
HAL Id: hal-04389694
https://hal.science/hal-04389694

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Efficient and Reliable Maintenance for
SDN-based Scheduled Wireless Networks

Farzad Veisi, Julien Montavont, Fabrice Theoleyre

To cite this version:
Farzad Veisi, Julien Montavont, Fabrice Theoleyre. Energy Efficient and Reliable Maintenance for
SDN-based Scheduled Wireless Networks. IEEE Consumer Communications and Networking Con-
ference (CCNC), Las Vegas, United States, 06-09 janvier 2024, Jan 2024, Las Vegas, United States.
pp.513-518, �10.1109/CCNC51664.2024.10454638�. �hal-04389694�

https://hal.science/hal-04389694
https://hal.archives-ouvertes.fr


Energy Efficient and Reliable Maintenance for
SDN-based Scheduled Wireless Networks

Farzad Veisi, Julien Montavont and Fabrice Theoleyre

ICube, CNRS / University of Strasbourg
Bd Sébastien Brant, 67412 Illkirch, France

Emails: veisigoshtasb@unistra.fr, montavont@unistra.fr, and fabrice.theoleyre@cnrs.fr

Abstract—Wireless industrial networks represent a key en-
abler for Industry 4.0. Since wireless links are known to be
lossy, most deployments rely on scheduled transmissions to
avoid collisions. Software Defined Networking (SDN) is a famous
architecture where a controller centralizes all the configuration.
In a scheduled wireless network, the SDN paradigm has to be
extended to allocate both paths and bandwidth. Unfortunately,
most solutions address only the initial configuration, which
becomes suboptimal when the link quality evolves, or the condi-
tions change. We propose here the mechanisms for continuous
optimization. We define how control packets can reconfigure
the data plane while guaranteeing a globally consistent state,
even when the control plane exploits unreliable links. No data
packet is dropped because of inconsistent forwarding rules. To
be energy efficient, we also propose a scheduling algorithm that
minimizes the network reconfiguration to minimize the overhead.
Our simulation results highlight the strength of our proposition
to handle topology and link quality changes.

Keywords—Industrial Internet of Things; Software Defined
Networking; Scheduling; Resource allocation; Flow isolation

I. INTRODUCTION

The Industrial Internet of Things (IIoT) [1] is considered a
key enabler for Industry 4.0. Actuators and sensors may use
wireless communications in smart factories and/ warehouses.
Most deployments rely on scheduled wireless networks to
provide low latency and high reliability. Thus, most IIoT
technologies such as IEEE802.15.4-Time Slotted Channel
Hopping (TSCH) [2] exploit scheduled access to the medium:
each radio link can be activated during specific time windows
on a predetermined radio frequency. The schedule is cyclic
such that each active radio link receives a given bandwidth.

Software Defined Networking (SDN) [3] is very popular
to separate the control and data planes to make the network
easier to maintain and optimize. A controller exploits the so-
called southbound API (e.g., OpenFlow) to install rules in the
forwarding devices. A network device follows simple rules
defined in its flow table to forward any packet. Unfortunately,
wireless networks create specific challenges for SDN. Indeed,
wireless links are known to be lossy, making the control
and data planes unreliable. Thus, a controller has to estimate
the link quality to compute appropriate forwarding rules.
Typically, SDNWISE-TSCH [4] defines a southbound API
(i.e., OpenPath packet) to install forwarding rules all along
a path.

Forwarding rules are not enough for wireless networks.
SDN-WISE [5] proposes additional mechanisms to implement
also in-network packet processing. However, scheduled wire-
less networks need to schedule transmissions to work properly.
In particular, unreliable links should have more retransmis-
sion opportunities to avoid packet drops. Unfortuantely, most
distributed scheduling solutions have not been designed to
provide guarantees [6].

Thus, we are convinced that the SDN controller must
regroup two functions to support scheduled wireless networks:
forwarding rules are computed by the controller, and indi-

vidual forwarding rules are pushed to each node;
resource is allocated by the controller. More precisely, the

controller computes timeslots to use for each hop, and
pushes this configuration in the network.

