
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The spherically-averaged spectrum can also be split into wave and NP contributions as 

W NPE E E  , where WE  and NPE  are obtained from We  and NPe  in the same way that E  

follows from e . 

3. Weak turbulence 

From here on, we suppose that iu  and   are small. This means that linear theory applies over 

time intervals of  1O . Small nonlinearity can nonetheless have significant cumulative 

effects over longer time scales, effects whose quantification is the aim of this article. 
However, this requires sufficiently small visco-diffusive dissipation, otherwise it will kill the 
turbulence before nonlinearity can intervene. Given weak turbulence and small visco-
diffusion, we consider large t . 

As discussed in the introduction, wave-turbulence analysis is the usual approach to 
describe weak turbulence in the presence of waves. However, it requires that the waves be 
dispersive. Since the frequency of the NP mode is zero, it has zero group velocity and hence 
is nondispersive, which rules out direct application of the wave-turbulence approach to the 

flow as a whole. Furthermore, when N  ,   N   k  is constant, in which case the 



 

 

wave mode is also nondispersive, while, if N  is small, but nonzero, it is only weakly 

dispersive. Many of the steps in the analysis require 1N t  , an assumption which is 

made from here on. This assumption opens the way for wave-turbulence theory of the wave 
modes, but care is still needed because of the nondispersive character of the NP mode. Wave-
turbulence analysis cannot be applied to the NP component of the flow, which is analysed 
separately. 

The weakness of turbulence is expressed by small parameters,   and NP , which 

respectively measure the amplitudes of the wave and NP components. The parameters need 
not have the same order of magnitude. Indeed, to close the system of equations for the wave 

component, we will later suppose that NP  is small compared with  . 

In the following analysis, we suppose that neither N  nor   are zero, which excludes pure 
rotation or stratification. This avoids having to deal with special cases where, rather than 

being strictly positive,   k  is zero for particular values of k  ( / 2 k  when 0N  , 

0, k  when 0 ). We will nonetheless later give results for the limiting cases 0N   

and 0 . 

3.1 Evolution of the NP component 

Applying (2.26) with 0s  , 
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Using the decomposition into wave and NP components, (2.21), 
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Thus, there are three contributions to the nonlinear term in (3.1): NP-NP, wave-wave and 
wave-NP. 

The right-hand side of (3.1) represents nonlinearity and visco-diffusion. As discussed 

above, both are negligible over time spans of  1O , but can have significant cumulative 

effects over the longer time scales considered here. The wave component has oscillations of 

periods  1O , whereas the NP one is steady on such time scales. Thus, the wave-NP 

contributions to (3.2) and (3.3) are oscillatory and their cumulative effect following evolution 
according to (3.1) remains small and is neglected. Furthermore, the ˆ 1s    contributions to 



 

 

the visco-diffusive term are also oscillatory and hence negligible. Thus, we obtain the 
approximation 
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where the first term on the right-hand side expresses nonlinear interactions between NP 
modes and 

         * *0 0, W W W W
j i i j jf t ik v u u u   k  (3.5) 

represents forcing of the NP mode by the wave component. 

Following the procedure which led to (2.30), but without the NP contributions, 
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Using (2.29),      0 ,
p qs s p qF s s    k p p k p . Since 0  , the exponential in (3.6) is 

oscillatory when p qs s  and such terms are therefore neglected. Assuming N t  is large, 

if p qs s   the exponential is oscillatory with period  1O  for p  away from the surface 

      p k p . Neglecting such p , we focus on p  close to the surface, where the 

exponential oscillates slowly, potentially allowing significant cumulative effects at long 
times. However, although we have been unable to show it analytically, numerical calculations 

with different values of 1  , k  and p  show that  0, , ,s sM  k p  is zero to IEEE double 

precision when 0s   and       p k p . Assuming this result, which is a priori far from 

obvious, is exactly true, slow oscillations are suppressed and we suppose the forcing term in 
(3.4) negligible. 

Recall from (2.40) that the energy density in spectral space can be split into wave and NP 
contributions and that the NP contribution is 
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1

2NPe A . (3.7) 

Appendix D (supplementary material) shows that the first term on the right-hand side of (3.4), 
representing nonlinear interactions between NP modes, conserves the total energy of the NP 
component, which, neglecting the forcing term, decays due to visco-diffusive dissipation 
according to 
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Let NP  be a small parameter measuring the amplitude of the NP component, thus 

ˆ /NP NP
i i NPu u   and ˆ /NP NP

NP    are  1O . (2.24) and (2.25) with 0 0b a  give 
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where 0 0ˆ / NPa a  . Without the forcing term, (3.4) yields 
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where ˆ
NPt t  is time, scaled appropriately for evolution of the NP component, and 

00 00
ˆ / NPD D  . Thus, the NP component evolves according to (3.9)-(3.11). Assuming visco-

diffusion sufficiently small that it does not kill the turbulence before nonlinearity intervenes, 

the time scale for NP evolution is  1
NPO   . This time scale is generally distinct from that, 

 2O   , which, as we will see later, characterises the wave component according to wave-

turbulence theory. 

Before going further, we should discuss the close relationship between the theory of the 
NP component described here and quasi-geostrophic (QG) theory (see Pedlosky (1987)), 
which is one of the cornerstones in the study of atmospheric and oceanic flows since its 
development by Charney (1948, 1971). NP modes represent geostrophic flows (i.e. the 
Coriolis and pressure-gradient terms in the horizontal momentum equation balance) and the 
NP component of the real flow can be regarded as its mathematical projection onto such 
idealised flows. With this in mind, it can be shown that, for the present problem, (3.9)-(3.11) 
are equivalent to the three-dimensional QG approximation, thus providing support for the 
present approach. 

Embid and Majda (1998) give asymptotic analysis of (2.1)-(2.3) for small Froude number 
and consider two cases. In the first, the Rossby number is small and they conclude that the 
flow consists of oscillatory waves and a slowly varying component which evolves according 
to the quasi-geostrophic approximation, in agreement with the present results. In the second 
case, the Rossby number is of order one, corresponding to a small value of  . This makes 

~ 1N  and ~  , thus the wave frequency, (2.9), is small for small k , i.e. waves having 

wave vectors near the axis 0k   are slowly varying. Given such modes, one might question 

the neglect of the wave-NP contribution to (3.1), which was based on oscillatory waves and 
led to (3.4). For Rossby numbers of order one, Embid and Majda supposed the slow, 
horizontal component of the flow to be the sum of two parts (see their equation (3.31)), one of 

which is the so-called VSHF (vertically sheared horizontal flow), which is independent of 1x  



 

 

and 2x  and can be considered as a combination of wave modes with 0k  . They derived 

evolution equations for both parts of the flow (see their equations (3.33) and (3.34)) and 
found that the VSHF component entered into the equation for the other part. This corresponds 
to coupling of the wave and NP components and neglect of the wave-NP contribution to (3.1) 
does not capture such coupling. However, the assumed form of the flow places significant 

wave energy precisely on the axis, 0k  , which is not the situation we have in mind. 

Instead, we envisage a continuous distribution of energy over wave vectors. In that case, we 
believe that the neglect of the wave-NP contribution to (3.1) is justified at small   by the 

smallness of the region in k  for which the wave frequency is small. Whether or not the flow 

will eventually evolve towards a state close to that assumed by Embid and Majda is unclear. 

Equation (3.11) is integrated numerically. (3.9) and (3.10) yield  ˆNPiu x  and  ˆNP x  as 

inverse Fourier transforms. ˆ ˆNP NP
i ju u  and ˆ ˆNP NP

ju  can then be calculated in physical space, 

while forward transformation gives ̂̂NP NP
i ju u  and ̂̂NP NP

ju  for use in (3.11). This resembles 

classical DNS of homogeneous turbulence and the numerical method employed here is based 
on that approach and is described in appendix F (supplementary material). However, as noted 
in the introduction, it differs significantly from classical DNS because of the projection onto 
the NP modes at each time step, a projection which is implicit in (3.11). 

3.2 Evolution of the wave component 

Terms in the sum of (2.26) with ŝ s  are oscillatory and hence negligible for the long-time 

evolution of sa . Adopting this approximation and using (2.30), (2.26) becomes 
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Appendix B describes wave-turbulence analysis based on (3.12). It is assumed that 

N t  is large. Furthermore, to obtain closed equations for the wave component, it is 

supposed that the amplitude of the NP component is small compared with that of the wave 

component. The result is (B.52) for evolution of the wave elements ( ssA  , , 0s s  ) of the 

spectral matrix. Since the wave-component spectral energy density is given by the first of the 
equations (2.40), the most interesting application of (B.52) is s s  , hence (B.53), which 
involves Cauchy principal-value integrals. However, somewhat remarkably, it is found that 

the sum of such contributions is zero, as is the sum of 0qs   contributions to the first term on 

the right-hand side of (B.53). The final result is 
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for 0s  , where 2T t  is time, scaled appropriately for evolution of the wave component, 
2ˆ /ss ssA A   are the  1O  scaled wave spectra, 2ˆ /D D  , 
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is the damping coefficient of wave modes (i.e.    ssD Dk k  for 0s  ), 

    g  kc k k  (3.15) 

gives the group velocity of the wave modes as gsc , 
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2

, 2 ,
p q p qss s ss sM k p k p , (3.16) 

      *, 4 , ,
p q p q q pss s ss s s ssM M   k p k p k p k  (3.17) 

and  
p qss sS k  is the surface in p -space defined by  , 0

p qss sF k p . As is apparent from 

(2.29), the surface  
p qss sS k  is such that       0p qs s s      k p k p . This condition 

represents triadic resonances, triadic since it involves three wave vectors, k , p  and  k p  

which sum to zero, and resonant because it says that the sum of modal frequencies is zero. 

For this reason,  
p qss sS k  will be referred to as the resonant surface. If there are no such 

resonances for given k , s , ps  and qs  (i.e.  , 0
p qss sF k p  has no solutions in p -space), 

 
p qss sS k  is the empty set and the surface integral in (3.13) should be interpreted as zero. 

It is perhaps interesting to discuss (3.13) in the context of EDQNM. Eddy damping does 
not appear (for the case of pure rotation, it was shown in [B] that it vanishes in the limit of 
weak turbulence). Quasi-normality is a consequence of wave-turbulence analysis and is 
apparent in (3.13) via the products of spectra on the right-hand side which represent fourth-
order spectral moments. The fact that, according to (3.13), the spectrum at time t  evolves 
according to its values at the same instant justifies the final, Markovian, closure hypothesis of 
EDQNM. An important difference between wave-turbulence theory and EDQNM is that the 
nonlinear term in (3.13) is a surface integral over resonant triads, whereas it is a volume 
integral over all triads, including non-resonant ones, according to EDQNM. For the case of 
pure rotation, it was shown in [B] that the volume integral of EDQNM is dominated by 



 

 

resonant triads in the limit of weak turbulence, hence the wave-turbulence result is 
approached. 

Appendix E (supplementary material) analyses the energetics of the wave component 
based on (3.13). It is shown that the right-hand side of (3.13) conserves the total wave-
component energy, which evolves according to 
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Taking the sum of (3.8) and (3.18), 
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This result may be compared with the exact energy equation (2.39). In the weak-turbulence 
limit considered here, terms in the sum of (2.39) with ŝ s  are oscillatory and hence 
negligible. Dropping these terms gives (3.19). Thus, as regards the total energy, the present 
approximations agree with the weak-turbulence limit of the exact result. 

Appendix C concerns the existence of solutions of  , 0
p qss sF k p , where s , ps  and qs  

take one of the values 1 . It is shown that the resonant surface does not exist if p qs s s   or 

1/ 2 2   (a result in agreement with Smith and Waleffe (2002), section 6.1). Thus, when 

1/ 2 2  , the right-hand side of (3.13) is zero according to the present theory. Nonlinear 

interactions between wave modes are then absent at the order to which we are working, 
suggesting the need to go to higher order. However, that lies beyond the scope of the present 

work. When 1/ 2   or 2  , the resonant surface exists for p qs s s   provided 

    2min ,N  k  (3.20)  

and for p qs s   when 

   N  k . (3.21) 

If 1/ 3   or 3  , one or other of (3.20) or (3.21) is satisfied for all k , hence resonant 

surfaces can always be found for such values of  . However, when 1/ 3 1/ 2   or 

2 3  , there are directions of k  for which neither (3.20) nor (3.21) hold, hence no 

resonant surfaces. Such wave vectors are decoupled from all others according to (3.13), 
which predicts that these modes simply decay under visco-diffusive dissipation. Thus, 
spectral space can be divided into two regions. In the first (referred to as A), either (3.20) or 
(3.21) applies and there is nonlinear coupling between wave modes within that region. In the 
second (B), such coupling is absent. This distinction expresses different dynamics for the two 
types of modes, but is only significant for 1/ 3 1/ 2   or 2 3  , otherwise all modes 



 

 

are of type A. Note that the extent of the region in which inter-mode coupling occurs shrinks 

down to zero as either 1/ 2   or 2  , which is the way in which nonlinearity of the 

order considered here disappears as those boundaries are approached. 

Consider a wave vector for which there is one or more resonant surfaces and suppose 

visco-diffusive dissipation small enough (  2D O  ) that it does not kill the wave 

component before nonlinearity intervenes, the time scale for evolution of the wave 

component implied by (3.13) is  2~t O   , the usual one for wave turbulence. If there is no 

resonant surface, we expect the nonlinear evolution time to be longer. As noted earlier, the 
time scales for evolution of the wave and NP components are generally distinct. 

Appendix G (supplementary material) describes the numerical method used to solve (3.13) 
for the statistically axisymmetric case. The procedure is essentially that of Bellet (2003), who 
used the wave-turbulence equations for the case of pure rotation. For the applications 

described in the next section, the initial  ssA k  are not just axisymmetric, but also symmetric 

under reflection in the plane 0k  . This corresponds to statistical symmetry of the 

underlying flow under reflection in any plane perpendicular to the rotation axis, a symmetry 
which, like axisymmetry, is preserved by time evolution according to the governing 

equations. As a result,  ssA k  remains reflection symmetric. Together,    ,ss s sA A  k k , 

axisymmetry and reflection symmetry imply    ,ss s sA A k k , hence 

     11 1, 1 WA A e  k k k  according to the first of equations (2.40). 

Although, for the sake of simplicity in the analysis, the case 0N   (pure rotation) was 
earlier excluded, it may be interesting to consider that case because, to our knowledge, it is 
the only one for which wave-turbulence theory has previously been applied to the present 
problem. According to (2.10), (2.12), (2.14) and (2.15), if 0N   the velocity field is carried 
solely by the wave modes, while the scalar field,  , consists of NP modes alone, i.e. there is a 

precise correspondence between velocity and wave modes and   and NP ones. As discussed 

towards the beginning of section 2, when 0N   the velocity field decouples from the scalar 
 , hence a corresponding decoupling of the wave modes from the NP ones. Under these 

circumstances, it is natural to leave the NP component to one side and consider the wave 
component alone. Furthermore, since the wave component is exactly decoupled from the NP 

one, the wave-turbulence equations are closed without the need for the assumption NP   

made in the general case. 