SDN-TSCH [7] has been to cope in scheduled wireless
networks, even with unreliable links. However, it does not
support reconfigurations. If the link quality fluctuates, the
network may fail to meet the Service Level Agreements
(SLAs) requirements.

In this paper, we propose the mechanisms to maintain and
update the Software Defined Wireless Industrial Network. The
contributions of this paper are as follows:

1) we provide a method to allow a controller to detect failing
links, based on the link quality reported by each node;

2) we propose mechanisms to update both the control and
data planes, redirecting all the flows through a new
subpath when required. The method is energy efficient
since it relies on a few control packet to reconfigure the
network, and reliable because we prevent any incon-
sistent state during the reconfiguration, even if control
packets are dropped;

3) we detail a (re)scheduling algorithm, that minimizes the
number of changes to push in the network to be energy
efficient.

II. BACKGROUND & RELATED WORK

We present here background notions on IEEE 802.15.4-
TSCH (Time Slotted Channel Hopping), and detail SDN
solutions for scheduled networks.

A. IEEE 802.15.4-TSCH networks
IEEE 802.15.4-TSCH is an operational amendment of the

IEEE 802.15.4 standard designed for low-power industrial



wireless networks. It employs Time Division Multiple Access
(TDMA) and multi-channel frequency hopping for reliable
and energy-efficient communication. Transmissions are orga-
nized in a slotframe, which is a matrix of cells (pair of timeslot
and channel offset). Slotframe is repeated over time. Each
node is assigned a list of TX (transmit) and RX (receive) cells
to wake up for transmitting and receiving packets respectively.

IEEE 802.15.4-TSCH defines two types of cells:

dedicated cell is allocated to one transmitter to prevent col-
lisions during transmission. These collision-free cells are
used typically for e.g., data traffic or critical control
packets;

shared cell can be used by more than one transmitter, and
potential collisions can arise. For collision-resolution,
the transmitter waits for a random number of shared
cells to retransmit the packet, if it doesn’t receive a
acknowledgement. These shared cells are used for best-
effort and broadcast traffic.

IEEE 802.15.4-TSCH is compatible with both distributed
and centralized algorithms [6]. In the distributed approach,
each node executes an algorithm to dynamically modify its
local schedule. Minimal Scheduling Function (MSF) [8] is a
popular standard: distributed cells are locally negotiated on
demand. Each pair of transmitter/receiver dynamically adapts
the schedule in response to the volume of data traffic. MSF
usually relies on IPv6 Routing Protocol for Low-Power and
Lossy Networks (RPL) [9] to compute routes distributively.

By contrast, a centralized scheduler [10] may concentrate
all the decisions. However, most solutions overlook the fact
that the controller needs a complete view of the topology to
detect interference, provision enough resources for each flow,
etc. Besides, network maintenance is also challenging since
the wireless conditions are known to be time-variant. In this
article, we present an SDN-based industrial wireless network
with continuous maintenance.

B. SDN for scheduled wireless networks

The SDN paradigm has to be specifically adapted to cope
with scheduled wireless networks. Miranda et al. [11] propose
a centralized architecture for a Time Sensitive Network (TSN)
mixing WiFi 6 and wired segments. However, they do not
support wireless multihop topologies. SDNWISE [5] proposes
an SDN architecture that enables in-network packet process-
ing. But, SDNWISE relies only on forwarding rules. Thus,
SDNWISE-TSCH [4] defines additional mechanisms to sup-
port scheduled transmissions, which has been later extended to
support multi-radio gateways (aka border routers) [12]. How-
ever, the resource allocation process is fixed, and the control
plane relies on shared cells prone to collisions. Maintaining a
globally consistent network is challenging in these conditions.

Papageorgiou et al. [13] allocate timeslots in a TDMA-
based Mobile Ad-Hoc Network for military applications. One
slot is allocated to each network node, even if it does not
support data traffic, so that it can join the controller. However,
the focus was rather on supporting highly dynamic topologies.

Whisper [14] relies on a centralized controller to control
RPL and 6TiSCH Operation Sublayer (6P) protocols, aiming
to create a centralized management system with minimal
modifications to the network stack. The controller manipulates
RPL rank to induce parent changes, establishing new paths. It
also injects fake 6P commands for time-frequency block allo-
cation or deallocation between nodes. Unfortunately, Whisper
cannot respect SLA guarantees.