Focusing on the wave component, as 0N  , (3.13) approaches the wave-turbulence 
equations used by Galtier (2003) and [B] for the case of pure rotation. Numerical integration 

of those equations by [B] indicate that the wave energy density,  We k , develops an infinite, 

but integrable, singularity at the plane 0k  . This is the point of view of wave-turbulence 

theory, i.e. 0  . On the other hand, for small, but nonzero  , there is energy transfer 



 

 

towards the plane 0k   (see Waleffe (1991)), leading to large, but bounded, values of We  for 

small k . Thus, we see how the wave-turbulence result is approached in the limit 0  . That 

the singularity of  We k  is integrable in that limit is significant because it implies that the 

contribution of small k  to the total energy is small, rather than dominant, as suggested by 

some authors (e.g. Hossain (1994)). 

4. Numerical results 

Here, we describe results of numerical solutions of (3.9)-(3.11) for the NP component and 
(3.13) for the wave one for different values of / N   . It should be borne in mind that the 

derivations of (3.9)-(3.11) and (3.13) suppose that N t  is large, hence the avoidance of 

N   ( 1  ) in what follows. As usual in theoretical studies of turbulence, we aim for 

dissipation to have as little effect as possible, but it cannot be entirely removed in a numerical 
study because the minimum numerically resolvable length scale in physical space is nonzero. 
If there is an energy cascade toward smaller scales, it requires mopping up by dissipation, 
otherwise it accumulates at the smallest scales. Furthermore, the time scale for evolution of 
small scales tends to decrease as they become smaller, yielding potential problems of 
numerical instability if the minimum scale is insufficiently limited by dissipation. 

The initial ( 0t  ) distribution of energy of the different modes is chosen to be 

    2 2ˆ expssA k k k , (4.1) 

where 2
00 00

ˆ / NPA A   is the  1O  scaled NP spectra, while, as before, 2ˆ /ss ssA A   for 1s    

are the scaled wave spectra. Note that the spherically averaged spectra resulting from (4.1) 

have the form  4 2expk k , a form often used in theoretical studies of turbulence. Because 

visco-diffusion is small, we expect time evolution to result in the creation of an inertial range 
(by which we mean a range of large k , resulting from nonlinear energy transfer from small to 
large k  and in which nonlinearity dominates dissipation, but which is not necessarily 
associated with an energy cascade), followed by the establishment of a dissipative range 
which limits the spectral extent. 

The above considerations suggest the use of a hyperviscosity to extend the inertial range 
(see e.g. Haugen and Brandeburg (2004)). Based on numerical experimentation, the 
numerical visco-diffusive coefficient used in the NP calculations was chosen as 

  6
00 0D̂ d kk , while the wave-component ones employ   4D̂ dkk , the lesser exponent for 

the wave component being the result of the higher maximum wavenumber attainable for that 
component (due to the logarithmic wavenumber distribution for the wave-turbulence 
equations, described in appendix G (supplementary material), but which is unavailable in 

DNS). The values of 0d  and d , as well as those of the other numerical parameters, are given 

at the end of appendices F and G (supplementary material). 



 

 

Results are first presented for the NP component, then for the wave one. When considering 
these results, it should be borne in mind that the total flow is the sum of both components. 
Each component alone only gives a partial view of the end result. 

4.1 DNS results for the NP component 

Let us begin with figure 1, which gives log-log plots of the scaled NP spectra, 

  2
00 00

ˆ , / NPA A k   k , where k  is the angle between k  and e , as a function of k  for 

different values of   and k . Perhaps the most striking feature is the wiggles in the curves. 

These are due to two traditional limitations of DNS. Firstly, the results are based on a single 
run of DNS, not the many runs which would be needed to accurately compute the ensemble 

average required by the definition of 00A , runs which would render the calculations too 

computationally expensive. Thus, there are random fluctuations about the smooth curves 
which would presumably result from averaging. Secondly, DNS discretizes the wave vector 

k , leading to the considerable jumping around apparent for smaller values of k . These 
problems decrease in importance as k  increases and we focus on k  having larger values. 

Figures 1a-h represent the scaled, NP spectra for ˆ 8t   (recall that ˆ
NPt t  is the scaled 

time for the NP component) for the different values of   given in the figure caption. Each 

figure shows results for eight equally spaced values of k  between / 32  and 15 / 32 . The 

dashed line represents the power law 5k   and has the same location in all figures. For those 

readers more used to plots of spherically averaged spectra, we recall that the 5k   for the 

spectral density shown here corresponds to behaviour like 3k   of  NPE k . The symmetry 

   00 00, ,A k A k   k k  allows the results for values of k  above / 2  to be deduced from 

those given. 

In most cases, an inertial range with power-law exponent close to 5  is apparent. In 

particular, this applies for the values of   represented by figures 1b-g for all k  and for 

figure 1a (pure stratification), apart from / 32 k . Such generic near constancy of the 

exponent is remarkable. However, for 10   (near to pure rotation) the situation is rather 

different and harder to interpret, since the power law observed in the other cases is no longer 
apparent. Indeed, it is hard to discern large- k  power laws from these results and the limit of 

small N  merits further study of the NP component. Furthermore, the lack of a 5k   range in 

figure 1a for / 32 k  suggests that the case of small   and small k  is also worth further 

investigation. 

In addition to the inertial-range exponent, figure 1 gives information on anisotropy of the 

small scales. For the   of figures 1a-1d, the large- k  spectra decrease as k  increases, thus 

the small-scale NP energy is concentrated towards the poles, 0 k  and  k . When 

1.4   (figure 1e) the energy distribution is almost isotropic, whereas for larger   the 



 

 

energy is concentrated towards the equator, / 2 k . This is in agreement with the general 

consensus that dominant stratification favours energy transfer towards the poles, whereas 
dominant rotation sends it towards the equator. However, it should again be recalled that we 
are only considering one component of the flow here. 
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10  00Â k ( )c

210

510

810

0.3 1 3 10 k

10  00Â k
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Figure 1: Log-log plots of the scaled NP spectra for ˆ 8t   and (a) 0  , (b) 0.25  , (c) 

0.5  , (d) 0.7  , (e) 1.4  , (f) 2  , (g) 4   and (h) 10  . Each figure shows 

curves for eight equally spaced values of k  between / 32  and 15 / 32 . The dashed line 
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corresponds to the power law 5
00Â k  . If required, N  and   follow from   using 

  1/ 22 1N 


   and   1/ 22 1 


   . 

 

 

 

 

 

 

 

Figure 2: Contour plots of 00Â  as functions of k  and k  for ˆ 8t   and (a) 0.1  , (b) 

10  . There are ten contours, whose heights are logarithmically spaced from 810  to 1. 
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Figure 3: Log-log plots of the scaled, spherically-averaged NP spectra for 0.5   and times 

ˆ 0, 0.25, 0.5, , 3.75, 4t   . The arrow indicates the direction in which the large- k  spectral 

curves move with increasing time in the early stages. 

Figure 2 provides another view of anisotropy in which contours of 00Â  are plotted in the 

k - k  plane for the cases 0.1   and 10  . We once again see that close to pure 

stratification the NP energy density tends towards the axial direction, whereas it concentrates 
near the equator as the case of pure rotation is approached. 

As regards time evolution, figure 3 shows a representative example ( 0.5  ) of the 

spherically-averaged NP energy spectrum  NPE k , defined earlier, at 17  equally spaced 

times from ˆ 0t   to ˆ 4t  . It will be seen that, at early times, there is energy transfer from 
large to small scales, thus forming the inertial and dissipative ranges. At later times, the 
spectral peak moves slowly towards smaller k . The inertial range has approximate power-law 

behaviour close to 3k  , corresponding to the 5k   of figure 1c and agreeing with the spectral 
power law proposed by Charney (1941). 

The total NP energy decreases with time by an amount which depends on the value of  . 

The decrease  from ˆ 0t   to ˆ 8t   is 0.7%  for 0.7   and 1.4  , 1%  when 0.5   and 

2  , 3%  for 0.25   and 4  , 11%  when 0.1  , 13%  for    , 16%  when 

10   and 33%  for 0  . Considering that these small to moderate decreases correspond 

to a time, ˆ 8t  , much greater than the establishment time of the dissipative range, it appears 
that there is no energy NP energy cascade. This conjecture is reinforced by log-log plots (not 
shown here) of the total NP energy as a function of time which give no indication of the 
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power laws which might be expected if there were an energy cascade. The absence of a 
cascade is in agreement with Charney (1941). 