REACT [15] proposes a scheduling policy called gap-
induced to reduce the latency and energy cost of network
reconfiguration in industrial WirelessHART networks, a pre-
cursor of TSCH. The policy introduces intentional gaps be-
tween transmissions of the same flow. If the scheduler needs to
update the schedule, this flexibility avoids a complete recon-
figuration. However, to push the new schedule, REACT uses
individual DELETE and ADD command packets, modifying
the schedule one by one on each device. Changes in link
quality can impact multiple flows, leading to a storm of control
packets that may disrupt convergence.

SDN-TSCH [7] propose an SDN architecture for critical
industrial applications with a focus on fulfilling SLAs. Any
new device has to join first the TSCH network (link-layer
synchronization) and then the SDN-TSCH network by con-
tacting a controller. For this purpose, the new node sends a
report packet to the controller, forwarded hop-by-hop to the
controller through the control plane. In return, the controller
can send a config packet toward the new node, using
source-routing. Each intermediary node can read the headers
of the config packet to update its schedule as decided by
the controller. report and report packets correspond to a
SDN Southbound API designed for wireless topologies. SDN-
TSCH exploits only dedicated cells in the control plane so that
each node has a reliable collision-free end-to-end bidirectional
path with the controller. Unfortunately, the controller cannot
update a schedule once it has been installed.

III. WIRELESS SDN NETWORK RECONFIGURATION

We propose mechanisms in SDN-TSCH [7] to support a
real-time network reconfiguration whenever the conditions
evolve. Our solution is:

energy efficient : we can readjust bandwidth while over-
provisioning leads to energy inefficiency, while under-
provisioning may result in SLA violations. Besides, a
config packet can configure a whole path: one end-
to-end packet for each forwarding node is not anymore
required.

reliable: we prevent any inconsistent state when the network
is reconfigured. The forwarding rules are consistent and
no data packet is dropped in the data plane, even if a SDN
control packet needs to be retransmitted, or is dropped.

Let us consider the scenario illustrated in Fig. 1. If the
quality of the link F → B decreases from 95% to 40%,
the network must be reconfigured. The controller needs to i)
detect the fault, ii) reconfigure the control plane so that F
has dedicated cells with its new next hop toward the border



                          BR

B

A

D

F

C

95% -> 40%

Controller

new parent

previous parent

90%

90%

90%

90%

LAN

90%

before    after 

90% Radio link with
 a PDR of 90%

Current parent

New parent

Data flow

Fig. 1: A controller needs to reconfigure the control and data
planes to redirect the flows through the link (F→C) when the
PDR of the link (F→B) decreases from 95% to 40%

source routing
n hops

FID SID addr1 addrn... #add1 #del1 cell1,1 cell1,2 cell1,x

list of cells to add and remove
hop 1

#add2 #del2 cell2,1 cell2,y

list of cells to add and remove
hop n

... ...

Fig. 2: Enhanced format of config packet

router (C), iii) redirect data flows (e.g., FlowD) by allocating
resources in the data plane for the new path.

A. Fault detection & parent selection

Each IEEE 802.15.4-TSCH device sends periodically En-
hanced Beacons (EBs) to announce its presence. EBs are used
for synchronization, and to broadcast the network parame-
ters. Moreover, in SDN-TSCH, each node sends periodically
report packets to a controller, piggybacking the number of
EBs received from its neighbors. This way, a controller is able
to estimate the Packet Delivery Ratio (PDR) of each link by
computing the ratio of received and expected EBs.

The controller needs to maintain a path with each node in
the network. In particular, the link between any node with
its parent must present a sufficient link quality to limit the
number of retransmissions and packet drops. For each node,
the controller compares continuously the Packet Delivery
Ratio of its current parent, and the PDR of its best neighbor
which could serve as new parent. A reconfiguration is engaged
if the following condition holds:

PDR(current parent) ≤ α ∗ PDR(best parent) (1)

where PDR() denotes the PDR value, best parent is the
neighbor with the largest PDR and which is not a descendant
(no-loop condition), and current parent is the current par-

ent. 0 < α < 1 is the parameter defining the sensitivity of the
reconfiguration rule (a larger value means more oscillations).

B. Control and data planes update

The controller needs first to reconfigure the control plane.
More precisely, the path between the target node and the
border router has to be updated to pass through the new parent.
The controller has to allocate cells between the target node
and its new parent (respectively F and C in Fig. 1). More
precisely:
to controller: a new dedicated cell has to be reserved be-

tween the target node and its new parent. If the cell
between the target node and its old parent is still free in
the schedule of the new parent (half-duplex condition),
the same cell is reused. Else, another cell is selected
randomly to avoid collisions;

from controller: the new parent has already a transmitting
cell to its children. Thus, the controller needs just to add
the corresponding RX cell in the schedule of the target
node.

The controller forges two config packets to push the new
configuration, one per direction (to and from the controller).
To route config packets to the target node, we utilize
the same source-routing mechanism as the original SDN-
TSCH version [7]. The config packet is forwarded through
the dedicated cells in the from controller direction. In
particular, the new parent will receive the packet to forward
and will update its own schedule. For the last hop, a shared
cell is used to reach the target node since no dedicated cell is
present in the control plane for this specific (new) link.

To optimize the overhead of control packets, we enhance
the config packet format defined in [7] to use the same
packet to both install and remove cells (Fig. 2). Basically, the
config packet piggybacks i) the route to follow (n nodes),
ii) the list of cells to insert and to remove for each hop.

When the target node finally receives the config packet, it
sends an end-to-end ack to the controller. It is worth noting
that the target node stops using its previous parent as soon
as the cells are installed in its schedule. After a timeout,
the controller retransmits the config packet if no ack is
received. This way, we maintain the global consistency of the
schedule of the control plane.

When the target node has dedicated cells to and from its
new parent for the control plane, the controller needs then
to redirect the data flows through the new parent. Thus, it
needs to send one config packet for each of the data flows.
A config packet is forwarded through the control plane,
which has already been reconfigured, using a similar method
as before. The config packet follows the new path from
the destination toward the source and exploits only dedicated
cells to avoid collisions. As soon as the target node receives
the config packet, data packets start to be transmitted
through the new path for the corresponding data flow. It is
worth noting that we guarantee flow isolation even during the
convergence. We cannot have any inconsistent state since the
path is configured up to the source node (upstream).



Border router

B

C

D
BR

B-D

D-E

E-BR

E-BRC-D

D-EA-B

A-C

B-DS-AS-A

A-C C-D

E-BRD-E

A-C

A-B

Previous parent

AS

New parent

Target node

Subpath

Data flow

E

Timeslots: 1110987654321

X-Y X-Y X-YCells to add for the 
subpath in blue

Cells to add for the 
subpath in green Cells to remove

Fig. 3: Schedule update when redirecting a data flow

C. (Re)-scheduling algorithm

Computing a new schedule from scratch is expensive since
we would have to remove all the previous cells and install a
sequence of new cells all along the path. We propose rather
a rescheduling algorithm that tries to minimize the number
of schedule updates. Obviously, the problem is NP-complete,
and we propose here a heuristic.

To minimize the changes, we focus on the subset of the
path which differs between the previous and the new path.
For instance, the subpath to update corresponds to the links
F → C and C → A in Fig. 1. To reduce the end-to-end
delay, we need to schedule the cells back-to-back, minimizing
the buffering time. Moreover, it is more costly to change the
schedule of nodes farther from the border router: the config
packet has to be forwarded farther, possibly retransmitted, etc.
Thus, we keep the same schedule from the source node to the
target node and update only the rest of the schedule.

We adopt a greedy approach to compute a new schedule for
the subpath to minimize the end-to-end delay [16]. First, the
controller computes the number of cells to allocate for each
hop, depending on the link quality. It greedily increases the
number of cells on the weakest link in the subpath until the
minimum end-to-end reliability is respected. Then, it selects
free cells for each hop of the subpath. To minimize the
forwarding delay, consecutive cells are selected preferentially
(else, the closest cell is selected).