In conclusion, our results for the NP component are consistent with the theoretical 
predictions of Charney (1941), both in terms of power laws and the lack of a cascade. They 
also provide detailed information on spectral anisotropy and its variation with  . It has been 

suggested (see e.g. Herbert, Pouquet and Marino (2014)) that the absence of a cascade of 
energy to large k  is because the cascade is towards small k  (an inverse cascade). This is 
related to the existence of two QG invariants, namely energy and potential enstrophy, in the 
absence of visco-diffusion. The theoretical basis of the inverse cascade for 3D QG turbulence 
is analogous to that of the classical 2D case. Several DNS studies (e.g. Marino, Mininni, 
Rosenberg and Pouquet (2013)) have claimed that the inverse cascade is strongest in the 
range 1/ 2 2  , though why this should be, given that this condition appears to refer to the 

wave component, is unclear. 

4.2 Results for the wave component 

Results for 1/ 2 2   are not given, because, as discussed earlier, there are no nonlinear 

effects on the evolution of the wave spectra according to the present theory, hence pure linear 
dissipation, leading to negligible time evolution given the small dissipation coefficient used 
here. Two quantities, not previously introduced, are the total wave energy 

   3tot
W WE T e d  k  (4.2) 

and the angular spectrum 

   2

0
, 2 sinang WE T k e dk  


 k k , (4.3) 

which represents the angular distribution of wave energy, the total energy being the integral 

of  ,angE Tk  over 0   k . As discussed earlier, when 1/ 3 1/ 2   or 2 3  , there 

are two distinct types of mode having decoupled and different dynamics. For this reason, the 

integral in (4.2) is decomposed as tot A B
W W WE E E  , where, as defined earlier, A denotes modes 

which are coupled by nonlinearity and B represents those which are not. Whereas B
WE  is 

nearly constant, thanks to small modal damping of the large scales, A-modes undergo 
significant dissipation. Recall that, unless 1/ 3 1/ 2   or 2 3  , all modes are of type 

A, hence 0B
WE   and A tot

W WE E , there being no need for the distinction between A
WE  and tot

WE . 

In what follows, it should also be recalled that 2T t , the scaled time variable appropriate 
to the wave component. 

Beginning with the case of pure rotation, 0N   (    ), allows comparisons with [B]. 

Figure 4 shows a log-log plot of the total wave energy, tot
WE , as a function of time. In the early 

stages, before the dissipative range is established, the energy is very nearly constant. 



 

 

Subsequently, a power law close to 0.7T   is evident, suggesting an energy cascade. The 
exponent is not far from the value, 0.8 , found by [B]. Figure 5 shows the energy spectra as a 
function of k  for 1T   and the same angles as figure 1. An inertial ranges is apparent and 

there are approximate power laws close to 4k  , the exponent identified in [B] for k  near 

/ 2 . The figure also illustrates the expected concentration of energy density near the 
equator. 

Figure 6 shows a plot of  angE k  in which the infinite singularity at / 2 k , identified 

by [B], is apparent. Of course, the existence of this singularity means that the precision of 

numerical results for angles close to / 2 k  is likely to be poor. To what extent this affects 

results away from the equator is unclear. Since the total energy is the integral of  angE k , 

i.e. the area under the curve in figure 6, it is evident that the contribution of the singularity to 
the total energy is small, as concluded in [B]. 

 

 

 

Figure 4: Log-log plot of the total scaled wave energy as a function of time for the case of 

pure rotation (    ). The dashed line represents the power law 0.7tot
WE T  . 
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Figure 5: Log-log plots of the scaled wave energy spectra for 0N  , 1T   and the same 

angles as figure 1. The dashed line represents the power law 4
We k  , which corresponds to 

2k   for the spherically averaged spectrum. 

 

 

 

Figure 6: Scaled angular spectrum for 0N  , 0.25T  . 
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Figure 7: Log-log plots of the total scaled energy of A -modes as a function of time for 
different values of (a) 2   and (b) 1/ 2  . The straight-line asymptotes of the curves for 

large T  imply power laws of the form T  . (a) from left to right (decreasing  ),   has 

values close to 0.7 , 0.3 , 0.3 , 0.5  and 0.5 , (b)   is close to 0.4  for 0   and to 0.5  for the 

other values of  . 

2 A
WE 

  
10 

5 

3 

2.5 

10

1

210 110 1 10 T

( )a

( )b

0 

210 110 1 10
1

10

2 A
WE 

0.1 

0.2 

0.4 

0.3 

T



 

 

For cases other than 0N  , the assumption NP   is required for closure of the wave-

turbulence equations. Furthermore, if 1/ 3 1/ 2   or 2 3  , the distinction, discussed 

earlier, is made between modes which undergo nonlinear coupling (component A) and others  
(component B) which do not. Figure 7 shows log-log plots of the total wave energy of 

component A ( A
WE ) as a function of time for different values of  , including the case of pure 

rotation, already covered by figure 4, but which is reproduced here for comparison with the 
other cases. The exclusion of decoupled modes (component B) due to their different 
dynamics results in the lower initial value when 2.5   and 0.4  . For all values of  , 

there is a range of times in which the total energy is very nearly constant, during which an 
inertial range is created by transfer from small to large wavenumber, followed by a transition 

to a power law, T  , once the dissipative range is established. This behaviour suggests the 
existence of an energy cascade for the wave component. The scaled time required for creation 
of the dissipative range increases as   decreases for 2  , whereas it does not vary greatly 

for 1/ 2  . 
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Figure 8: Angular spectra for (a) 0  , (b) 0.1  , (c) 0.2  , (d) 0.3  , (e) 0.4  , 

(f) 2.5  , (g) 3  , (h) 5  , (i) 10  . Figures (a)-(e), (h) and (i) are for 2T  , (f) is 

for 30T   and (g) for 10T  . Figures (b)-(i) show the range of k  for which (3.20) applies, 

while (e) and (f) also indicate the range, B , of decoupled modes, for which neither (3.20) nor 

(3.21) hold. Concerning (3.20) and (3.21), it may help to recall that   1/ 22 1N 


  , 

  1/ 22 1 


    and    1/ 22 2 2 2sin cosN   k kk . 
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Figure 8 shows plots of the angular spectrum for different values of   and, for each  , a 

T  sufficiently large that the dissipative range is established. Perhaps the most striking feature 

is the discontinuity in figures 8b-i at the boundaries of the range of k  defined by (3.20). This 

occurs because the resonant surface with p qs s s    is present when (3.20) holds, but is 

absent once the boundary is crossed. This discontinuity would no doubt be revealed to be a 
region of rapid spectral variation by asymptotic analysis of the limit 0   close to the 

boundary, but this is not attempted here. Also note the range of k  in figures 8e and 8f 

indicated by B. This corresponds to the decoupled modes discussed earlier. Given small 

dissipation, such modes maintain their initial value,   3/ 2 23 sin / 4angE    k k . 

Figure 8a (pure stratification) shows the expected large energy density near the poles, 

though, recalling that the total wave energy is the integral of angE , those regions do not 

dominate the total energy. Figures 8b-8i indicate that the energy density is considerably lower 
when (3.20) is satisfied, leading to the expected concentration near the poles when 1/ 2   

and near the equator when 2  . Taken together, figures 8a-8i and 6 illustrate the evolution 

of the wave component as   increases. 

 

 

 

Figure 9: Log-log plot of the scaled spectra as a function of k  for 3  , 10T   and the same 

angles as figure 1. The dashed straight line represents the power law 4
We k  . 
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Figure 10: Log-log plot of the scaled spectra as a function of k  for 0  , 2T   and the 

same angles as figure 1. The dashed straight line represents the power law 4
We k  . 