When the schedule of the subpath is computed, the con-
troller may encounter two different cases:
valid: the last cell in the subpath is scheduled before the first

cell of the rest of the path. In that case, the schedule is
valid and is applied without modification;

overlap: the last cell of the subpath is scheduled after the first
cell of the rest of the path. In that case, the controller
updates the rest of the schedule hop-by-hop toward the
border router. If the last cell of the current hop is

Algorithm 1: Re-scheduling of novel path
Data: prev path num hops, prev schedule,

prev path num cells hop,
subpath num hops,
subpath num cells hop,
last cell of hop before subpath,
first cell of hop after subpath,
first hop index after subpath

Result: schedule

1 lastCell← last cell of hop before subpath
2 for i = 1 to subpath num hops do // schedule

cells for subpath

3 for j = 1 to subpath num cells hop[i] do
4 cell← Pick first free cell after lastCell
5 schedule← cell
6 lastCell← cell

7 if lastCell > first cell of hop after subpath
then // back-to-back condition is not met

8 for i = first hop index after subpath to
prev path num hops do

9 for j = 1 to prev path num cells hop[i] do
10 cell← Pick first free cell after lastCell
11 schedule← cell
12 lastCell← cell
13 if lastCell < prev schedule[i][j +1] then
14 PushSchedule(schedule) // Condition

is met: stop scheduling

15 else
16 PushSchedule(schedule) // Push the final

schedule

scheduled before the cells for the next hop, the controller
stops the updates. In the worst case, the schedule is
updated up to the border router.

For the sake of clarity, we described here only the case
where the controller is the destination. However, this approach
is obviously generalizable to any destination in the network.

Algorithm 1 presents the re-scheduling approach of the new
path. Starting with the schedule of the subpath, it updates only
the parts of the schedule that need to be changed to ensure
that the end-to-end reliability and deadline are respected.

Let us consider the scenario illustrated in Fig. 3. The first
two cells correspond to the path before the target node (A):
they will not change. Then, the scheduler assigns consecutive
cells for the new subpath (A,C,D) in blue. It is worth noting
that the controller can assign the same timeslots through the
old and new paths: it is sufficient to use different channel
offsets to avoid collisions during the convergence.

This example shows an overlapping schedule: the last cell
for the link C → D and the first cell of the link D → E
are the same (timeslot 7). Thus, the controller has to assign
hop-by-hop new cells (the cells in green) to update the
rest of the schedule up to the border router. Symmetrically,
the overlapping cells have to be deallocated (with diagonal



TABLE I: Simulation parameters

Simulation
environ-
ment

OS: Contiki-ng (version 4.7)
Simulator: Cooja
https://github.com/Farzadv/Contiki-ng-SDN-TSCH.git
Propagation model: Unit Disk Graph Medium
Tx range = 100 m
Interference range = 150 m
Rx success = proportional to distance (100% - 0%)
Number of runs per solution: 5

Application
Number of data flow: 1 flow per node
Traffic pattern: Convergecast, Constant 1 packet every 5s
Required QoS: PDR >= 99%, deadline <= 1500ms

SDN-
TSCH

TSCH EB period: 15s
SDN report period: 5 min
config resend timeout: 50s
Control plane slotframe duration: 2.5s (251 timeslots)

hatching).

D. Obsolete cells removal

It is worth noting that some cells have been allocated and
are not used anymore through the previous path. However, the
energy consumption of unused cells is low [17]. Indeed, an
unused TX cell has no cost: the transmitter does not wake up
when no packet in its buffer has to be forwarded through the
corresponding cell. Inversely, the receiver has to wake up, but
it can turn its radio off after a fixed offset if no activity is
measured on the medium.

We argue that the cost of unused cells is much smaller
than sending and forwarding explicit config packets that
have to be acknowledged end-to-end, retransmitted, etc. Thus,
we propose a simple, timeout-based, schedule management.
If no cell is used for a particular flow for a certain period
of time, the corresponding cells are silently removed from
the schedule. Each node maintains one timer per data flow,
rearming the timer when it forwards a packet corresponding
to the flow. Typically, the cells in red in Fig. 3 will be
automatically removed from the schedule of B and D after
the timeout.

IV. PERFORMANCE EVALUATION

We implement our solution in contiki-ng and Cooja and
compare the following solutions:
SDN-TSCH-orig [7] is the original solution that does not

update the schedule when a flow is configured;
SDN-TSCH-reconf is the proposition described in this paper,

that detects when and which reconfiguration is required;
MSF [8] is a distributed scheduling function for TSCH1.

We simulate the scenario illustrated in Fig. 1 representative
of a topology with changing conditions. To more precisely
analyze the impact of a reconfiguration, we consider a single
link change. A real deployment may imply multiple reconfig-
urations by the controller but leading to the same conclusions.
Each node hosts an application which requires an end-to-
end PDR larger than 99% and an end-to-end delay lower
than 1500ms. Table I regroups the values of the different
parameters.

1https://github.com/alexrayne/contiki-ng.git

0 50 100 150 200 250
Packet sequence number

102

103

104

E
nd

-t
o-

en
d 

de
la

y 
(m

s)

D
ea

dl
in

e 
=

 1
50

0m
s

SDN-TSCH-reconf
SDN-TSCH-orig
MSF

Fig. 4: Per-packet end-to-end delay of FlowF in each solution

We measure first the end-to-end delay of FlowF (Fig. 4).
The quality of the link F → B is manually changed when D
generates the packet sequence number 90. SDN-TSCH-orig is
able to deliver only some of the packets before the deadline:
many of them require retransmissions or are dropped because
of a buffer overflow. On the contrary, SDN-TSCH-reconf is
able to reconfigure the network very efficiently, and all the
packets are delivered before the deadline. It is worth noting
that the delay increases after sequence number 90 because
more retransmitting cells are required to compensate for the
slightly lower PDR offered by the new path. Finally, MSF
cannot provide any delay guarantee since it has not been
designed for this purpose.

Fig. 5a reports the PDR of two data flows (FlowF and
FlowD) that have to be redirected through the link (F → C).
When the link quality degrades, SDN-TSCH-orig is not able
to reconfigure the network, causing the end-to-end PDR to
fall below the expected 99% level. The number of cells is not
sufficient to cope with the required number of retransmissions.
By contrast, SDN-TSCH-reconf is able to update the schedule,
and it keeps on providing ultra high-reliability after the
topology change. It is worth noting that MSF is not able to
provision enough resources quickly, since many oscillations
may arise. Thus, it provides a very low PDR after the quality
of the link F → B is reduced.

We finally measure the reconfiguration time (Fig. 5b) and
the overhead during the reconfiguration (Fig. 5c). We define
the reconfiguration time as the time it takes to initiate the
reconfiguration of a node and its subtree to adapt to the
new path and schedule. SDN-TSCH-reconf implements an
average reconfiguration of 14s. Indeed, one config packet
is forwarded to or from the controller in one slotframe,
which lasts 2.5 seconds. Since the control and data planes
have to be reconfigured for two data flows (4 config
packets), we need consequently several slotframes (at least
one slotframe per config packet if we consider possible
retransmissions). MSF needs on average 12 packets to readjust
the bandwidth for the incriminated links, which remains very
reasonable However, we need also to wait for the convergence



MSF SDN-TSCH-orig SDN-TSCH-reconf
Network Solution

0

20

40

60

80

100

PD
R

(%
) b

ef
or

e 
de

ad
lin

e

End-to-end PDR = 99%

Flow(F) Flow(D)

(a) Per-flow PDR

MSF SDN-TSCH-reconf
Network Solution

101

102

103

R
ec

on
fig

ur
at

io
n 

tim
e 

(s
)

(b) Reconfiguration time

MSF SDN-TSCH-reconf
Network Solution

10

20

30

N
um

. c
on

tr
ol

 p
ac

ke
t

(c) Control overhead for reconfiguration

Fig. 5: Comparison of SDN-TSCH-orig, SDN-TSCH-reconf, and MSF

of RPL to have consistent routing tables and then update
the local schedules. Possibly, RPL may experience temporary
oscillations during such a convergence. Thus, MSF converges
much slower than SDN-TSCH-reconf.

In addition to the reconfiguration time, the network should
also detect when a significant change occurs. Because of the
lack of space, we provide here only numerical values. MSF
experiences very long detection times, ranging from 1.5 to 18
minutes. Considering SDN-TSCH-reconf, a reconfiguration is
triggered upon reception of a report packet. In the worst
case, the change occurs just after F sends its report, so the
detection time is bounded by the report period set to 5min
in our simulations.