Figure 9 shows a representative log-log plot of the wave spectrum as a function of k  for 

different values of k .  The density of dashes on the curves increases with k , allowing the 

identification of particular k , while the dashed straight line represents the power law 
4

We k  . Similar results are obtained for all 2  , but the picture, as regards power laws 

with respect to k , is less clear when 1/ 2  , as illustrated by figure 10. Here, inertial-range 

power laws as a function of k  are hard to distinguish and are, at best, rough approximations. 
For some values of 1/ 2  , there are clearer power laws, but, overall, the results indicate 

that the wave spectra cannot be relied on to even follow approximate inertial-range power 
laws with respect to k  when 1/ 2  . 

In summary, temporal power laws for the total wave energy are quite clear and suggest an 
energy cascade, while the angular spectra show that the existence/nonexistence of the 

resonant surface with p qs s s    leads to polar concentration of energy density when 

1/ 2   and equatorial concentration for 2  . However, inertial-range power laws for the 

k -spectra are, at best, approximate. 

5. Conclusions 

To our knowledge, this is the first analytically based study of weak rotating/stratified 
turbulence, other than those of Galtier (2003) and [B] for the case of pure rotation. The results 
depend strongly on the ratio,  , of twice the rotation rate to the Brunt-Vaisala frequency. 

The theory in section 2 uses Fourier analysis and modal decomposition to express the flow as 
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a sum of wave ( 1s   ) and NP ( 0s  ) components, resulting in the mode amplitude 
equation (2.26), which has terms representing nonlinear interactions between modes and 
visco-diffusive dissipation. The nonlinear term can be expressed in terms of the modal 

amplitudes, sa , using either (2.27) or (2.30), equivalent expressions which are both employed 

at different points in the analysis, as is the original expression in (2.26). 

Section 2 also introduces the spectral matrix,  ssA  k , where k  is the wave vector 

resulting from Fourier transformation. The diagonal elements of this matrix represent the 
energy density of the different modes in spectral space, whereas the off-diagonal ones 
correspond to modal correlations and are of lesser importance. The wave and NP spectral 
energy densities are given by (2.40). 

The consequences of weakness of the turbulence are examined in section 3. To avoid 
difficulties in the analysis, we suppose that   is not close to 1. It is found that the NP 

component evolves according to equations (3.9)-(3.11) independently of the wave 
component. These equations are equivalent to the three-dimensional, quasi-geostrophic 
approximation, which is one of the cornerstones in the study of atmospheric and oceanic 
flows. The wave component is treated using wave-turbulence analysis in appendix B. To rid 
the wave equations of the NP spectra, and hence close the equations for the wave component, 

the NP amplitude, NP , is assumed small compared to that of the waves,  . The result is 

equation (3.13). 

Section 4 gives results of numerical solution of the evolution equations derived in section 
3, namely (3.9)-(3.11) for the NP component and (3.13) for the wave one. Both (3.11) and 

(3.13) involve dissipation coefficients,  00D̂ k  for (3.11) and  D̂ k  for (3.13). As usual in 

studies of turbulence, dissipation is chosen small for the large scales (  1k O k ), but 

increases with k . Hyperviscous dissipation is used in an attempt to extend the expected 

inertial ranges. The initial conditions are expressed by (4.1), where 2
00 00

ˆ / NPA A   and 

2ˆ /ss ssA A   for 1s    are the NP and wave spectra, scaled to be of order 1. Such scaling is 

also used for time, the scaled time being ˆ
NPt t  for the NP component and 2T t  for the 

wave one. From a numerical point of view, the advantage of these scaled variables is that the 

amplitudes, NP  and  , are eliminated from the problem. 

Figures 1-3 show NP results. Figure 1 gives results for the NP spectra as a function of k  at 
sufficiently large scaled time that the dissipative range is established and different values of 

  and k , the angle between the wave vector and the axis of rotation. With a few exceptions, 

noted in the discussion of the figure, it indicates an inertial range close to 5k   for the NP 
energy density. The exceptions include the case 10  , near to the case of pure rotation, a 

limit which may merit further study of the NP component. Figure 1 also indicates that 
dominant stratification favours energy transfer towards the poles in k -space, whereas 
dominant rotation sends it towards the equator. Figure 2 gives a different view of the same 



 

 

trend, while figure 3 illustrates the formation of the inertial and dissipative ranges by energy 
transfer from large to small scales. 

Perhaps the most significant conclusion concerning the NP component arises from the 
observation that the overall energy dissipation is generally small, even when the dissipation 
range is very well developed. This suggests that there is no energy cascade associated with 
this component. If true, this implies it can persist to much longer times than might otherwise 

be thought given the time scaling 1~ NPt    for its evolution. Both the lack of a cascade and the 

appearance of 5k   power laws are in agreement with the theoretical results of Charney (1971) 
for the three-dimensional, quasi-geostrophic approximation. 

Section 4.2 gives results for the wave component, the validity of which depend on the 

assumption NP   unless 0N   (    , pure rotation). In the latter case, our results are in 

general agreement with those of [B]. In particular, Figure 4 shows the total wave energy as a 
function of time. In the early stages, before the dissipative range is established, the energy is 

very nearly constant. Subsequently, a power law close to 0.7T   is evident, suggesting an 
energy cascade. The exponent is not far from the value, 0.8 , found by [B]. Figure 5 

indicates inertial-range behaviour with a power law close to 4k  , the exponent identified in 

[B] for k  near / 2 . The figure also shows the expected concentration of energy density 

near the equator. This concentration is even more evident in figure 6, which plots the angular 

spectrum of the wave mode,  angE k , defined by (4.3) and whose integral over 0   k  

gives the total wave energy. The figure illustrates the infinite singularity found by [B] and 
also the conclusion that it does not dominate the total energy (the area under the curve). 

Turning to cases other than pure rotation, it is important to recognise that the nonlinear 
terms in the wave-turbulence equation (3.13), which governs the wave component according 

to the present theory, are integrals over the resonant surfaces, 
p qss sS , defined in section 2. 

When 1/ 2 2  , there are no such surfaces (as shown previously by Smith and Waleffe 

(2002)), hence pure linear dissipation. Given small dissipation of the large scales, time 
evolution is negligible and results for such values of   are not shown. The vanishing of the 

nonlinear terms for this range of   suggests going to higher order in  , but this is beyond the 

scope of this article. If 1/ 3 1/ 2   or 2 3  , there are values of k  for which resonant 

surfaces do not exist. Thus, there are modes which are nonlinearly coupled to others,  type A, 
while the remainder, type B, are decoupled. Type B modes undergo pure linear dissipation, 
hence negligible spectral time evolution. 

Figure 7 shows the time evolution of the total energy of component A for different values 
of  . Component B is excluded, in recognition of the different dynamics of components A 

and B, the energy of component B being nearly constant. This exclusion only matters for 
2.5   and 0.4  , since all modes are of type A for the other cases covered by the figure. 

In all cases, there is a range of times in which the energy is very nearly constant and during 
which an inertial range is created by transfer from small to large wavenumber, followed by a 



 

 

transition to a temporal power law once the dissipative range is established. This behaviour 
suggests the existence of an energy cascade for the wave component. The time required for 
creation of the dissipative range increases signicantly as   decreases for 2  , whereas it 

does not vary greatly for 1/ 2  . 