V. CONCLUSION & PERSPECTIVES

We present here all the mechanisms to reconfigure a SDN
scheduled wireless network. We reduce the overhead, with a
single control packet to configure a whole path, and present
how we can prevent any inconsistent state, even temporarily.
We also present a scheduling algorithm to minimize the
amount of reconfiguration to make the maintenance energy
efficient, and to minimize the impact of unreliability.

In future work, we plan to improve fault detection in
the network by implementing advanced techniques. Machine
learning techniques may help to predict network faults by
analyzing real-time network monitoring data and histori-
cal performance metrics. Our controller-based architecture is
promising since all the measurements are consolidated in a
single location. Finally, we need also to reduce the detection
time when a fault occurs, to notify immediately the controller.

ACKNOWLEDGMENT

This work was partly supported by the Region Grand Est.

REFERENCES

[1] Y. Wu et al., “A survey of intelligent network slicing
management for industrial iot: Integrated approaches for
smart transportation, smart energy, and smart factory,”
IEEE Communications Surveys & Tutorials, vol. 24,
no. 2, pp. 1175–1211, 2022.

[2] “IEEE Standard for Low-Rate Wireless Networks,” IEEE
Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-
2015), 2020.

[3] N. Bizanis et al., “SDN and virtualization solutions for
the Internet of Things: A survey,” IEEE Access, vol. 4,
pp. 5591–5606, 2016.

[4] F. Orozco-Santos et al., “Enhancing SDN WISE with
Slicing Over TSCH,” Sensors, vol. 21, no. 4, 2021.

[5] L. Galluccio et al., “SDN-WISE: Design, prototyping
and experimentation of a stateful SDN solution for
Wireless Sensor networks,” in INFOCOM, 2015.

[6] R. Teles Hermeto et al., “Scheduling for IEEE802.15.4-
TSCH and Slow Channel Hopping MAC in Low Power
Industrial Wireless Networks,” Comput. Commun., vol.
114, no. C, pp. 84–105, Dec. 2017.

[7] F. Veisi et al., “Enabling centralized scheduling using
software defined networking in industrial wireless sensor
networks,” IEEE Internet of Things Journal, 2023.

[8] T. Chang et al., “6TiSCH Minimal Scheduling Function
(MSF),” IETF, RFC 9033, 2021.

[9] T. Winter, “Routing protocol for low-power and lossy
networks,” IETF, RFC 6550,6551,6552, 2012.

[10] N. Taheri Javan et al., “IEEE 802.15.4.e TSCH-Based
Scheduling for Throughput Optimization: A Combina-
torial Multi-Armed Bandit Approach,” IEEE Sensors
Journal, vol. 20, no. 1, pp. 525–537, 2020.

[11] G. Miranda et al., “Enabling time-sensitive network
management over multi-domain wired/wi-fi networks,”
IEEE TNSM, 2023.

[12] F. Orozco-Santos et al., “Scalability enhancement on
software defined industrial wireless sensor networks over
tsch,” IEEE Access, vol. 10, pp. 107 137–107 151, 2022.

[13] Y. Papageorgiou et al., “Joint controller placement and
tdma link scheduling in sdn-enabled tactical manets,” in
MILCOM. IEEE, 2022, pp. 125–132.

[14] E. Municio et al., “Whisper: Programmable and flexible
control on industrial IoT networks,” Sensors, vol. 18,
no. 11, p. 4048, 2018.

[15] D. Gunatilaka et al., “REACT: An agile control plane for
industrial wireless sensor-actuator networks,” in IoTDI.
IEEE, 2020, pp. 53–65.

[16] G. Gaillard et al., “Kausa: KPI-aware Scheduling Al-
gorithm for Multi-flow in Multi-hop IoT Networks,” in
ADHOC-NOW, 2016.

[17] X. Vilajosana et al., “A Realistic Energy Consumption
Model for TSCH Networks,” IEEE Sensors Journal,
vol. 14, no. 2, pp. 482–489, 2014.