Figure 8 shows angular spectra for different   at scaled times sufficiently large that the 

inertial and dissipative ranges are established. Modes of type B exist for 2.5   and 0.4 
and, as expected, the spectra are very nearly equal to their initial values in the corresponding 

ranges of  k  (see figures 8e and 8f). For 0   (pure stratification), the spectrum is largest 

near the poles, though the contribution to the total energy from other angles is comparable. 
When 0  , there are spectral discontinuities at the boundaries of the range defined by 

(3.20), the range of k  in which the resonant surface p qs s s    exists. Exiting the given 

range, that resonant surface abruptly ceases to exist, leading to the discontinuity. Of course, 

we do not expect a real spectral discontinuity, but rather a narrow range of k , whose width 

tends to zero as 0   (analogous to a shock wave in a compressible fluid as the dissipation 
goes to zero). One might expect similar behaviour to arise from the resonant surfaces 

p qs s   at the boundaries of the range (3.21). However, it can be shown that the surface 

p qs s s    disappears by going to p , whereas, when p qs s  , the surfaces shrink 

down to a point. The latter behaviour makes the contributions to (3.13) tend to zero as the 
boundaries of (3.21) are approached, hence no discontinuity arises, whereas the former allows 

the integral in (3.13) with p qs s s    to tend to a nonzero limit at the boundaries of (3.20), 

leading to a discontinuity. 

As apparent from figure 8, for 0  , the energy density is considerably greater outside 

the range defined by (3.20). This leads to the expected higher density near the poles for 
1/ 2   and near the equator when 2  . However, the cause identified here, namely the 

appearance/disappearance of the resonant surface with p qs s s   , is perhaps surprising. It 

appears that the presence of that surface leads to energy transfer away from the corresponding 
k . 

Concerning the behaviour of the developed wave spectra as a function of k , there are 

rough power laws 4~We k   when 2  , as illustrated by figure 9. However, such power laws 

are hard to identify for 1/ 2   (see e.g. figure 10). In conclusion, inertial-range power laws 

for the wave k -spectra are approximate at best. 

Finally, there remain at least two open questions. Firstly, what happens to the wave 

component of weak turbulence if the condition NP  , used for closure of the wave-

turbulence equations (unless 0N  ), does not apply? Given the apparent lack of an energy 
cascade for the NP component and sufficiently small dissipation, it maintains its energy, 
while, according to the present results, the wave component decays due to a cascade. Starting 



 

 

from initial conditions such that NP  , it appears that   will eventually become 

comparable with NP , at which point the treatment of the wave component used here no 

longer applies. The fate of the wave component is also unclear when ~NP   or NP   

initially. However, the results concerning the NP component are unaffected because they do 

not depend on the assumption NP  . 

Another question concerns the behaviour of the wave component at or near the case of 
pure rotation (large  ). As discussed earlier, in the case of pure rotation and according to 

wave-turbulence theory, there is an infinite singularity of the wave energy density at 0k  . 

This suggests that the limit of small Rossby number is singular for / 1k k   without 

stratification. When small stratification is included, it seems likely that the infinite singularity 
is removed, but the detailed asymptotics in the double limit in which the Rossby number goes 
to zero and     remain an open question. In fact, to our knowledge, even the small 

Rossby number limit with pure rotation has yet to be clarified analytically. 
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Appendix A: Modal projection 

Since the unit vectors  1e  and  2e , given by (2.13), are orthogonal to each other and to k , 
(2.7) implies 
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where 
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The rotational term in (A.2) can be simplified using (2.7), (2.13) and the vector identity 

            k a . e u k.e a.u k.u a.e   . Thus, we obtain 

  1
i ijk j k i i

k
e e u e u

k




   , (A.4) 



 

 

      2 1 1
i ijk j k i i

k k
e e u e u u

k k
      . (A.5) 

(2.13) implies      12 kk


  e k k e . Using the vector identity         a b c a.c b a.b c  

gives      12 2kk k k


 e k e , hence      12 2 2 /i ie e kk k k k k


     , where we have used 

2 2 2k k k   . Employing (A.1) and  1 0i ie e   (which follows from the first of equations 

(2.13)), we find  2 /i ie u k u k    so (A.4) gives 
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i ijk j k

k
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Thus, the rotational term in (A.2) can be expressed using (A.5) and (A.6).  1 0i ie e   and 

 2 /i ie e k k   also allow the evaluation of the term in (A.2) which represents stratification. 

The result is 
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Finally,  2 /i ie u k u k    and (2.8) yield 
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where 
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The quantities  lu  and   evolve according to (A.7)-(A.9). 

In the absence of nonlinearity, viscosity and diffusion, the right-hand sides of (A.7)-(A.9) 

are zero. Looking for solutions of the form  exp i t  gives the eigenvalue problem 
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Given that the matrix is Hermitian, the eigenvalues are real and there is a complete set of 

orthogonal eigenvectors. The eigenvalues are  s  k , where s  takes one of the three 

values 0, 1s    and   k  is given by (2.9). The normalised eigenvectors are given by 

(2.14) and (2.15), while (2.16) reflects orthogonality and normalisation. Using (A.1), we 
obtain (2.10) and (2.11), hence the modal solutions described in the main text. 

Completeness of the eigenvectors of (A.11) implies 
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hence (2.17) and (2.18) according to (A.1). Using (A.11) and (A.12), (A.7)-(A.9) imply 
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Left-multiplying (A.13) by the row vector       * * *1 2, , s
s su u   and using the orthonormality 

relation (2.16), 
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Employing (A.3), (A.10) and (A.12) gives (2.19). 

It remains to derive (2.27) and (2.30). The inverse transform of (2.4) and real iu  imply 
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It follows that 
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and, similarly, 
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Employing (2.17) and (2.18), (A.17), (A.18) and the definition of sa  give (2.27). 

Changing the integration variable in (2.27) to  k p , using    , ,
p q q pss s ss sF F  k k p k p  

and permuting the summation indices p qs s , 
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Taking the sum of (2.27) and (A.19) and dividing by two gives (2.30). 

Appendix B: Wave-turbulence analysis 

Statistical homogeneity implies 
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The ensemble average of the complex conjugate of (3.12) multiplied by  sa  k  gives 
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where 
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In deriving (B.2), (2.35), (B.1) and the fact that ssD  is real have been used, while, given the 

Dirac function in (B.2),  ,
p qs s s  k p  has been replaced by  ,

p qs s s k p  in (B.3). Permuting 

s s  and k k , the complex conjugate of (B.2) yields 
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where we have employed the Hermitian character of ssA   and reality of s sD   . Taking the time 

derivative of (2.35), (B.2) and (B.4) imply 
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(B.5) governs the evolution of the spectral matrix, evolution which we expect to be slow for 
weak turbulence with small visco-diffusion. Thus, we consider large t . The appearance of the 
third-order spectral moments, represented by   in (B.3), is a consequence of the usual 
turbulence closure problem. 

The time derivative of (B.1) yields 
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Using (3.12) and (B.1), 
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The fourth-order moments in (B.7) are treated as follows. 

Suppose, as is often done in theoretical studies of homogeneous turbulence, that turbulent 
quantities are statistically independent at sufficiently large separations and consider fourth-

order, four-point moments of  iu x  and   x . Let r  denote the largest of the distances 

between two points. The four-point moments go to zero as r , unless the points form two 
pairs, each pair having bounded separation as the distance between the pairs goes to infinity. 
In that case, the four-point moments are the product of two-point moments, one from each 
pair, hence a quasi-normal limit applies at large r . The four-point moments can thus be 
written as the sum of their quasi-normal values and another component, often referred to as 
the cumulant correction, which tends to zero as r  . In spectral terms, the corresponding 
result is 
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where 
p q p qs s s sK    represents the cumulant correction and the remainder of the right-hand side is 

the quasi-normal contribution. Using (2.35) and    *
s sa a k k , 
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are the quasi-normal contributions to (B.8). 

(B.8)-(B.11) are used in (B.7). Given the factor   k  in (B.9), the corresponding 

contribution to (B.7) depends on the value of  ,
p qs s sM    k p  at 0k , which is zero according 

to (2.28) and (2.31). (B.10) gives 
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while (B.11) yields 
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Given the Dirac function, k  is replaced by  k p  inside the sum of (B.13). Using the 

relations    , ,
p q q ps s s s s sM M       k k p k p  and    , ,

p q q ps s s s s sF F       k k p k p , permutation of 

the summation indices ps  and qs  shows that (B.13) equals (B.12), hence the total quasi-

normal contribution to (B.7) is    ,
p q

QN
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Including the cumulant and dissipative contibributions, (B.7) gives 
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where 
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(B.15) provides the first term on the right-hand side of (B.6). The other two also follow 
from (B.15) as 
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Given the Dirac function in (B.18), 
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According to (B.1),      , , ,
p q q p p qs s s s s s s s s        p k k p k k p , hence (B.6), (B.15), 

(B.17) and (B.19) yield 
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where 
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The solution of (B.20) is 
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where 
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and we have used the fact that      , , ,
p q q p p qs s s s s s s s sD D D  
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from (B.21). 

Using (B.3), the contribution of the final term in (B.22) to  ss  k  is 
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Employing    , ,
p q q pss s ss sM M  k p k k p  and    , ,

p q q pss s ss sF F  k p k k p , changing the 

integration variable to  k p  and permuting the summation indices ps  and qs  shows that the 

contributions to  ,ss t  k  of the final two terms of (B.22) are equal. Thus, (B.3) and (B.22) 

give 
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We henceforth suppose that s  and s  are nonzero, i.e. we specialise to the wave 
component, so (B.5) gives 
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where  D k , given by (3.14), is the damping factor of wave modes. Up to now, the only 

approximation used was the replacement of the dissipative term in (2.26) to obtain (3.12). 
From here on, we use large t  to derive the wave-turbulence equations and, to avoid killing 
the turbulence by visco-diffusion prior to the given time, the modal damping coefficient is 

assumed comparable to or smaller than 1t   for the large scales of turbulence. Furthermore, to 

obtain closed wave-turbulence equations from (B.26), we suppose the amplitude, NP , of the 



 

 

NP component small compared with that of the wave component,  , and consider the effect 

of each of the terms on the right-hand side of (B.25) on the long-term evolution of ssA   

according to (B.26). 

Given large t  and (2.29), the integrand of the first term on the right-hand side of (B.25) 

has rapid, self-cancelling oscillations with respect to p  unless 0p qs s  . Neglecting 

nonzero ps  and qs  leaves 
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as the contribution to ss  . Since 0s  , (B.27) has temporal oscillations of period  1O  and 

hence does not contribute significantly to the long-term evolution of  ssA   according to (B.26). 

Thus, the first term in (B.25) is negligible. 

Concerning the cumulant contribution, the integrand in (B.16) has rapid, self-cancelling 

oscillations with respect to p  unless 0p qs s   , hence other terms are dropped. Using 

(B.23), the resulting contribution to (B.25) is 
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Avoidance of rapid oscillations with respect to p  leads to 
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Since 0s  , the integrand of the first term of (B.29) is oscillatory with respect to t , so that 

term does not grow with t  and has order of magnitude determined by  4
0000 NPK O  . The 

resulting contribution to (B.26) can, at most, induce a change of  4
NPO t  in ssA   over the time 

span t . However, as we shall see, the appropriate time scale for evolution of ssA   is 2~t   , 



 

 

giving a change in ssA   due to the first term in (B.29) of at most  4 2
NPO    , which is 

negligible since  2
ssA O    and NP  . 

The 0ps   components of the second term in (B.29) have integrands which have rapid 

oscillations with respect to p  unless  1t t O  . Neglecting other t , the order of magnitude 

of the 0ps   contributions is determined by  3
00 0s NPK O    , implying negligible effects on 

the evolution of ssA   when 2~t    because NP  . Finally, the 0ps   component of the 

second term in (B.29) has oscillations of period  1O  due to the term   exp is t k . The 

amplitude of these oscillations is  3
NPO t  . The solution of (B.26) inherits these oscillations, 

but the result is negligible when 2~t    because NP  . In summary, thanks to NP  , 

the cumulant contribution is negligible, but there remains the quasi-normal one, which we 
now investigate. 

Employing (B.14) and (B.23), the quasi-normal contribution to the second term on the 
right-hand side of (B.25) is 
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Given 
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there are rapid, self-cancelling oscillations with respect to p  of the integrand in (B.30) unless 

p ps s  , q qs s  . The case 0p q p qs s s s      gives the contribution 
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Since 0s  , the integrand is oscillatory with respect to t  and, given  2
00 NPA O  , (B.32) is 

of order  4
NPO  , hence inducing negligible effects on the evolution of ssA   according to 

(B.26). On the other hand, when p ps s  , q qs s   and one or other of ps  and qs  is nonzero, 



 

 

there are rapid oscillations with respect to p  of the integrand of (B.30) unless  1t t O  . 

The latter condition has two consequences. The first is that, given the small visco-diffusive 
dissipation needed to stop it killing the turbulence before nonlinearity is effective, the visco-
diffusive term in the exponential of (B.30) can be neglected. The second follows from the 

slow evolution of the spectral matrix A , which allows the approximation    A t A t  . Thus, 

(B.30) becomes 
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where the sum excludes the term 0p qs s  . The integral over t  can now be evaluated 

giving 
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for the second-term on the right-hand side of (B.25), where again 0p qs s   is excluded 

from the sum, 
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and        , ,
p q p qss s s s sF F s s    k p k p k  has been used. 

Turning attention to the quasi-normal contribution to the final term of (B.25), we employ 
similar reasoning to that used above. The equivalent of (B.30) is 
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where we have used    , ,
p p q p p qs s s s s sF F   p k k p . Avoidance of rapid oscillations with respect 

to p  requires q qs s  . The case 0p q qs s s    gives the contribution 
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When 0ps  , the integrand is oscillatory and the result has order of magnitude 2 2
NP  , hence 

negligible effects on the evolution of ssA   for 2~t   . For 0ps  , there are oscillations of 

period  1O  and amplitude  3
NPO t  . These oscillations are inherited by ssA   via (B.26), but 

are negligible because NP  . 

Finally, when q qs s   and one or other of ps  and qs  is nonzero, there are rapid oscillations 

with respect to p  of the integrand of (B.36) unless  1t t O  , a condition which makes the 

visco-diffusive term in (B.36) negligible and allows the approximation    A t A t  . 

Evaluating the integral over t  and using        , ,
p q p p qss s s s s pF F s s    k p k p k , gives 
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where the sum excludes 0p qs s  .    , , , ,
p p q p q ps s s s s st t     k p k k p  (which follows from 

(B.35) and    , ,
p p q p q ps s s s s sF F   k p k k p ) and    , ,

p q q pss s ss sM M  k p k k p  are then 

used, followed by a change of integration variable to  k p  and permutation of the 

summation indices ps  and qs . Thus, 
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expresses the final term in (B.25), where again 0p qs s   is excluded from the sum. 

The integrals in (B.34) and (B.39) have the form 

     3, ,
p qs s s t d  k p p p , (B.40) 

where s  and   depend on which integral is considered. Such integrals always arise in 
wave-turbulence analysis and need to be evaluated in the limit of large t . To this end, (B.35) 
is decomposed into real and imaginary parts: 
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Without going into the details (see e.g. Benney and Newell (1969)), the first term approaches 

a Dirac function,   ,
p qs s sF  k p , as t  . Using        k p k p , (2.29) and 

(3.15),      ,
p qs s s p g q gF s s   p k p c p c k p . Thus, converting the volume integral with the 

Dirac function into a surface integral, the contribution to (B.40) is 
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where  
p qs s sS  k  is the surface in p -space defined by  , 0

p qs s sF  k p . Of course,  
p qs s sS  k  

may be the empty set, in which case integrals over  
p qs s sS  k  should be interpreted as zero. 

The cosine in the second term of (B.41) turns out to be negligible provided that the result is 
interpreted as a Cauchy principal value, so the contribution to (B.40) is 
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where the P  before the integral sign indicates a principal value. Finally, the sum of (B.42) 
and (B.43) yields 
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as the t   limit of (B.40). 

The Cauchy principal value has been introduced above without defining what is meant. If 

there is no p  for which  , 0
p qs s sF  k p  (i.e.  

p qs s sS  k  is the empty set), the integrand in 

(B.43) is non-singular and the principal value is just a normal integral. On the other hand, 

 , 0
p qs s sF  k p  gives an infinite singularity of the integrand and the integral needs more 

careful interpretation. To remove the singularity, a small region in p -space is excluded from 

the integral (see figure B.1). This region can be defined by  ,
p qs s sF  k p , where 0   is 

small. Taking the limit 0  gives the principal value. 

 



 

 

 

 

 

 

 

Figure B.1: Illustration of the volume in p -space which is excluded from the integral in 

(B.43) when defining the Cauchy principal value. The excluded volume is bounded by the 
dashed lines. 

Using (B.44) in (B.34) and (B.39), there are two types of terms: those which are 

oscillatory over time spans of  1O  and those which are not. Given that we are looking for 

contributions that result in cumulative evolution of ssA   according to (B.26) over long time 

spans, we neglect oscillatory terms, i.e. s s   for (B.34) and ps s   for (B.39). Taking the 

sum of (B.34) and (B.39) without these terms, 
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where the sum is missing the term 0p qs s  , 
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and  ,
p qss s k p  and  ,

p qss s k p  are given by (3.16) and (3.17). Using (B.44), (B.45) and 

(B.46) imply 
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where 

 ,
p qs s sF  k p

 , 0
p qs s sF  k p
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and the term 0p qs s   is excluded from the sums in (B.47) and (B.48). Given the assumed 

smallness of the NP component, the contributions of 00A  to (B.47) and (B.48) are negligible, 

thus 
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Both integrals in (B.49) are real, hence, given the Hermitian character of ssA   and the factor 

ss  , 
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is the final asymptotic approximation of the right-hand side of (B.26), giving the wave-
turbulence equation 
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for , 0s s  . Given  2
ssA O   , the evolution time of the wave component can be estimated 

using (B.50) and (B.52) as  2O   , a result noted earlier and which is typical of wave 

turbulence. 

Since the wave-component spectral energy density is given by the first of the equations 
(2.40), the most interesting application of (B.52) is s s  . Using (B.50) and reality of the 
diagonal components of the spectral matrix A , (B.52) yields 
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Consider the principal-value contribution to (B.53), which can be written 
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As noted following its definition, (2.35), the spectral matrix is such that    ,ss s sA A   k k , 

hence, switching the sign of the summation index ps  and changing the integration variable to 

 q p , (B.54) becomes 
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Since (B.54) and (B.55) are equal, they are also equal to half their sum and hence to 
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Although we have been unable to show it analytically, numerical evaluation of 
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for nonzero s  and ps  and different values of  , k  and p  show it to be zero to IEEE double 

precision. Assuming this result is exactly true, the principal-value term in (B.53) is zero and 
is therefore dropped. 

Next consider the 0qs   contribution to the first term on the right-hand side of (B.53), 

which is 
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If ps s ,       , ,0 , 0
ps sF s    k p k p  has no solution because 0  , hence the 

contribution to (B.58) is zero. On the other hand, if ps s  ,  , ,0ps sS k  consists of the double 

cone     p k . Once again, although we have been unable to prove it analytically, 

numerical calculations show that  , ,0 ,s s  k p  is zero to IEEE double precision when 0s   

and     p k . Assuming this is exactly true, (B.58) is zero and (B.53) becomes (3.13) 

when the scaled variables 2T t  and 2ˆ /ss ssA A   are used. 

Given NP  , it might have been tempting to neglect the effects of the NP component 

on the wave one from the start, i.e. to drop the terms in (3.12) with 0ps   or 0qs  . 

However, it is then found that the principal-value terms do not cancel, i.e. they persist in the 

final result. This is because cancellation requires the 0qs   contribution to (B.57). 

Appendix C: Existence of the resonant surface 

This appendix derives conditions for the existence of solutions of  , 0
p qss sF k p , where s , 

ps  and qs  take one of the values 1 , for a given k . To this end, we determine the maximum 

and minimum values of  ,
p qss sF k p  as a function of p . If these values straddle zero the 

resonant surface exists. Since k  is fixed, looking for extrema of  ,
p qss sF k p , given by (2.29), 

is equivalent to searching for those of 

    p qs s   p k p , (C.1) 

where we have used        k p k p . 



 

 

Define spherical polar coordinates, p  p , 0     and      , in p -space, where 

  is the angle between the vectors p  and e  and k  lies in the plane 0  . We first look for 

extrema of (C.1) at constant p  and  , i.e. only   is varied. Given fixed  ,   p  is 

constant, so we consider extrema of   k p . Using (2.9), 
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where  q k p . Employing the spherical coordinates defined above, 

 cosq k p    , (C.3) 
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Since p  and   are constant, so is q , while the factor cos  induces variations of 2q . It is 

apparent from (C.2)-(C.4) that the extrema we are looking for arise from those of cos , 

which occur at 0   and   . Thus, we can restrict attention to p  lying in the plane 

defined by k  and the rotation axis (see figure C.1). 

 

 

 

 

 

 

 

 

Figure C.1: The plane defined by k  and the rotation axis, showing the vectors e , p , k  and 

k p , as well as the angle  k p  and the line L . 
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Consider the effect of letting p  move along the diagonal dashed line, L , in figure E.1. 

This keeps   p  constant in (C.1). As a result, we look for extrema of 

    1/ 22 2 2 2cos sinN     k p k pk p , (C.5) 

where, as illustrated by the figure,  k p  is the angle between the vectors k p  and e . As p  

moves along the line L ,  k p  varies and   k p , given by (C.5), takes on all values 

between   and N . Thus, the minimum and maximum values of (C.1) for the line L  are 

    min ,p qs s N  p ,         max ,p qs s N  p . (C.6) 

We next consider changes of the line L , first for the case p qs s . Thus, (C.6) gives 

    min ,N  p ,          max ,N  p . (C.7) 

As the line changes,   p  takes on every value between   and N , hence 

  2min ,N ,        2max ,N  (C.8) 

are the minimum and maximum of (C.1) over all p . It follows from (2.29) that the extremal 

values of  ,
p qss sF k p  are 

    2 min ,ps s N  k ,          2 max ,ps s N  k . (C.9) 

As noted earlier, the existence of the resonant surface requires that the two values in (C.9) 

straddle zero. If ps s , this is impossible because each of   k ,   and N  is positive. This 

means that the resonant surface does not exist when p qs s s  , a result which is to be 

expected given (2.29) and 0  . On the other hand, when ps s  , zero straddling of (C.9) 

requires 

      2min , 2max ,N N   k . (C.10) 

Given that    max ,N  k  according to (2.29), the second inequality in (C.10) is 

automatically satisfied, while the first requires    2min , max ,N N   . The latter 

inequality is only satisfied if either 1/ 2   or 2  . For such values of  , the resonant 

surface with p qs s s   exists provided (3.20) holds. 

Turning attention to the case, p qs s  , (C.6) yields 



 

 

    min ,N  p ,          max ,N  p  (C.11) 

as the minimum and maximum values of (C.1) for the line L . As the line, L , changes,   p  

takes on all values between   and N , hence N   for the global extremal values of 

(C.1). It follows from (2.29) that the extremal values of  ,
p qss sF k p  are   ps s N  k . 

The requirement that these values straddle zero is   N  k . Since    min ,N  k , 

this implies  min ,N N   , which, as when p qs s , requires 1/ 2   or 2  . 

In summary, the resonant surface does not exist if p qs s s   or 1/ 2 2  . Otherwise it 

exists for p qs s  provided (3.20) holds and for p qs s   when (3.21) applies. 
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